• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial binding of per- and polyfluorinated alkyl substances (PFASs) : - Analysis of PFASs in microbes with ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS)

Majdak, Karolina January 2018 (has links)
Per- and polyfluorinated alkyl substances (PFASs) belong to a large group of man-made chemicals that pollute the environment. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the most commonly found PFASs. The pollution of PFASs can be caused among others by using of aqueous fire-fighting foams (AFFFs). PFASs are persistent compounds; that can travel long distances and bioaccumulate in biota. There are several exposure routes for PFASs, but the most common are via food and drinking water. A possible way for PFASs to enter the food chain is by adsorption to microbes. In this project, binding of PFASs to three gram-negative bacteria, Eschericha coli, Acidovorax delafieldii and Pseudomonas nitroreducens, was assessed. Microbes were exposed for fluorinated compounds in environmental water samples and a PFAS-11 solution with 11 PFAS substances prepared in the laboratory. The binding seems to be preferential to the most abundant compounds, PFOS, since the second most abundant compound in the samples was PFHxS with concentrations at one third of the PFOS concentration but nonetheless PFHxS was not detected in any of the samples. The binding of mainly one PFAS was identified; PFOS was bound at highest concentrations in E. coli treated with both environmental water sample and a PFAS-11 solution. Low concentrations of FOSA and PFDoDS were identified in E. coli and PFNA in A. delafieldii. Only PFOS was detected in P. nitroreducens. The concentrations of other PFASs were below their respective method detection limits.
2

Sorption of perfluorinated and polyfluorinated alkylated substances (PFASs) in the subsurface of an industrial site in Sweden / Sorption av perfluorerade och polyfluorerade alkylsubstanser (PFAS) inom ett industriområde i Sverige

Sköld, Carl January 2019 (has links)
Per- and polyfluoroalkyl substances (PFASs) are a group of emerging chemicals which havereceived increasing attention due to their toxicity, persistent properties, and global distribution.In this study, sorption coefficients (Kd and KOC) of PFASs in an industrial site in Sweden wereevaluated. Sorption is a measures of the mobility of a substance in the subsurface, and is a keyfactor in environmental risk assessments. Sorption coefficients were calculated both from fieldsamples processed in laboratory batch tests, and from a simplified approach involving the totalconcentrations in soil and groundwater (field-derived). Soil was sampled from two locations ofthe site; C8 and M6. Field-derived values were calculated based on concentrations which werehistorically measured. The aim was to compare the two methods, and to compare the valueswith literature values as well as guideline sorption values established by the SwedishGeotechnical Institute (SGI). Sorption coefficients for PFHxA, PFHpA, PFOA, PFHxS, PFOS, 6:2 FTS and PFBS could beestablished. Results showed that laboratory-derived sorption coefficients were significantlyhigher than field-derived sorption coefficients. Laboratory-derived sorption values were alsohigher than to SGI’s preliminary sorption values. Comparing C8 and M6 KOC values toliterature values, PFHpA, PFHxA, and PFBS exhibit values above literature values. PFOA,PFHxS, PFOS exhibit KOC values within the range of literature values. According to thesorption coefficients, predictive scenarios of leaching through the unsaturated zone weremodelled, and it was concluded that leaching was higher in M6 compared to C8. The resultsalso showed that an increase in precipitation increased the leaching. / Per- och polyfluorerade alkylsubstanser (PFAS) är en grupp nyligen uppkomna kemikalier somhar fått ökad uppmärksamhet pga. deras toxicitet, ihärdiga egenskaper och globala utbredning.Detta examensarbete har studerat fördelningskoefficienter (Kd och KOC) för PFAS inom ettindustriområde i Sverige. Fördelningskoefficienter är ett mått på mobilitet av en substans iunderjorden, och det är en viktig komponent i riskbedömningar inom förorenad mark.Fördelningskoefficienter beräknades dels utifrån jordprover som tagits i fält och analyserats ilaboratorium med extraktionsmetoder, och dels utifrån ett förenklat tillvägagångssätt därberäkning skett med hjälp av tidigare uppmätta koncentrationer i jord och grundvatten.Jordprover från två områden inom industriområdet; C8 och M6, togs och analyserades.Fältbaserade fördelningskoefficienter beräknades utifrån koncentrationer som tidigare mättsvid brunnsinstallation och vid grundvattenövervakning. Målet med studien var att jämföra detvå metoderna, och dessutom jämföra fördelningskoefficienterna med motsvarande i värdenlitteraturen samt riktvärden för fördelningskoefficienter som Statens Geotekniska Institutet(SGI) arbetet fram. Fördelningskoefficienter för PFHxA, PFHpA, PFOA, PFHxS, PFOS, 6:2 FTS and PFBS kundeberäknas. Resultatet visade att laboratorie-baserade fördelningskoefficienter var betydligthögre än fältbaserade fördelningskoefficienter. Laboratorie-baserade fördelningskoefficientervar även högre än de preliminära riktvärden för fördelningskoefficienter som SGI etablerat. Vidjämförelse av fördelningskoefficienter för C8 och M6 kunde det konstateras att PFHpA,PFHxA, and PFBS hade högre värden än motsvarande i litteraturen. PFOA, PFHxS, PFOSvisade på värden som var inom intervallet av värdena från litteraturen. Med hjälp av deberäknade fördelningskoefficienterna modellerades prediktiva utlaknings-scenarier. Utifrånresultatet sker utlakningen i större grad i M6 jämfört med C8. Utlakningen ökade även vidförhöjd nederbörd.
3

