• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 264
  • 103
  • 33
  • 25
  • 24
  • 19
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1048
  • 252
  • 233
  • 189
  • 162
  • 134
  • 123
  • 116
  • 111
  • 111
  • 105
  • 102
  • 90
  • 83
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Investigation of Gain-of-Function Induced by Mutant p53

Vaughan, Catherine 01 January 2015 (has links)
p53 is mutated in 50% of all human cancers, and up to 70% of lung cancer. Mutant p53 is usually expressed at elevated levels in cancer cells and has been correlated with a poor prognosis. Cancer cells that express mutant p53 show an increase in oncogenic phenotypes including an increase in growth rate, resistance to chemotherapeutic drugs, and an increase in motility and tumorigenicity to name a few. We have identified several genes involved in cell growth and survival that are upregulated by expression of common p53 mutants: NFκB2, Axl, and epidermal growth factor receptor (EGFR). The aim of this study was to determine the role NFκB2, Axl, and EGFR play in mutant p53’s gain of function (GOF) phenotype and to determine a mechanism for upregulation of mutant p53 target gene upregulation. Inhibition of mutant p53 in various cancer cell lines using RNAi in the form of transient siRNA transfection or stable shRNA cell line generation caused a decrease in the gain of function ability of those cells in the form of reduced chemoresistance, reduced cell growth and motility, and a reduction in tumor formation. Additionally, inhibition of NFκB2, Axl, and EGFR also showed similar effects. Promoter deletion analysis of the NFκB2 promoter did not show a specific mutant p53 response element needed for mutant p53 mediated transactivation. Similarly, deletion of the p53/p63 binding site on the Axl promoter did not inhibit mutant p53 transactivation. Sequence analysis of the NFκB2, Axl, and EGFR promoters revealed several transcription factor binding sites located throughout the promoters. ChIP analysis of mutant p53 and the promoter-specific transcription factor binding revealed that in the presence of mutant p53, individual transcription factor binding is increased to the NFκB2, Axl, and EGFR promoters as well as an increase in acetylated histone binding. This data suggests that mutant p53 promotes an increase in transcription by inducing acetylation of histones via recruitment of transcription factors to the promoters of mutant p53 target genes.
292

Exploring the Functional Interaction Between CaMK-II and p53

Lai, Raymond 27 April 2011 (has links)
Calcium (Ca2+)/calmodulin-dependent kinase 2 (CaMK-II) is a multifunctional member of a family of Ca2+/calmodulin-dependent serine/threonine protein kinases that respond to transient intracellular calcium signaling. CaMK-II has been reported to be involved with transcription regulation, cell motility, neuronal development, cell cycle regulation, and more recently early development of vertebrates (Easley et al., 2008; Rothschild et al., 2009; Francescatto et al., 2010). Through previous work in the lab using tandem mass spectrometry and “substrate-trapping mutants”, tumor suppressor protein 53 (p53) was identified as a novel CaMK-II binding partner in tissue culture. In this study, I sought to provide characterization of the functional interaction of p53 and CaMK-II. First, a stable p53 knockdown human cell line (HEK) was established through lentiviral transduction of p53 shRNA and verified with immunoblots and immunostaining assays. Next, the localization of CaMK-II and the cell growth rate in these cells was determined. In wild type HEK cells, catalytically inactive CaMK-II inhibited cell growth, which is consistent with previous studies in mouse fibroblasts with pharmacological inhibition. p53-deficient cells were less sensitive to CaMK-II deficiencies using dominant negative CAMK-II, but not pharmacological disruption. The overall results of this study have provided significant clues to the mechanism between CaMK-II and p53 in the control of cell cycle progression.
293

Identification of CaMK-II Protein Targets in Tissue Culture and Zebrafish Embryos using Tandem Mass Spectrometry

