• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 28
  • 27
  • 18
  • 15
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 44
  • 31
  • 30
  • 21
  • 20
  • 19
  • 18
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

DESIGN, CHARACTERIZATION AND OPTIMIZATION OF NOVEL BIOINSPIRED SCAFFOLDS FOR SKELETAL MUSCLE REGENERATION

Naagarajan Narayanan (8081408) 31 January 2022 (has links)
Skeletal muscle injuries and muscle degenerative diseases pose significant challenges to the healthcare. Surgical interventions are restricted due to tissue availability, donor site morbidity and alterations to tissue biomechanics. Current cell-based therapies are hindered by low survival and long-term engraftment for the transplanted cells due to the lack of appropriate supportive microenvironment (cell niche) in the injured muscle. Therefore, there is a critical need for developing strategies that provide cellular and structural support in the regeneration of functional muscle. In the present work, a bioengineered cell niche mimicking the native skeletal muscle microenvironment has been developed for skeletal muscle regenerative engineering. It is hypothesized that the bioengineered scaffolds with appropriate structural and cell instructive properties will support myoblast alignment and function, as well as promote the myogenic responses in clinically relevant skeletal muscle injuries. The current work utilized a three-pronged approach to design biomaterial scaffolds to aid in skeletal muscle regeneration. In the first part, aligned poly(lactide-co-glycolide) (PLGA) fiber scaffolds mimicking the oriented muscle fiber microenvironment with fiber diameters of 335±154 nm (nanoscale), 1352±225 nm (microscale) and 3013±531 nm (microscale) were fabricated and characterized. Myoblasts were found to respond to fiber diameter as observed from the differences in cell alignment, cell elongation, cell spreading area, proliferation and differentiation. <i>In vivo</i> study demonstrated the potential of using microscale fiber scaffolds to improve myogenic potential in the <i>mdx</i> mouse model. In the second part, we designed, synthesized, and characterized an implantable glycosaminoglycan-based composite hydrogel consisting of hyaluronic acid, chondroitin sulfate and polyethylene glycol (HA-CS) with tailored structural and mechanical properties for skeletal muscle regeneration applications. We demonstrated that HA-CS hydrogels provided a suitable microenvironment for <i>in vitro</i> myoblast proliferation and differentiation. Furthermore, <i>in vivo</i> studies using a volumetric muscle loss model in the mouse quadriceps showed that HA-CS hydrogels integrated with the surrounding host tissue and facilitated <i>de novo</i> myofiber generation, angiogenesis, nerve innervation and minimized scar tissue formation. In the third part, we investigated the effects of PC12 secreted signaling factors in modulating C2C12 myoblast behavior. We showed that PC12 conditioned media modulated myoblast proliferation and differentiation in both 2D culture and 3D aligned electrospun fiber scaffold system in a dose dependent manner. We also demonstrated the biomimetic HA-CS hydrogel system enabled 3D encapsulation of PC12 cells secreting signaling factors and promoted survival and proliferation of myoblasts in co-culture. Further proteomics analysis identified a total of 2088 protein/peptides from the secretome of the encapsulated PC12 cells and revealed the biological role and overlapping functions of nerve secreted proteins for skeletal muscle regeneration, potentially through regulating myoblast behavior, nerve function, and angiogenesis. These set of experiments not only provide critical insight on exploiting the interactions between muscle cells and their microenvironment, but they also open new avenues for developing advanced bioengineered scaffolds for regenerative engineering of skeletal muscle tissues.<br>
172