Abiotic Reduction of Perfluoroalkyl Acids by NiFe<sup>0</sup>-Activated Carbon

Jenny E Zenobio Euribe (6638495) 14 May 2019 (has links)
<div> <p>In recent years, the presence of per- and polyfluoroalkyl substances (PFAS) in aquatic systems has led to research on their fate, effects and treatability. PFAS have been found in various environmental matrices including wastewater effluents, surface, ground, and drinking water. Perfluoroalkyl acids (PFAAs) are the class of PFAS most commonly tested due to their ability to migrate rapidly through groundwater and include perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs). Of the globally distributed and persistent PFAAs, PFSAs are the most resistant to biological and oxidative chemical attack. This doctoral study focused on a reductive treatment approach with zero valent metals/bimetals nanoparticles (NPs) synthesized onto a carbon material to reduce NP aggregation. Initial work focused on exploring reactivity of different combinations of nano (n) Ni, nFe<sup>0</sup> and activated carbon (AC) at 22 <sup>o</sup>C to 60 <sup>o</sup>C for transforming perfluorooctanesulfonate (PFOS) from which nNiFe<sup>0</sup>-AC at 60 <sup>o</sup>C led to transformation of both linear (L-) and branched (Br-) PFOS isomers. The remaining research focused on work with nNiFe<sup>0</sup>-AC at 60 <sup>o</sup>C in batch reactors including optimizing nNiFe<sup>0</sup>-AC preparation, quantifying PFOS transformation kinetics and evaluating the effects of PFAA chain length (C4, C6 and C8) and polar head group (PFSA versus PFCA) as well a groundwater matrix on transformation magnitude. Optimization of analytical methods to provide multiple lines of evidence of transformation including fluoride, sulfite and organic product generation was an ongoing throughout the research.</p> <p>nNiFe<sup>0</sup>-AC prepared with a 3-h synthesis stirring time led to the highest PFOS transformation of 51.1 ± 2.1% with generation of ~ 1 mole of sulfite (measured as sulfate) and 12 moles of fluoride. Several poly/per-fluorinated intermediates with single and double bonds were identified using quadrupole time-of-flight mass spectrometry (QToF-MS) in negative electrospray ionization (ESI-) mode with MS/MS fragmentation confirmation as well as one and later two desulfonated products with QToF negative atmospheric pressure chemical ionization (APCI-). All organic transformation products were found in only particle extracts as well as most of the sulfite generated. PFOS transformation kinetics showed that generated fluoride concentrations increased for the first day whereas sulfate concentrations continued to increase during the 5-d reaction. The transformation products identified showed defluorination of single- and double-bond structures, formation of C8 to C4 PFCAs and paraffins from cleavage of the C-S bond.</p> <p>The length of the perfluoroalkyl chain affected the length of time to achieve peak removal, but overall magnitude of transformation when reactions appeared complete were similar for both PFSAs and PFCAs. Like PFOS, PFOA transformation maxed in 1 d whereas shorter chains required more time to reach their peak removal, which is hypothesized to be due to lower sorption of the shorter chain PFAAs to the reactive surfaces. Measured F mass balance was higher for PFOS and PFOA (>90% F) compared to shorter chain PFAAs (~50-70% F). The Perfluorohexanesulfonate (PFHxS) and perfluorobutanesulfonate (PFBS) degradation products include single bond polyfluoroalkyl sulfonates and shorter-chain perfluoroalkyl carboxylates. For example, PFHxS transformation resulted in perfluorohexane carboxylic acid (PFHxA) and perfluorobutane carboxylic acid (PFBA). PFCA transformation products included per- & polyfluoroalkyl carboxylates with single bonds and alcohols with single and double bonds. The effect of inorganic matrix on transformation with nNiFe<sup>0</sup>-AC at 60 <sup>o</sup>C was explored using a contaminated groundwater collected at a former fire-training area in Massachusetts. Transformation appeared ‘generally’ lower than in the single-solute clean water systems, which may have been due to the presence of PFAS precursors that degraded to PFAAs and competitive adsorption between anionic PFAAs and inorganic ions onto the NP surface.</p><p>The research presented here demonstrates that nNiFe<sup>0</sup>-AC at 60 <sup>o</sup>C can mineralize PFAAs even in a typical groundwater matrix. Additional lab and pilot scale studies are needed to clarify the mechanisms leading to transformation as well as why transformation reactions plateau prior to all the parent compounds being transformed. The latter may be due to a poisoning phenomenon that can occur in closed systems, which may not occur in a flowing system more characteristic of an environmental scenario, as well as surface area and reactive site constraints or particle passivation.</p></div>
4