Myers, Alexandra 01 January 2009 (has links)
Calcium (Ca2+)/calmodulin-dependent kinase 2 (CaMK-II) is one member of a family of Ca2+/calmodulin-dependent protein kinases that responds to intracellular Ca2+ signals (Hudmon, A. and H. Schulman (2002)). CaMK-II is a multifunctional regulator of transcription, cell cycle progression, cell motility and neuronal development. (Wang, C., et al. (2008), Easley, C. A. IV, et al. (2008), Osterhoff, M., et al. (2003), Faison, M. O., et al. (2002)). Recently, CaMK-II has been shown to be important in the early development of vertebrates. In developing zebrafish, disruption of CaMK-II expression has been shown to induce phenotypes similar to those documented in several human diseases. The identification of the tissue-specific binding partners and substrates of CaMK-II which are responsible for specific developmental fates remains a key step in understanding this important protein kinase family. In this thesis research, specific “substrate-trapping” mutants of CaMK-II were designed, introduced into a variety of rodent and human cell lines in culture and used in conjunction with tandem mass spectrometry to identify binding partners, such as β-actin, tropomodulin-3 and Fli-I as well as novel, putative substrates, such as the tumor suppressor protein 53 (p53). This approach was subsequently applied to zebrafish embryos where an overlapping subset of CaMK-II binding proteins to those found in mammalian cell culture were identified. This project represents one of the first studies to identify binding proteins in zebrafish embryos using epitope tagging and mass spectrometry. This research has also established a technical framework for the use of mass spectrometry to characterize the developmental proteome of whole zebrafish embryos or specific zebrafish tissues at any developmental time point.
294

Clonage et analyse de la protéine suppresseur de tumeur P53 chez l'axolotl

Villiard, Éric January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
295

Évaluation du rôle de p53 dans la régulation de la recombinaison homologue et la stabilité génomique

Lemelin, Jean-François January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
296

Možná úloha proteinu DAXX v zástavě buněčného cyklu a buněčné senescenci / A potential role of DAXX in cell cycle arrest and cellular senescence

Valášek, Ján January 2014 (has links)
Death domain-associated protein 6 (DAXX) is a multifunctional protein involved in diverse cellular processes. It acts as a histone chaperone or regulator of transcription and apoptosis, in which is its role quite controversial. DAXX also participates in regulation of cell DNA damage response (DDR). DAXX co-creates and stabilizes complex with Mdm2, which negatively regulates the stability of p53, an important tumor suppressor, which is a part of signalling node in the DDR. If DNA damage is not lethal for the cell and unables it to proliferate, the irreversible state of cell cycle called cellular senescence takes place. Under physiological conditions, induction of senescence can prevent the development of tumorigenesis. Therefore, the description of mechanisms involved in the induction of senescence has potential clinical significance. In my thesis, I aimed to determine changes in the level of DAXX protein in senescent cells and to characterize the manner of its regulation. In tumor cells MCF-7 and primary BJ fibroblasts, I observed decrease in DAXX protein level and its regulation. I tested the hypothesis according to which an increase in DAXX level before DNA damage canprevent induction of cellular senescence, or increase in its expression during senescence can cause recovery of cell proliferation....
297

DNA-Bindungseigenschaften von Mitgliedern der p53 Familie / DNA binding properties of members of the p53 family