Novel methods to synthesize aliphatic polyesters of vivid architectures

Srivastava, Rajiv January 2005 (has links)
Cross-linked films of ε-caprolactone (CL) and 1,5-dioxepan-2-one (DXO) having various mole fractions of monomers and different cross-link densities were prepared using 2,2’-bis-(-caprolactone-4-yl) propane (BCP) as cross-linking agent and Sn(Oct)2 as catalyst. Reaction parameters were examined to optimize the film-forming conditions. Networks obtained were elastomeric materials, easy to cast and remove from the mould. Effect of CL content and cross-link density on the final properties of the polymer network was evaluated. Thermal, mechanical and surface properties of the films were controlled by monomer feed composition and cross-link density. The films have potential to be used for tissue engineering applications as shown by preliminary cell growth studies. To avoid organometallic catalysts in the synthesis of poly(1,5-dioxepan-2-one) (PDXO), the enzyme-catalyzed ring-opening polymerization (ROP) of DXO was performed with lipase-CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between number-average molecular weight (Mn) and monomer conversion was observed, which suggested that the product molecular weight can be controlled by the stoichiometry of the reactants. The monomer consumption followed a first-order rate law with respect to monomer and no chain termination occurred. Effect of reaction water content, enzyme concentration and polymerization temperature on monomer conversion and polymer properties was studied. An initial activation by heating the enzyme was sufficient to start the polymerization as monomer conversion occurred at room temperature afterwards. Terminal-functionalized polyesters and tri-block polyesters were synthesized by lipase-CA catalyzed ROP of DXO and CL in the presence of an appropriate alcohol as initiator. Alcohol bearing unsaturation introduced a double bond at the chain end of the polyester, which is a useful pathway to synthesize comb polymers. Dihydroxyl compounds were used as macro-initiators to form tri-block polyesters. The enzyme-catalyzed polymerization of lactones has been shown to be a useful method to synthesize metal-free polyesters. / QC 20101221
173

Steric and Anchimeric Effects on the Hydrolysis of Oligoesters and their Influence on End-Use Polyurethane Coatings

Ramirez-Huerta, Mayela Cristina 15 December 2009 (has links)
No description available.
174

Oligopeptide-functionalized Graft Copolymers: Synthesis and Applications in Nucleic Acid Delivery

Breitenkamp, Rebecca Boudreaux 01 February 2009 (has links)
Utilizing the diverse functionality of amino acids, a new class of amphiphilic graft copolymers has been synthesized, characterized, and explored for applications in biomaterials and nucleic acid delivery. This thesis research focused on the syntheses of oligopeptide-functionalized polyesters and polyolefins. Polyester functionalization was geared towards applications in biomaterials, tissue engineering, and drug delivery by incorporating sequences that promote cell-adhesion. These polyester- graft -oligopeptide materials were prepared by a 1,3-Huisgen cycloaddition reaction, "click" chemistry, of an azide-terminated oligopeptide (prepared by Fmoc-based solid phase peptide synthesis (SPPS)) and alkyne-containing polyester (synthesized by ring-opening polymerization). Following the syntheses of these materials, they were analyzed by nuclear magnetic resonance (NMR) and organic gel permeation chromatography (GPC). The oligopeptide-functionalized polyolefins were designed for nucleic acid complexation, and therefore the oligopeptide sequences were intended to incorporate positively-charged moieties ( e.g. , oligolysine) for DNA and short interfering RNA (siRNA) complexation. These graft copolymers, prepared by SPPS followed by ring-opening metathesis polymerization, have highly tunable structures that enable control over charge density and polymer backbone rigidity. Moreover, non-ionic hydrophilic grafts such as polyethylene glycol were integrated into these polyelectrolytes such that the charges along the polymer backbone are spaced accordingly while maintaining the hydrophilicity of the polymer. While numerous applications for such charged, "bio-tailored" materials can be envisioned, this work is geared towards positively-charged polyelectrolytes for their potential application in nucleic acid therapy, specifically the delivery of plasmid DNA and siRNA. These graft copolymers were characterized ( 1 H, 13 C NMR, organic and aqueous GPC), studied for their solution properties (static and dynamic light scattering), and investigated as polyplexes with plasmid DNA.
175

THE DESIGN OF A MULTIFUNCTIONAL INITIATOR-FREE SOFT POLYESTER PLATFORM FOR ROOM-TEMPERATURE EXTRUSION-BASED 3D PRINTING, AND ANALYSIS OF PRINTABILITY

