• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 124
  • 22
  • 20
  • 18
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 514
  • 160
  • 58
  • 55
  • 48
  • 47
  • 39
  • 37
  • 33
  • 24
  • 23
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Building and experimentally evaluating a smart antenna for low power wireless communication

Öström, Erik January 2010 (has links)
<p>In wireless communication there is commonly much unnecessary communication made in directions not pointing towards the recipient. Normally omni directional antennas are being used which sends the same amount of energy in all directions equally. This waste of energy reduces the lifetime of battery powered units and causes more traffic collisions than necessary. One way of minimizing this wasted energy and traffic collisions, is to use another type of antenna called “smart antenna”. These antennas can use selectable radiation patterns depending on the situation and thus drastically minimize the unnecessary energy waste. Smart antennas also provide the ability to sense the direction of incoming signals which is favorable for physical layout mapping such as orientation.</p><p>This thesis presents the prototyping of a new type of smart antenna called the SPIDA smart antenna. This antenna is a cheap to produce smart antenna designed for the 2.4 GHz frequency band. The SPIDA smart antenna can use sixty-four different signal patterns with the control of six separate directional modes, amongst these patterns are six single direction patterns, an omni-directional signal pattern and fifty-six combi-direction patterns. The thesis presents complete building instructions, evaluation data and functional drivers for the SPIDA smart antenna.</p>
152

Design, synthesis and biological evaluation of new anti-Cancer nitrogen-containing combretastatins and novel cysteine protease inhibitors for the treatment of Chagas

Siles, Rogelio. Pinney, Kevin G. January 2005 (has links)
Thesis (Ph.D.)--Baylor University, 2005. / Includes bibliographical references (p. 483-494).
153

A Tunable Log-Domain Filter Using Vertical Bipolar Junction Transistor

Lin, Hsin-hsiu 25 July 2007 (has links)
Traditionally, the design of continuous time active filters usually has a trade offbetween low-voltage and high dynamic range. One way to solve this problem is companding technology. There are two methods for companding filters. The first method utilizes the exponential I-V characteristics of BJT in the saturation region. In order to reduce the cost andintegrate the analog and digital circuits, the other method was exploited using CMOS process. In this project, a new first-order low pass log-domain filter based on CMOS parasitic vertical BJTwill be proposed. This filter has higher frequency response than previous circuits. We will first employ Hspice to simulate the log-domain filter to ensure the correctness of the circuit and make it a reliable reference with the circuit layout. After summarizing all the simulations and analyses, the chip will be fabricated with 0.35um CMOS technology.
154

Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors

Shin, Kyung-Wook 15 August 2008 (has links)
Thin film transistors (TFTs) have brought prominent growth in both variety and utility of large area electronics market over the past few decades. Nanocrystalline silicon (nc-Si:H) TFTs have attracted attention recently, due to high-performance and low-cost, as an alternative of amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) TFTs. The nc-Si:H TFTs has higher carrier mobility and better device stability than a-Si:H TFTs while lower manufacturing cost than poly-Si TFTs. However, current nc-Si:TFTs have several challenging issues on materials and devices, on which this thesis focuses. In the material study, the gate quality silicon nitride (a-SiNx) films and doped nc-Si:H contacts based on conventional plasma enhanced chemical vapor deposition (PECVD) are investigated. The feasibility of a-SiNx on TFT application is discussed with current-voltage (I-V)/capacitance-voltage(C-V) measurement and Fourier Transform Infrared Spectroscopy (FTIR) results which demonstrate 4.3 MV/cm, relative permittivity of 6.15 and nitrogen rich composition. The doped nc-Si:H for contact layer of TFTs is characterized with Raman Spectroscopy and I-V measurements to reveal 56 % of crystalinity and 0.42 S/cm of dark conductivity. Inverted staggered TFT structure is fabricated for nc-Si:H TFT device research using fully wet etch fabrication process which requires five lithography steps. The process steps are described in detail as well as adaptation of the fabrication process to a backplane fabrication for direct conversion X-ray imagers. The modification of TFT process for backplane fabrication involves two more lithography steps for mushroom electrode formation while other pixel components is incorporated into the five lithography step TFT process. The TFTs are electrically characterized demonstrating 7.22 V of threshold voltage, 0.63 S/decade of subthreshold slope, 0.07 cm2/V•s of field effect mobility, and 106 of on/off ratio. The transfer characteristics of TFTs reveal a severe effect of parasitic resistance which is induced from channel layer itself, a contact between channel layer and doped nc-Si:H contact layer, the resistance of doped nc-Si:H contact layer, and a contact between the doped nc-Si:H layer and source/drain metal electrodes. The parasitic resistance effect is investigated using numerical simulation method by various parasitic resistances, channel length of the TFT, and intrinsic properties of nc-Si:H channel layer. It reveals the parasitic resistance effect become severe when the channel is short and has better quality, therefore, several further research topics on improving contact nc-Si:H quality and process adjustment are required.
155