Sauer, Markus January 2009 (has links) (PDF)
Ein sehr wichtiger Tumorsuppressor ist der Transkriptionsfaktor p53, der Zellschicksals-Entscheidungen wie Zellzyklus-Arrest und programmierten Zelltod (Apoptose) kontrolliert. Die Wirkung von p53 und von seinen Familienmitgliedern p63 und p73 beruht überwiegend auf der Fähigkeit, als Transkriptionsfaktoren die Genexpression zu regulieren. Die DNA-Bindung an Promotoren von Zielgenen ist dabei von grundlegender Bedeutung und wird durch die hoch konservierte zentrale DNA-Bindungs-Domäne und den Carboxy-Terminus bestimmt. In dieser Arbeit wurden die DNA-Bindungseigenschaften von p53 und verschiedener Carboxy-terminalen p73 Isoformen untersucht. In „electrophoretic mobility shift assay” (EMSA) Experimenten bildeten p53 und p73gamma nur schwache Sequenz-spezifische DNA-Komplexe, wohingegen p73alpha, beta und delta die DNA deutlich stärker banden. Die schwache DNA-Bindung von p53 und p73gamma kann durch mehrfach positiv geladene Carboxy-Termini erklärt werden, die über eine Sequenz-unabhängige DNA-Bindung ein Gleiten entlang der DNA ermöglichen. Die Deletion der Carboxy-terminalen Domäne (CTD) von p53 („p53delta30“) verstärkte dementsprechend die Sequenz-spezifische DNA-Bindung in vitro und seine Übertragung auf p73alpha („p73alpha+30“) schwächte sie ab. Mittels „fluorescence recovery after photobleaching“ (FRAP) Experimenten konnte in lebenden Zellen eine Verminderung der intra-nukleären Mobilität von p53 und p73alpha+30 durch die CTD gezeigt werden, die aus der Sequenz-unabhängigen DNA-Bindung resultiert. Zusätzlich reduzierte die CTD die Sequenz-spezifische DNA-Bindung von p53 an den p21 (CDKN1A) Promotor. Das Spektrum der regulierten Zielgene wurde in einer Genom-weiten Genexpressions-Analyse nicht durch die CTD verändert, sondern maßgeblich durch das Protein-Rückgrat von p53 beziehungsweise p73 bestimmt. Allerdings verminderte die CTD das Ausmaß der Transkriptions-Regulation und hemmte die Induktion von Zellzyklus-Arrest und Apoptose. Die mehrfach positiv geladene CTD in p53 besitzt demzufolge eine negativ regulatorische Wirkung, die in den wichtigsten p73 Isoformen alpha, beta und delta fehlt. Die zentrale DNA-Bindungs-Domäne trägt durch elektrostatische Wechselwirkungen zwischen H1-Helices (Aminosäurereste 177 bis 182) unterschiedlicher p53 Monomere zu kooperativer DNA-Bindung und zu Zellschicksals-Entscheidungen bei. Anhand von Mutanten, die unterschiedlich starke H1-Helix-Interaktionen ermöglichen, konnte gezeigt werden, dass starke Interaktionen die Bindung an Promotoren von pro-apoptotischen Genen verstärkte, wohingegen die Bindung an anti-apoptotische und Zellzyklus-blockierende Gene unabhängig von der Interaktions-Stärke war. Diese Unterschiede in der Promotor-Bindung ließen sich nicht auf eine veränderte zelluläre Lokalisation der Mutanten zurückführen, da alle Mutanten überwiegend nukleär lokalisiert waren. Eine an Serin 183 Phosphorylierungs-defekte Mutante von p53 bildete stabile DNA-Komplexe, entsprechend einer Mutante mit starker H1-Helix-Interaktion, und trans-aktivierte pro-apoptotische Promotoren stärker als Mutanten, die Phosphorylierung von p53 an Serin 183 simulieren. Da zusätzlich bekannt ist, dass Serin 183 mit der H1-Helix wechselwirkt, könnte diese Phosphorylierung einen physiologischen Mechanismus zur Regulation der H1-Helix-Interaktion und damit des Zellschicksals darstellen. Zusammenfassend ließ sich zeigen, dass sowohl die Interaktions-Stärke zweier DNA-Bindungs-Domänen als auch die elektrische Ladung des Carboxy-Terminus die DNA-Bindungseigenschaften von p53 Familienmitgliedern bestimmen und so Zellschicksals-Entscheidungen der p53 Familie beeinflussen. / A very important tumour suppressor is the transcription factor p53 that controls cell fate decisions like cell cycle arrest and programmed cell death (apoptosis). The effects of p53 and its family members p63 and p73 are mainly based on their transcription factor activities to regulate gene expression. The DNA binding to promoters of target genes is of fundamental importance for their functionality and is determined by the highly conserved core DNA binding domain and the carboxy-terminus. In this thesis the DNA binding properties of p53 and different carboxy-terminal p73 isoforms were examined. In electrophoretic mobility shift assays (EMSA) p53 and p73gamma formed only weak sequence-specific protein-DNA-complexes while p73alpha, beta and delta bound considerably stronger to DNA. A highly positively charged carboxy-terminus can explain the weak DNA binding of p53 and p73gamma by enabling sequence-nonspecific DNA binding leading to sliding on DNA. According to this the deletion of the carboxy-terminal domain (CTD) of p53 („p53delta30“) reinforced DNA binding in vitro, and its fusion to p73alpha („p73alpha+30“) attenuated it. In living cells the CTD reduced intranuclear mobility of p53 and p73alpha+30 in fluorescence recovery after photobleaching (FRAP) experiments by mediating sequence-nonspecific binding to DNA. In addition, the CTD reduced sequence-specific occupancy of the p21 (CDKN1A) promoter by p53 in vivo. In an unbiased genome-wide gene expression analysis the spectrum of target genes was not changed by the presence of the CTD, but mainly determined by the p53 and p73 protein backbone, respectively. However, the CTD diminished the level of target gene activation and inhibited the induction of cell cycle arrest and apoptosis. As a result, the highly positively charged carboxy-terminus of p53 exhibits a negative regulatory effect that is missing in the most important p73 isoforms alpha, beta and delta. The core DNA binding domain adds to cooperative DNA binding and cell fate decisions by electrostatic interactions between H1 helices (residues 177 to 182) of different p53 monomers. Strong H1 helix interactions increased binding to promoters of pro-apoptotic genes, whereas binding to anti-apoptotic and proliferation inhibiting genes was independent of the interaction strength as shown by mutants with different strengths of the H1 helix interactions. These differences in promoter binding were not caused by different cellular localizations of the mutants as they were all predominantly localized to the nucleus. A serine 183 phosphorylation-defective mutant of p53 formed stable protein-DNA-complexes, comparable to a mutant with strong H1 helix interactions, and trans-activated pro-apoptotic promoters stronger than mutants that mimicked p53 phosphorylated on serine 183. Due to the fact that serine 183 interacts with the H1 helix, these data suggest that phosphorylation of serine 183 is a physiological mechanism to regulate H1 helix interactions and thereby cell fate decisions. In summary, it was shown that both the interaction strength of two DNA binding domains and the electrostatic charge of the CTD define the DNA binding properties of p53 family members and thereby influence cell fate decisions of the p53 family.
298