Govindarajan, Sudhanva Raj 04 October 2016 (has links)
No description available.
176

Step-Growth Polymerization Towards the Design of Polymers: Assembly and Disassembly of Macromolecules

June, Stephen Matthew 01 May 2012 (has links)
Step-growth polymerization provided an effective method for the preparation of several high performance polymers. Step-growth polymerization was used for syntheses of poly(siloxane imides), polyesters, poly(triazole esters), poly(triazole ether esters), and epoxy networks. Each of these polymeric systems exhibited novel structures, and either photoreactive capabilities, or high performance properties. There is an increasing trend towards the development of photoactive adhesives. In particular these polymers are often used in flip bonding, lithography, stimuli responsive polymers, drug delivery, and reversible adhesives. The ability to tailor polymer properties carefully with exposure to light allows for very unique stimuli responsive properties for many applications. This dissertation primarily investigates photoreactive polymers for reversible adhesion for use in the fabrication of microelectronic devices. In particular cyclobutane diimide functionality within polyimides and poly(siloxane imides) and o-nitro benzyl ester functionality within polyesters acted effectively as chromophores to this end. Thermal solution imidization allowed for the effective synthesis of polyimides and poly(siloxane imides). 1,2,3,4-Cyclobutane tetracarboxylic dianhydride acted as the chromophore within the polymer backbone. The polyimides obtained exhibited dispersibility only in dipolar, aprotic, high boiling solvents such as DMAc or NMP. The obtained poly(siloxane imides) demonstrated enhanced dispersibility in lower boiling organic solvents such as THF and CHCl₃. Dynamic mechanical analysis and tensile testing effectively measure the mechanical properties of the photoactive poly(siloxane imides) and confirmed elastomeric properties. Atomic force microscopy confirmed microphase separation of the photoactive poly(siloxane imides). ¹H NMR spectroscopy confirmed formation of maleimide peaks upon exposure to narrow band UV light with a wavelength of 254 nm. This suggested photo-cleavage of the cyclobutane diimide units within the polymer backbone. Melt transesterification offered a facile method for the synthesis of o-nitro benzyl ester-containing polyesters. ¹H NMR spectroscopy confirmed the structures of the photoactive polyesters and size exclusion chromatography confirmed reasonable molecular weights and polydispersities of the obtained samples. ¹H NMR spectroscopy also demonstrated a decrease in the integration of the resonance corresponding to the o-nitro benzyl ester functionality relative to the photo-stable m-nitro benzyl ester functionality upon exposure to high-intensity UV light, suggesting photo-degradation of the adhesive. ASTM wedge testing verified a decrease in fracture energy of the adhesive upon UV exposure, comparable to the decrease in fracture energy of a commercial hot-melt adhesive upon an increase in temperature. Click chemistry was used to synthesize polyesters and segmented block copolyesters. Triazole-containing homopolyesters exhibited a marked increase (~40 °C) in Tg, relative to structurally analogous classical polyesters synthesized in the melt. However, the triazole-containing homopolyesters exhibited insignificant dispersibility in many organic solvents and melt-pressed films exhibited poor flexibility. Incorporation of azide-functionalized poly(propylene glycol) difunctional oligomers in the synthesis of triazole-containing polyesters resulted in segmented block copolyesters which exhibited enhanced dispersibility and film robustness relative to the triazole-containing homopolyesters. The segmented triazole-containing polyesters all demonstrated a soft segment Tg near -62 °C, indicating microphase separation. Dynamic mechanical analysis confirmed the presence of a rubbery plateau, with increasing plateau moduli as a function of hard segment content, as well as increasing flow temperatures as a function of hard segment content. Tensile testing revealed increasing tensile strength as a function of hard segment, approaching 10 MPa for the 50 wt % HS sample. Atomic force microscopy confirmed the presence of microphase separated domains, as well as semicrystalline domains. These results indicated the effectiveness of click chemistry towards the synthesis of polyesters and segmented block copolyesters. Click chemistry was also used for the synthesis of photoactive polyesters and segmented block polyesters. The preparation of 2-nitro-p-xylylene glycol bispropiolate allowed for the synthesis of triazole-containing polyesters, which exhibited poor dispersibility and flexibility of melt-pressed films. The synthesis of segmented photoactive polyesters afforded photoactive polyesters with improved dispersibility and film robustness. ¹H NMR spectroscopy confirmed the photodegradation of the o-nitro benzyl functional groups within the triazole-containing polyesters, which indicated the potential utility of these polyesters for reversible adhesion. Synthesis of the glycidyl ether of 2,2,4,4-tetramethyl-1,3-cyclobutane diol (CBDOGE) allowed for the subsequent preparation of epoxy networks which did not contain bisphenol-A or bisphenol-A derivatives. Preparation of analogous epoxy networks from the glycidyl ether of bisphenol-A (BPA-GE) provided a method for control experiments. Tensile testing demonstrated that, dependent on network Tg, the epoxy networks prepared from CBDOGE exhibited similar Young's moduli and tensile strain at break as epoxy networks prepared from BPAGE. Dynamic mechanical analysis demonstrated similar glassy moduli for the epoxy networks, regardless of the glycidyl ether utilized. Tg and rubbery plateau moduli varied as a function of diamine molecular weight. Melt rheology demonstrated a gel time of 150 minutes for the preparation of epoxy networks from CBDO-GE and 78 minutes for the preparation of epoxy networks from BPA-GE, with the difference attributed to increased sterics surrounding CBDO-GE. These results indicated the suitability of CBDO-GE as a replacement for BPA-GE in many applications. / Ph. D.
177