Building and experimentally evaluating a smart antenna for low power wireless communication

Öström, Erik January 2010 (has links)
In wireless communication there is commonly much unnecessary communication made in directions not pointing towards the recipient. Normally omni directional antennas are being used which sends the same amount of energy in all directions equally. This waste of energy reduces the lifetime of battery powered units and causes more traffic collisions than necessary. One way of minimizing this wasted energy and traffic collisions, is to use another type of antenna called “smart antenna”. These antennas can use selectable radiation patterns depending on the situation and thus drastically minimize the unnecessary energy waste. Smart antennas also provide the ability to sense the direction of incoming signals which is favorable for physical layout mapping such as orientation. This thesis presents the prototyping of a new type of smart antenna called the SPIDA smart antenna. This antenna is a cheap to produce smart antenna designed for the 2.4 GHz frequency band. The SPIDA smart antenna can use sixty-four different signal patterns with the control of six separate directional modes, amongst these patterns are six single direction patterns, an omni-directional signal pattern and fifty-six combi-direction patterns. The thesis presents complete building instructions, evaluation data and functional drivers for the SPIDA smart antenna.
156

Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors

Shin, Kyung-Wook 15 August 2008 (has links)
Thin film transistors (TFTs) have brought prominent growth in both variety and utility of large area electronics market over the past few decades. Nanocrystalline silicon (nc-Si:H) TFTs have attracted attention recently, due to high-performance and low-cost, as an alternative of amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) TFTs. The nc-Si:H TFTs has higher carrier mobility and better device stability than a-Si:H TFTs while lower manufacturing cost than poly-Si TFTs. However, current nc-Si:TFTs have several challenging issues on materials and devices, on which this thesis focuses. In the material study, the gate quality silicon nitride (a-SiNx) films and doped nc-Si:H contacts based on conventional plasma enhanced chemical vapor deposition (PECVD) are investigated. The feasibility of a-SiNx on TFT application is discussed with current-voltage (I-V)/capacitance-voltage(C-V) measurement and Fourier Transform Infrared Spectroscopy (FTIR) results which demonstrate 4.3 MV/cm, relative permittivity of 6.15 and nitrogen rich composition. The doped nc-Si:H for contact layer of TFTs is characterized with Raman Spectroscopy and I-V measurements to reveal 56 % of crystalinity and 0.42 S/cm of dark conductivity. Inverted staggered TFT structure is fabricated for nc-Si:H TFT device research using fully wet etch fabrication process which requires five lithography steps. The process steps are described in detail as well as adaptation of the fabrication process to a backplane fabrication for direct conversion X-ray imagers. The modification of TFT process for backplane fabrication involves two more lithography steps for mushroom electrode formation while other pixel components is incorporated into the five lithography step TFT process. The TFTs are electrically characterized demonstrating 7.22 V of threshold voltage, 0.63 S/decade of subthreshold slope, 0.07 cm2/V•s of field effect mobility, and 106 of on/off ratio. The transfer characteristics of TFTs reveal a severe effect of parasitic resistance which is induced from channel layer itself, a contact between channel layer and doped nc-Si:H contact layer, the resistance of doped nc-Si:H contact layer, and a contact between the doped nc-Si:H layer and source/drain metal electrodes. The parasitic resistance effect is investigated using numerical simulation method by various parasitic resistances, channel length of the TFT, and intrinsic properties of nc-Si:H channel layer. It reveals the parasitic resistance effect become severe when the channel is short and has better quality, therefore, several further research topics on improving contact nc-Si:H quality and process adjustment are required.
157

Lichen decline in areas with increased nitrogen deposition might be explained by parasitic fungi : A survey of parasitic fungi on the lichen Alectoria sarmentosa after 4 years of nitrogen fertilisation

Ström, Caspar January 2011 (has links)
Nitrogen (N) deposition in Europe has recently increased and is expected to continue to increase in the future. There is a well-documented decline in lichen diversity with higher N availability, although the mechanisms behind this are poorly known. In this study, I tested whether attacks by fungal parasites increase with higher N deposition. This pattern has been found in a number of studies on vascular plants, but it has never been investigated for lichens. I surveyed dark lesions and discolourings caused by fungi on the pollution-sensitive lichen Alectoria sarmentosa, after 4 years of increased N deposition in a whole tree fertilisation experiment in a boreal spruce forest. I found two species of fungi growing on the investigated lichen thalli. One of these species responded positively to increased N deposition. The results show that lichens can suffer from increased parasite attacks under a higher N load. Further studies using multiple lichen species and many years of recording are needed to understand the importance of parasites for the response of whole lichen communities to an increased N load.
158