Hydrodynamic Modelling of Spread of Perfluoroalkyl Octanoic Sulphonate and Perfluoroalkyl Hexanoic Sulphonate in Lake Ekoln / Hydrodynamisk modellering av spridningav perfluoralkyloktansyrasulfonat och perfluoralkylhexansulfonat i Ekolnsjön

Prajapati, Prajwol January 2022 (has links)
Per and polyfluoroalkyl substances (PFAS) are found ubiquitously in the environment across the globe.These substances have high persistence due to the strong carbon and fluorine bond. In the aquaticenvironment, due to high persistence, these substances don’t decay easily and are detected on the surfaceas well as in groundwater sources. Human exposure to PFAS has been observed due to ingestion of PFAScontaminated food and water which has an adverse effect on the human health. High concentrations ofPerfluoroalkyl Octanoic Sulphonate (PFOS) and Perfluoroalkyl Hexanoic Sulphonate (PFHxS) wereobserved in Lake Ekoln. The main aim of this study was to analyze the spread of PFOS and PFHxS in thelake. Hydrodynamic modelling of flow and water quality modelling in the lake was performed usingMIKE 3 FM software for the evaluation of the spread pattern of PFOS and PFHxS in the lake. Twoscenarios with the different mass fluxes of PFOS and PFHxS for Fyrisån were assumed for investigatingthe uncertainties and influence of contribution from Fyrisån. Additionally, conductivity from differentinflows was modelled as a passive tracer for understanding the water quality and the circulation in thelake. The results of the simulation showed that Fyrisån and Kungsängsverket are major contributors of PFOSand PFHxS to the lake. Similarly, the analysis of the current spread of PFOS and PFHxS shows that theuncertainty in the model is high and is dependent mainly on the assumption of mass flux from theFyrisån. Due to the lack of sampling data on the concentration of PFOS and PFHxS, it was difficult to geta reliable assumption for the mass flux from the Fyrisån. From the study, it was identified that thesampled concentration of PFOS and PFHxS also had certain variations which might be due to theinfluence of concentration from different sources and processes. Likewise, the simulation result of PFOSand PFHxS was observed to have a similar pattern of spread. Although PFOS is a long-chain PFAS andPFHxS is a short-chain PFAS and they have different physio-chemical properties, the spread patternswere observed to be similar. As only the hydrodynamic processes were influencing the simulation for thespread of PFOS and PFHxS in the lake and other physiochemical processes such as sedimentation andbioaccumulation were not included in the model, the simulated PFAS results were found similar. To conclude, the study shows that the spread of PFOS and PFHxS is mainly influenced by the flow andconcentration in Fyrisån. Also, higher uncertainty in the model performance was observed due to theissue of reliable mass flux estimation from Fyrisån. Similarly, the influence of processes such assedimentation and bio accumulation are necessary to be included in the model for analysis of spread ofPFAS with different physio-chemical properties.
5