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.
178

Limites et potentiels de la polymérisation radicalaire par ouverture de cycle pour la synthèse de polyesters / Limits and Potential of the Radical Ring-Opening Polymerization for the Synthesis of Polyesters

Tardy, Antoine 18 April 2014 (has links)
La Polymérisation Radicalaire par Ouverture de Cycle (R-ROP) est une méthode de synthèse de polymères contenant des fonctions chimiques de choix dans le squelette carboné grâce à un mécanisme d'addition-fragmentation. L'utilisation de monomères spécifiques, les Acétals Cétènes Cycliques (CKA), permet dans certaines conditions l'obtention de polyesters aliphatiques dont la propriété de (bio)dégradation présente de nombreuses applications. Cette méthode relativement peu étudiée depuis les années 1980 présente un fort potentiel mais également de nombreuses limites. Ce travail de thèse a consisté à comprendre l'origine de ces limites pour tenter d'y apporter des solutions, grâce à une approche combinée expérience-théorie.Nous avons montré que l'obtention exclusive de polyesters découle d'une compétition cinétique et que le comportement des différents monomères s'explique par des interactions orbitalaires dépendant de la géométrie, la flexibilité et la substitution des cycles. D'autre part, nous avons mis en évidence l'extrême difficulté de propagation des monomères propageant via des radicaux stabilisés par des cycles aromatiques. Cette faible réactivité inhérente à la double liaison riche en électrons des CKA est également la cause de l'incorporation restreinte des monomères cycliques en copolymérisation avec des monomères vinyliques usuels. La rationalisation de la copolymérisation a été mise à profit pour réaliser des copolymérisations de type statistique et alternée. Enfin, l'étude du contrôle de la R-ROP par les nitroxydes a montré la présence de réactions secondaires propres à ce système et permettant actuellement un contrôle partiel de la polymérisation. / The Radical Ring-Opening Polymerization (R-ROP) is a synthetic pathway to introduce chemical functions into a polymer backbone due to an addition-fragmentation mechanism. Using specific monomers like Cyclic Ketene Acetals (CKA) in the right conditions allows preparing aliphatic polyesters which have numerous applications thanks to their (bio)degradability. This method has been quite faintly investigated since the 1980s and even if it has a great potential, it suffers of numerous limitations. This PhD work consisted in the understanding of those limitations to try bringing solutions to them, with a combined approach of experiments and theory.We first demonstrated that the exclusive preparation of polyesters comes from a kinetic competition. The behavior of the distinct monomers is explained by orbital interactions depending on the geometry, flexibility and substitution of the cycles. Then, we highlighted the extremely difficult propagation of the monomers propagating with stabilized aromatic radicals. This low reactivity inherent to the electron-rich double link of the CKAs is also the cause of low polyester introduction during the copolymerization with usual vinyl monomers. We took advantage of the CKA copolymerization rationalization to realize statistical and alternate copolymerizations. At last, the study of the nitroxide mediated R-ROP demonstrated the occurrence of side reactions characteristic of this system that allow at present a partial control of the polymerization.
179