Function of Lin9 in vivo and MAP3K4-p38 signaling regulates p53 mediated cell cycle arrest after defective mitosis / Funktion von Lin9 in vivo und MAP3K4-p38 Signalweg reguliert einen p53-vermittelten Zellzyklus-Arrest nach fehlerhafte Mitose

Ulrich, Tanja January 2012 (has links) (PDF)
Eine genaue Kontrolle des Verlaufs durch die Mitose ist entscheidend für die Gewährleistung genomischer Stabilität und für die Vermeidung von Aneuploidy. Der DREAM Komplex ist ein wichtiger Regulator der Expression von mitotischen Genen. Die Depletion der DREAM-Untereinheit Lin9, führt zu einer verminderten Expression von G2/M Genen und beeinträchtigt die Proliferation. In konditionellen knockout Mauszellen (MEFs) verursacht das Ausschalten von Lin9 Defekte in Mitose und Zytokinese und löst vorzeitige Seneszenz aus, um eine weitere Zellproliferation zu verhindern. In dieser Arbeit konnte gezeigt werden, dass der seneszente Phänotyp in Lin9 knockout MEFs unabhängig von den beiden Tumorsuppressor-Signalwegen p53-p21 und p16-pRB induziert wird. Untersuchungen mit dem konditionellen Lin9 knockout Mausmodell verdeutlichten die wichtige Funktion von Lin9 in der Regulierung der mitotischen Genexpression und der Proliferation in vivo. Das Fehlen von Lin9 führte zu einer verringerten Proliferation in den Krypten des Dünndarms und verursachte eine Atrophie des Darmepithels und einen schnell eintretenden Tod der Tiere. Im zweiten Teil der Arbeit wurden Signalwege untersucht, die nach fehlerhafter Zytokinese zu einem p53 vermittelten G1-Arrest führen. Hierfür wurde ein chemischer Inhibitor der mitotischen Kinase Aurora B verwendet. Mit Hilfe eines Hochdurchsatz siRNA Screens wurde die MAP Kinase MAP3K4 als Aktivator des p53 Signalwegs identifiziert. Es konnte gezeigt werden, dass MAP3K4 die Stresskinase p38b aktiviert, um den p53 vermittelten Zellzyklusarrest in tetraploiden Zellen auszulösen. Dabei wurde p38b nach Hemmung von Aurora B für die transkriptionelle Aktivierung des p53 Zielgens p21 benötigt. Im Gegenteil dazu erfolgte die Phosphorylierung, Stabilisierung und die Rekrutierung von p53 an den p21 Promoter unabhängig von p38. Die teilweise Hemmung von Aurora B zeigte, dass fehlerhafte Segregation von Chromosomen auch den MAP3K4-p38-p53 Signalweg aktiviert und lässt darauf schließen, dass subtile Defekte in der Mitose ausreichen diesen Stress-Signalweg zu induzieren. Obwohl p38 für den G1 Zellzyklusarrest nach mitotischen Schäden erforderlich war, führte die gleichzeitige Inhibierung von p38 und Aurora B über einen längeren Zeitraum zu einer verringerten Proliferation, vermutlich aufgrund verstärkter Apoptose. Es ist anzunehmen, dass der MAP3K4-p38-p53 Signalweg generell nach Defekten in der Mitose oder Zytokinese aktiviert wird um Zellen in G1 zu arretieren und um chromosomale Instabilität zu vermeiden. / Precise control of progression through mitosis is essential to maintain genomic stability and to prevent aneuploidy. The DREAM complex is an important regulator of mitotic gene expression. Depletion of Lin9, one core-subunit of DREAM, leads to reduced expression of G2/M genes and impaired proliferation. In conditional mouse knockout cells (MEFs) Lin9 deletion causes defects in mitosis and cytokinesis and cells undergo premature senescence in order to prevent further proliferation. In this work it could be shown that the senescence phenotype in Lin9 knockout MEFs is independently mediated by the two tumor suppressor pathways p53-p21 and p16-pRB. Studies using the conditional Lin9 knockout mouse model demonstrated an important function of Lin9 in the regulation of mitotic gene expression and proliferation in vivo. Deletion of Lin9 caused reduced proliferation in the intestinal crypts resulting in atrophy of the intestinal epithelium and in rapid death of the animals. In the second part of this work, the pathways leading to p53 mediated G1 arrest after failed cytokinesis were analyzed by using a chemical inhibitor of the mitotic kinase Aurora B. In a high throughput siRNA screen the MAP kinase MAP3K4 was identified as an upstream activator of p53. It could be shown that MAP3K4 activates the downstream stress kinase p38b to induce the p53 mediated cell cycle arrest of tetraploid cells. p38b was required for the transcriptional activation of the p53 target gene p21 in response to Aurora B inhibition. In contrast, phosphorylation, stabilization and recruitment of p53 to the p21 promoter occured independently of p38 signaling. Partial inhibition of Aurora B demonstrated that chromosome missegregation also activates the MAP3K4-p38-p53 pathway, suggesting that subtle defects in mitosis are sufficient for inducing this stress signaling pathway. Although p38 was required for the G1 cell cycle arrest after mitotic failures, long-term co-inhibition of p38 and Aurora B resulted in reduced proliferation probably due to increased apoptosis. Presumably, MAP3K4-p38-p53 signaling is a common pathway that is activated after errors in mitosis or cytokinesis to arrest cells in G1 and to prevent chromosomal instability.
299