Developmental neurotoxicity of persistent and non-persistent pollutants : Behavioral and neurochemical assessments of a perfluorinated compound, pesticides and interaction effects

Lee, Iwa January 2015 (has links)
The focus of this thesis was to investigate developmental neurotoxic effects of different persistent and non-persistent environmental pollutants, alone or in binary mixtures, when exposure occurs during a critical period of brain development, in mice. The compounds investigated included a perfluorinated compound, perfluorohexane sulphonate (PFHxS), and four different pesticides, endosulfan, cypermethrin, chlorpyrifos and carbaryl. Both persistent and non-persistent pollutants are detected in the environment and in humans, which shows that exposure to these compounds is occurring in real life. Humans can therefore be exposed to various pollutants during their whole lifetime, starting from the gestational period to adulthood. Furthermore, exposure to environmental pollutants is rarely exclusive to a single compound, but rather occurs through combinations of various pollutants present in the environment. Exposure to environmental pollutants during human brain development have been suggested to be a possible cause for neuropsychiatric disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Previous studies have shown that chemicals can induce irreversible disorders in brain function when exposure to these chemicals occurs during a critical defined period of the brain development known as the brain growth spurt (BGS). The BGS is characterized by a rapid growth and development of the immature brain. In humans, and mice, this period also overlaps the lactation period indicating that newborns and toddlers can be exposed via mothers’ milk as well. This thesis has shown that a single oral exposure to PFHxS, endosulfan, cypermethrin, chlorpyrifos or carbaryl can induce developmental neurotoxic effects in mice, when exposure occurs during a critical period of brain development. These effects are manifested as persistent altered adult spontaneous behavior in a novel home environment, modified habituation, altered susceptibility of the cholinergic system and changed levels of neuroproteins in the mouse brain. Furthermore, a single neonatal co-exposure to a binary mixture of carbaryl/chlorpyrifos or PFHxS/endosulfan can interact and exacerbate the adult behavioral effects. These effects were seen at dosages were the single compound did not elicit a response or induced a much weaker behavioral effect. This indicates that risk assessments conducted on single compounds might underestimate interaction effects of mixtures when co-exposed.
6

Prenatal Exposure to Perfluoroalkyl Acids and Serum Testosterone Concentrations at 15 Years of Age in Female ALSPAC Study Participants