Mise au point de nanoparticules polymères pour l'administration parentérale d'agents anticancéreux hydrophobes

Gaucher, Geneviève 08 1900 (has links)
Plusieurs agents anticancéreux très puissants sont caractérisés par une solubilité aqueuse limitée et une toxicité systémique importante. Cette dernière serait liée d’une part à la solubilisation des agents anticancéreux à l’aide de surfactifs de bas poids moléculaire, connus pour leur toxicité intrinsèque, et d’autre part, par le manque de spécificité tissulaire des anticancéreux. Les vecteurs colloïdaux à base de polymères permettraient de résoudre certains défis liés à la formulation d’agents anticancéreux hydrophobes. D’abord, les polymères peuvent être sélectionnés afin de répondre à des critères précis de compatibilité, de dégradation et d’affinité pour le médicament à formuler. Ensuite, le fait d’encapsuler l’agent anticancéreux dans un vecteur peut améliorer son efficacité thérapeutique en favorisant son accumulation au niveau du tissu cible, i.e. la tumeur, et ainsi limiter sa distribution au niveau des tissus sains. Des travaux antérieurs menés au sein de notre laboratoire ont mené à la mise au point de micelles à base de poly(N-vinyl-pyrrolidone)-bloc-poly(D,L-lactide) (PVP-b-PDLLA) capables de solubiliser des agents anticancéreux faiblement hydrosolubles dont le PTX. Ce dernier est commercialisé sous le nom de Taxol® et formulé à l’aide du Crémophor EL (CrEL), un surfactif de bas poids moléculaire pouvant provoquer, entre autres, des réactions d’hypersensibilité sévères. Bien que les micelles de PVP-b-PDLLA chargées de PTX aient démontré une meilleure tolérance comparée au Taxol®, leur potentiel de ciblage tumoral et leur efficacité thérapeutique étaient similaires à la forme commerciale à doses égales. Ceci était possiblement dû au fait que les micelles étaient rapidement déstabilisées et ne pouvaient retenir leur cargo suite à leur administration intraveineuse. Nous avons donc décidé de poursuivre les travaux avec un autre type de vecteur, soit des nanoparticules, qui possèdent une stabilité intrinsèque supérieure aux micelles. L’objectif principal de cette thèse de doctorat était donc de mettre au point des nanoparticules polymères pour l’administration parentérale d’agents anticancéreux faiblement solubles dans l’eau. Les nanoparticules devaient permettre d’encapsuler des agents anticancéreux hydrophobes et de les libérer de manière contrôlée sur plusieurs jours. De plus, elles devaient démontrer un temps de circulation plasmatique prolongée afin de favoriser l’accumulation passive du médicament encapsulé au niveau de la tumeur. La première partie du travail visait à employer pour la première fois le copolymère amphiphile PVP-b-PDLLA comme émulsifiant dans la préparation de nanoparticules polymères. Ainsi, une méthode de fabrication des nanoparticules par émulsion huile-dans-eau a été appliquée afin de produire des nanoparticules à base de PDLLA de taille inférieure à 250 nm. Grâce aux propriétés lyoprotectrices de la couronne de PVP présente à la surface des nanoparticules, celles-ci pouvaient retrouver leur distribution de taille initiale après lyophilisation et redispersion en milieu aqueux. Deux anticancéreux hydrophobes, soit le PTX et l’étoposide (ETO), ont été encapsulés dans les nanoparticules et libérés de ces dernières de façon contrôlée sur plusieurs jours in vitro. Une procédure de « salting-out » a été appliquée afin d’améliorer le taux d’incorporation de l’ETO initialement faible étant donnée sa solubilité aqueuse légèrement supérieure à celle du PTX. Le second volet des travaux visait à comparer le PVP comme polymère de surface des nanoparticules au PEG, le polymère le plus fréquemment employé à cette fin en vectorisation. Par le biais d’études d’adsorption de protéines, de capture par les macrophages et de biodistribution chez le rat, nous avons établi une corrélation in vitro/in vivo démontrant que le PVP n’était pas un agent de surface aussi efficace que le PEG. Ainsi, malgré la présence du PVP à la surface des nanoparticules de PDLLA, ces dernières étaient rapidement éliminées de la circulation sanguine suite à leur capture par le système des phagocytes mononucléés. Par conséquent, dans le troisième volet de cette thèse, le PEG a été retenu comme agent de surface, tandis que différents polymères biodégradables de la famille des polyesters, certains synthétiques (PDLLA et copolymères d’acide lactique/acide glycolique), d’autres de source naturelle (poly(hydroxyalkanoates)(PHAs)), ont été investiguées comme matériaux formant le cœur des nanoparticules. Il en est ressorti que les propriétés physicochimiques des polyesters avaient un impact majeur sur l’efficacité d’encapsulation du PTX et son profil de libération des nanoparticules in vitro. Contrairement aux PHAs, les polymères synthétiques ont démontré des taux d’incorporation élevés ainsi qu’une libération contrôlée de leur cargo. Des études de pharmacocinétique et de biodistribution ont