Targeting MDM2, the antagonist of the tumor suppressor p53

Sriraman, Anusha 10 September 2018 (has links)
No description available.
300

Structural Stability of Nucleic Acids and Peptides: a Theoretical and Computational Study

Guo, Zuojun January 2012 (has links)
Thesis advisor: Udayan Mohanty / In chapter one, two simple models are used to estimate the electrostatic contributions to the stiffness of short DNA fragments. The first model views DNA as two strands that are appropriately parameterized and are wrapped helically around a straight cylinder radius equal to the radius of the DNA molecule. The potential energy of the DNA due to phosphate-phosphate electrostatic interactions is evaluated assuming that the charges interact through Debye-Hückle potentials. This potential energy is compared with the potential energy as computed using our second model in which DNA is viewed as two helical strands wrapping around a curved tube whose cross-section is a disk of radius equal to the radius of the DNA. The results are compared with counterion condensation models and experimental data (Guo et al. J. Phys. Chem. B, 2008, 112, 16163-16169). In chapter two, the fidelity of translation selection begins with the base pairing of codon-anticodon complex between the mRNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome (Guo et al. Proc. Nat. Acad. Sci. 2011, 108, 3947-3951). In chapter three, we use extensive molecular dynamics simulations to study a series of stapled alpha helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted helicities that are in good agreement with the experimental value. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha helical stability (Guo et al. Chem. Biol. Drug. Des. 2010, 75, 348-359.). In chapter four, the alpha helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides in solution and when bound to MDM2 is investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, the length of the bridge, on the relative stability of the alpha helix structure. The conformation population distribution indicates a fully helical state and several partially folded states. The distribution of dihedral pairs of the stapled peptides in the bound state indicates a significant population around the alpha helical region. Sequences over which the linker spans tend to have the highest helical occupancy. Significant helical content is observed for a double stapled p53 peptide at 575 K. The probability to form native contacts is increased when the stapled peptides are bound to MDM2. The distribution of the end-to-end distance of the peptides is bimodal. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.0417 seconds