Maisonet, Mildred, Calafat, Antonia M., Marcus, Michele, Jaakkola, Jouni J.K., Lashen, Hany 01 December 2015 (has links)
Background: Exposure to perfluorooctane sulfonic acid (PFOS) or to perfluorooctanoic acid (PFOA) increases mouse and human peroxisome proliferator–activated receptor alpha (PPARα) subtype activity, which influences lipid metabolism. Because cholesterol is the substrate from which testosterone is synthesized, exposure to these substances has the potential to alter testosterone concentrations. Objectives: We explored associations of total testosterone and sex hormone–binding globulin (SHBG) concentrations at age 15 years with prenatal exposures to PFOS, PFOA, perfluorohexane sulfonic acid (PFHxS), and perfluoronanoic acid (PFNA) in females. Methods: Prenatal concentrations of the perfluoroalkyl acids (PFAAs) were measured in serum collected from pregnant mothers at enrollment (1991–1992) in the Avon Longitudinal Study of Parents and Children (ALSPAC). The median gestational age when the maternal blood sample was obtained was 16 weeks (interquartile range, 11–28 weeks). Total testosterone and SHBG concentrations were measured in serum obtained from their daughters at 15 years of age. Associations between prenatal PFAAs concentrations and reproductive outcomes were estimated using linear regression models (n = 72). Results: Adjusted total testosterone concentrations were on average 0.18-nmol/L (95% CI: 0.01, 0.35) higher in daughters with prenatal PFOS in the upper concentration tertile compared with daughters with prenatal PFOS in the lower tertile. Adjusted total testosterone concentrations were also higher in daughters with prenatal concentrations of PFOA (β = 0.24; 95% CI: 0.05, 0.43) and PFHxS (β = 0.18; 95% CI: 0.00, 0.35) in the upper tertile compared with daughters with concentrations in the lower tertile. We did not find evidence of associations between PFNA and total testosterone or between any of the PFAAs and SHBG. Conclusions: Our findings were based on a small study sample and should be interpreted with caution. However, they suggest that prenatal exposure to some PFAAs may alter testosterone concentrations in females.
7

Exposition prénatale aux substances perfluoroalkylées et développement neurocomportemental et social des jeunes enfants