démontré que les nanoparticules de PDLLA dotées d’une couronne de PEG conféraient un temps de circulation plasmatique prolongé au PTX et favorisaient son accumulation tumorale. Les nanoparticules polymères représentent donc une alternative intéressante au Taxol®. / Many highly potent anticancer drugs are characterized by poor aqueous solubility and can impart significant systemic toxicity. This toxicity can be attributed in part to the solubilisation of these anticancer agents with low molecular weight surfactants that are known to cause serious biological side effects on their own. Moreover, following their intravenous (IV) injection, the anticancer agents distribute throughout the body, causing deleterious effects in healthy organs and tissues. Colloidal polymeric drug carriers have been investigated as a means to circumvent these drawbacks. First, polymeric materials can be tailored to meet specific requirements in terms of biocompatibility, biodegradability and affinity for the cargo molecule. Second, associating a drug to a carrier system can drastically alter its distribution throughout the body, enhancing its deposition at the target site, e.g. the tumour, while sparing healthy tissues, thus minimizing systemic toxicity. Previous work in our group has led to the design of block copolymer micelles based on poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA) that were shown to solubilise hydrophobic anticancer agents such as paclitaxel (PTX). PTX is commercially available as Taxol®, a Cremophor EL (CrEL)-based formulation. CrEL is a low molecular weight surfactant that has been linked to severe side effects including life-threatening hypersensitivity reactions. Although PTX-loaded PVP-b-PDLLA micelles have demonstrated much improved tolerability compared to Taxol®, they did not increase PTX tumoral concentrations and exhibited anticancer efficacy similar to Taxol® at equivalent dosage. This was attributed to rapid destabilisation of the micelles and release of their cargo following IV administration. We chose to pursue our work with a colloidal drug carrier that exhibits greater stability compared to block copolymer micelles, i.e. polymeric nanoparticles. The main objective of this project was to develop polymeric nanoparticles for the parenteral delivery of hydrophobic anticancer drugs. The nanoparticles had to meet certain requirements such as be able to encapsulate hydrophobic anticancer drugs and release them in a controlled fashion over several days. Furthermore, the nanoparticles should confer prolonged plasma residence times to the encapsulated drug and favour its passive accumulation at its intended site of action, i.e. the tumour. The first part of this work focussed on applying PVP-b-PDLLA for the first time as polymeric emulsifier for the preparation of PDLLA nanoparticles with appropriate mean diameters (250 nm) using an oil-in-water emulsion method. Two hydrophobic anticancer drugs, PTX and etoposide (ETO), were successfully incorporated into the nanoparticles. A salting-out method was applied to enhance the loading efficiency of ETO, which was initially low given its slightly higher aqueous solubility compared to PTX. Both drugs were released in a controlled fashion from the PDLLA nanoparticles in vitro. Because of the lyoprotective effect of PVP, the polymer corona allowed for the particles to be easily redispersed in aqueous media following lyophilisation. The second part of the thesis aimed at evaluating whether the PVP coating could confer “stealth” properties to the PDLLA nanoparticles. Our study provided direct comparison between PVP and PEG, the most widely employed surface agent in drug delivery. In vitro protein adsorption and phagocytosis studies corroborated the in vivo findings, which showed that PVP-coated nanoparticles were rapidly cleared from circulation following their uptake by the mononuclear phagocyte system. Hence, our results indicated that PVP as coating materiel is not as efficient as PEG in conferring “stealth” properties to polymeric nanoparticles. Consequently, in the last section of this thesis, PEG was selected as coating agent while various biodegradable polymers were investigated as core-forming materials. Both synthetic (PDLLA and lactide/glycolide copolymers) and natural (polyhydroxyalkanoates (PHAs)) polyesters were tested. Our results demonstrated that the physicochemical properties of the polyesters significantly influenced the loading efficiency and release kinetics of PTX. While nanoparticles based on synthetic polyesters exhibited high encapsulation levels and controlled PTX release in vitro, PHA-based nanoparticles exhibited immediate unloading of their cargo. Pharmacokinetic and biodistribution studies in rodents revealed that encapsulating PTX in PEG-coated PDLLA-based nanoparticles led to enhanced plasma residence time and tumour deposition of the drug compared to Taxol®. Polymeric nanoparticles thus represent an appealing alternative to Taxol®.
180