New-Geometrical-Structure Traveling-Wave Electroabsorption Modulator by Wet Etching

Tai, Chih-Yu 25 June 2005 (has links)
Abstract In this thesis, we propose a new geometrical structure of waveguide for the application of traveling-wave electroabsorption modulator (TWEAM). As approaching to high-speed performance in TWEAM, low parasitic capacitance in the waveguide is necessary to get good microwave propagation properties. In this work, a novel processing called two-step undercut-etching the active region (UEAR) is developed to reduce the parasitic capacitance. First of all, Beam Propagation Method (BPM) is used to calculate this 2-D structure optical modes ensuring the guiding capability in such kind of waveguides. Based on an equivalent circuit model, the microwave propagation on different structures of waveguide is then investigated to decide the UEAR waveguide structure. By the selectively etching solution on InP/InGaAsP, the processing by two-step UEAR is developed to reduce the parasitic capacitance in the waveguide core. H3PO4:HCl is used to selectively etch P-InP layer on the top of InGaAsP M.Q.W. (multiple quantum wells, active region). H3PO4:H2O2:H2O is subsequently and selectively remove InGaAsP M.Q.W.s to define the waveguide core. This processing has been successfully developed. The electrical transmission measurement on this kind of TWEAM shows low reflection S11 of < -17.5dB and a low insertion loss S21 of < ¡V2.7dB from D.C. to 40GHz, indicating high microwave performance on such two-step UEAR waveguide can be achieved due to the low parasitic capacitance.
159

Efficient numerical methods for capacitance extraction based on boundary element method

Yan, Shu 12 April 2006 (has links)
Fast and accurate solvers for capacitance extraction are needed by the VLSI industry in order to achieve good design quality in feasible time. With the development of technology, this demand is increasing dramatically. Three-dimensional capacitance extraction algorithms are desired due to their high accuracy. However, the present 3D algorithms are slow and thus their application is limited. In this dissertation, we present several novel techniques to significantly speed up capacitance extraction algorithms based on boundary element methods (BEM) and to compute the capacitance extraction in the presence of floating dummy conductors. We propose the PHiCap algorithm, which is based on a hierarchical refinement algorithm and the wavelet transform. Unlike traditional algorithms which result in dense linear systems, PHiCap converts the coefficient matrix in capacitance extraction problems to a sparse linear system. PHiCap solves the sparse linear system iteratively, with much faster convergence, using an efficient preconditioning technique. We also propose a variant of PHiCap in which the capacitances are solved for directly from a very small linear system. This small system is derived from the original large linear system by reordering the wavelet basis functions and computing an approximate LU factorization. We named the algorithm RedCap. To our knowledge, RedCap is the first capacitance extraction algorithm based on BEM that uses a direct method to solve a reduced linear system. In the presence of floating dummy conductors, the equivalent capacitances among regular conductors are required. For floating dummy conductors, the potential is unknown and the total charge is zero. We embed these requirements into the extraction linear system. Thus, the equivalent capacitance matrix is solved directly. The number of system solves needed is equal to the number of regular conductors. Based on a sensitivity analysis, we propose the selective coefficient enhancement method for increasing the accuracy of selected coupling or self-capacitances with only a small increase in the overall computation time. This method is desirable for applications, such as crosstalk and signal integrity analysis, where the coupling capacitances between some conductors needs high accuracy. We also propose the variable order multipole method which enhances the overall accuracy without raising the overall multipole expansion order. Finally, we apply the multigrid method to capacitance extraction to solve the linear system faster. We present experimental results to show that the techniques are significantly more efficient in comparison to existing techniques.
160

Relationship between dysphoric moods, risk-taking behaviors, and Toxoplasma gondii antibody titers in female veterans

Duffy, Allyson Radford 01 January 2013 (has links)
The number of female veterans is increasing daily. Previous research conducted on veterans has focused primarily on males or with small samples of females. Depression and suicidality are becoming increasingly evident in returning veterans. Toxoplasma gondii is an intracellular parasite that is common in the Middle East and has been reported to cause changes in personality and behavior. The purpose of the current study was to examine relationships between T. gondii antibody titer and socioeconomic variables, dysphoric moods, and risk-taking behaviors in a sample of 70 female veterans. Blood samples were collected and analyzed for T. gondii antibody titer and participants completed a battery of questionnaires, including the Center for Epidemiologic Studies Depression (CES-D) scale, Profile of Mood States (POMS), PTSD Checklist- Military version (PCL-M), Alcohol Use Disorder Identification Test (AUDIT), and a sexual harassment and assault questionnaire. Results of chi-squares showed a relationship between T. gondii titer, ethnicity, marital status, and level of education. Pearson's correlations and t-tests showed relationships between T. gondii titer and POMS depression, confusion, and anger subscales, and total mood disturbance scores.

Page generated in 0.0526 seconds