Saha, Trisha 08 1900 (has links)
Les substances perfluoroalkylées (PFAS) sont des composés synthétiques utilisés dans une multitude de domaines pour leurs propriétés hydrofuges, antiadhésives et antitaches exceptionnelles. Cependant, ces contaminants, dont la neurotoxicité a été démontrée dans les études in vitro et in vivo, sont capables de traverser la barrière placentaire et d’atteindre le fœtus en développement. Bien qu’une multitude d’études épidémiologiques aient été conduites pour examiner l’association entre l’exposition prénatale aux PFAS et le neurodéveloppement des enfants, il n’y a pas de consensus dans la littérature : certaines rapportent des associations délétères, et d’autres protectrices ou nulles. Le but de cette étude est d’évaluer l’association entre l’exposition aux PFAS chez les femmes enceintes et le développement neurocomportemental et social des enfants pendant la petite enfance. Nous avons également examiné si le lien différait entre les filles et les garçons. Les données de l’étude Maternal-Infant Research on Environmental Chemicals (MIREC), une cohorte de grossesse pancanadienne, ont été utilisées. L’exposition prénatale à trois PFAS (acides perfluorooctanoïque (PFOA), perfluorooctanesulfonique (PFOS) et perfluorohexane sulfonique (PFHxS)) ainsi que leur somme (ΣPFAS) a été mesurée dans le plasma maternel prélevé durant le premier trimestre de grossesse. Lorsque les enfants étaient âgés de trois-quatre ans, les mères ont été invitées à remplir deux questionnaires sur leurs enfants : le Behaviour Assessment System for Children–2 (BASC-2), pour évaluer les difficultés émotionnelles et comportementales, et le Social Responsiveness Scale–2 (SRS-2), afin d’évaluer le développement social. À partir des données de 794 paires mère-enfant, des analyses de régressions linéaires multiples, avec ajustement pour des facteurs de confusion, ont été réalisées, et les coefficients d’association ont été calculés pour un doublement des concentrations de PFAS. La modification des associations selon le genre a été examinée au moyen de termes d'interaction et d'analyses stratifiées. Bien que la majorité des associations obtenues soient nulles, pour l’ensemble du groupe étudié, un doublement de l’exposition prénatale aux PFOS était lié à moins de déficits de motivation sociale (β = -1.03; IC : -1.88, -0.17) et le PFHxS à plus de comportements atypiques (β = 0.57; 0.04, 1.11). Cependant, les analyses selon le genre ont révélé que chez les garçons seulement, un doublement de l’exposition prénatale aux PFOA était significativement associée à des scores plus faibles pour les sous-échelles suivantes : indice des symptômes comportementaux, problèmes d'externalisation, agressivité et hyperactivité (β allant de -1.87 à -1.32). Le PFOS et la ΣPFAS étaient aussi liés à moins d’agressivité chez les garçons (β = 1.20; -2.27, -0.13 et β = -1.35; -2.55, -0.15 respectivement). À l’inverse, chez les filles, le PFOA était significativement lié à plus de symptômes d’anxiété, et le PFHxS et la ΣPFAS étaient liés à plus de problèmes de cognition sociale (β allant de 0.90 à 1.81). Dans l’ensemble, les données suggèrent que l’association entre l’exposition prénatale aux PFAS et le développement neurocomportemental et social des enfants semble différer selon le genre : un effet protecteur est observé chez les garçons, tandis qu’il ressort délétère chez les filles. Les résultats obtenus dans cette cohorte canadienne de grande taille corroborent ceux notés dans certaines études épidémiologiques rapportant un lien délétère, lequel est surtout observable chez les filles. / Perfluoroalkyl substances (PFAS) are synthetic compounds used in a wide range of fields for their exceptional water-repellent, non-stick, and stain-resistant properties. However, these contaminants, whose neurotoxicity has been demonstrated in in vitro and in vivo studies, can crossthe placental barrier, and reach the developing fetus. Although numerous epidemiological studies have been conducted to examine the association between prenatal exposure to PFAS and the neurodevelopment in children, there is no consensus in the literature: some report deleterious associations, while others report protective or null associations. The aim of this study is to investigate the association between PFAS exposure in pregnant women and the neurobehavioral and social development of children during early childhood. We also examined whether the association differed between girls and boys. We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) study, a pan-Canadian pregnancy cohort. Prenatal concentrations of three PFAS (perfluorooctanoic (PFOA), perfluorooctanesulfonic (PFOS) and perfluorohexanesulfonic acids (PFHxS)), as well as their sum (åPFAS), were measured in maternal plasma collected during the first trimester of pregnancy. When the children were three to four years old, mothers were asked to complete two questionnaires about their children: the Behaviour Assessment System for Children-2 (BASC-2) to assess emotional and behavioural difficulties, and the Social Responsiveness Scale-2 (SRS-2) to assess social development. Using data from 794 mother-child dyads, multiple linear regression analyses, with adjustment for confounding factors, were performed and regression coefficients were estimated to assess whether there was an association between each doubling of PFAS concentrations and test scores. Effect modification by child gender was examined using interaction terms and stratified analyses. For the entire study group, although most of the associations found were null, a doubling of prenatal PFOS exposure was linked to fewer social motivation deficits (β = -1.03; CI: -1.88, -0.17), and increased PFHxS was linked to more atypical behaviors (β = 0.57; 0.04, 1.11). However, gender-stratified analyses revealed that in boys only, each doubling of prenatal PFOA exposure was significantly associated with lower scores on the following BASC-2 subscales: Behavioral Symptoms Index, Externalizing Problems, Aggressivity and Hyperactivity (β ranging from -1.87 to -1.32). PFOS and åPFAS were also associated with less aggression in boys (β = 1.20; -2.27, -0.13 and β = -1.35; -2.55, -0.15 respectively). Conversely, in girls only, PFOAwas significantly associated with more symptoms of anxiety, and PFHxS and ∑PFAS were associated with more social cognition problems (β ranging from 0.90 to 1.81). Overall, the data suggest that the association between prenatal PFAS exposure and the neurobehavioral and social development of children appears to differ by gender: a protective effect is observed in boys, while a detrimental effect is seen in girls. The results obtained in this large Canadian cohort are consistent with findings from some epidemiological studies reporting a harmful link predominantly in girls.

Page generated in 0.0267 seconds