Etude des mécanismes de photovieillissement de revêtements organiques anti-corrosion pour application comme peintures marines. Influence de l'eau

Malajati, Yassine 30 June 2009 (has links) (PDF)
La préservation des structures métalliques en milieu marin conduit au développement de revêtements organiques anticorrosion de type époxy, époxy-polyamine ou polyester, voire de nouvelles formulations respectueuses de l'environnement. Les peintures marines se trouvent exposées à la lumière solaire lors de leur utilisation en zone de marnage et elles doivent conserver leurs propriétés fonctionnelles pour assurer leur rôle de protection contre la corrosion. Afin d'évaluer le comportement à long terme de ces formulations, des vieillissements artificiels accélérés impliquant la lumière et l'eau (alternativement ou simultanément) ont été mis au point. Trois types de vieillissement ont alors été utilisés : photovieillissement à sec, cycles alternés irradiation / immersion et irradiation dans l'eau. Deux peintures marines industrielles à base de résin époxy (avec ou sans solvant) ont été étudiées ainsi que des polymères modèles : soit bidimentionnel (résine phénoxy PKHJ(R) ou tridimentionnel (DGEBA/TETA). En présence d'eau, l'étude des mécanismes de vieillissement a permis de mettre en évidence l'hydrolyse de photoproduits et leur migration dans la solution d'immersion. De plus, dans le cas de la PKHJ(R), cette hydrolyse conduit à la production de phénols qui ont un effet photoinducteur, et d'acides qui sont extraits par l'eau. Les évolutions moléculaires des matériaux ont pu être corrélées aux évolutions macroscopiques des propriétés physico-chimiques au cours du vieillissement. Les mécanismes, les cinétiques, l'influence du milieu dépendent de la nature de la structure chimique, de la structure morphologique et de l'état du plymère étudié (vieilli ou non).

Page generated in 0.0214 seconds