• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 120
  • 70
  • 24
  • 12
  • 6
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 719
  • 719
  • 719
  • 168
  • 156
  • 140
  • 127
  • 126
  • 124
  • 103
  • 101
  • 100
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Development of New Global Optimization Algorithms Using Stochastic Level Set Method with Application in: Topology Optimization, Path Planning and Image Processing

Kasaiezadeh Mahabadi, Seyed Alireza January 2012 (has links)
A unique mathematical tool is developed to deal with global optimization of a set of engineering problems. These include image processing, mechanical topology optimization, and optimal path planning in a variational framework, as well as some benchmark problems in parameter optimization. The optimization tool in these applications is based on the level set theory by which an evolving contour converges toward the optimum solution. Depending upon the application, the objective function is defined, and then the level set theory is used for optimization. Level set theory, as a member of active contour methods, is an extension of the steepest descent method in conventional parameter optimization to the variational framework. It intrinsically suffers from trapping in local solutions, a common drawback of gradient based optimization methods. In this thesis, methods are developed to deal with this drawbacks of the level set approach. By investigating the current global optimization methods, one can conclude that these methods usually cannot be extended to the variational framework; or if they can, the computational costs become drastically expensive. To cope with this complexity, a global optimization algorithm is first developed in parameter space and compared with the existing methods. This method is called "Spiral Bacterial Foraging Optimization" (SBFO) method because it is inspired by the aggregation process of a particular bacterium called, Dictyostelium Discoideum. Regardless of the real phenomenon behind the SBFO, it leads to new ideas in developing global optimization methods. According to these ideas, an effective global optimization method should have i) a stochastic operator, and/or ii) a multi-agent structure. These two properties are very common in the existing global optimization methods. To improve the computational time and costs, the algorithm may include gradient-based approaches to increase the convergence speed. This property is particularly available in SBFO and it is the basis on which SBFO can be extended to variational framework. To mitigate the computational costs of the algorithm, use of the gradient based approaches can be helpful. Therefore, SBFO as a multi-agent stochastic gradient based structure can be extended to multi-agent stochastic level set method. In three steps, the variational set up is formulated: i) A single stochastic level set method, called "Active Contours with Stochastic Fronts" (ACSF), ii) Multi-agent stochastic level set method (MSLSM), and iii) Stochastic level set method without gradient such as E-ARC algorithm. For image processing applications, the first two steps have been implemented and show significant improvement in the results. As expected, a multi agent structure is more accurate in terms of ability to find the global solution but it is much more computationally expensive. According to the results, if one uses an initial level set with enough holes in its topology, a single stochastic level set method can achieve almost the same level of accuracy as a multi-agent structure can obtain. Therefore, for a topology optimization problem for which a high level of calculations (at each iteration a finite element model should be solved) is required, only ACSF with initial guess with multiple holes is implemented. In some applications, such as optimal path planning, objective functions are usually very complicated; finding a closed-form equation for the objective function and its gradient is therefore impossible or sometimes very computationally expensive. In these situations, the level set theory and its extensions cannot be directly employed. As a result, the Evolving Arc algorithm that is inspired by "Electric Arc" in nature, is proposed. The results show that it can be a good solution for either unconstrained or constrained problems. Finally, a rigorous convergence analysis for SBFO and ACSF is presented that is new amongst global optimization methods in both parameter and variational framework.
332

Well-posedness and causality for a class of evolutionary inclusions

Trostorff, Sascha 05 December 2011 (has links) (PDF)
We study a class of differential inclusions involving maximal monotone relations, which cover a huge class of problems in mathematical physics. For this purpose we introduce the time derivative as a continuously invertible operator in a suitable Hilbert space. It turns out that this realization is a strictly monotone operator and thus, the question on existence and uniqueness can be answered by well-known results in the theory of maximal monotone relations. Furthermore, we show that the resulting solution operator is Lipschitz-continuous and causal, which is a natural property of evolutionary processes. Finally, the results are applied to a system of partial differential equations and inclusions, which describes the diffusion of a compressible fluid through a saturated, porous, plastically deforming media, where certain hysteresis phenomena are modeled by maximal montone relations.
333

Nonconvex Dynamical Problems

Rieger, Marc Oliver 28 November 2004 (has links) (PDF)
Many problems in continuum mechanics, especially in the theory of elastic materials, lead to nonlinear partial differential equations. The nonconvexity of their underlying energy potential is a challenge for mathematical analysis, since convexity plays an important role in the classical theories of existence and regularity. In the last years one main point of interest was to develop techniques to circumvent these difficulties. One approach was to use different notions of convexity like quasi-- or polyconvexity, but most of the work was done only for static (time independent) equations. In this thesis we want to make some contributions concerning existence, regularity and numerical approximation of nonconvex dynamical problems.
334

Nonlinear convective instability of fronts a case study /

Ghazaryan, Anna R., January 2005 (has links)
Thesis (Ph.D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains ix, 176 p.; also includes graphics. Includes bibliographical references (p. 172-176). Available online via OhioLINK's ETD Center
335

Posicionamento aproximado do estado final para sistemas térmicos descritos pela equação do calor. / Approximate positioning of the final state for thermal systems described by the heat equation.

Marlon Michael López Flores 11 April 2014 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1. / In this work, a quadratic optimal control problem will be considered for the heat equation in rectangular domains with Dirichlet type boundary conditions in which the control function (depending only on time) constitutes a source term. A characterization of the solution is obtained in the form of a linear equation in a real function space defined in a considered time interval. Then, a sequence of projections in finite dimensional subspaces is used to obtain approximations for the optimal control, each of them can be generated by a finite dimension linear system. The sequence of approximate solutions obtained in this way converges to an optimal solution of the original problem. Finally, numerical results are presented for spatial domains of 1 dimension.
336

Méthodes de stabilisation de systèmes non-linéaires avec des mesures partielles et des entrées contraintes. / Stabilization methods of nonlinear systems with partial measurements and constrained inputs

Marx, Swann 20 September 2017 (has links)
Cette thèse a pour sujet la stabilisation de systèmes non-linéaires avec des mesures partielles et des entrées contraintes. Les deux premiers chapitres traitent du problème des entrées saturées dans le contexte des systèmes de dimension infinie pour des équations nonlinéaires abstraites et une équation aux dérivées partielles nonlinéaire particulière, l'équation de Korteweg-de Vries. Les outils mathématiques utilisés pour obtenir des résultats Le troisième chapitre propose une méthode de synthèse de retour de sortie pour deux équations de Korteweg-de Vries. Le quatrième chapitre concerne la synthèse d'un retour de sortie pour des systèmes non-linéaires de dimension finie pour lequel il existe un contrôle hybride. Une stratégie basée sur des observateurs grand gain est utilisée. / This thesis is about the stabilization of nonlinear systems with partial measurements and constrained input. The two first chapters deals with saturated inputs in the contex of infinite-dimensional systems for nonlinear abstract equations and for a particular partial differential equation, the Korteweg-de Vries equation. The third chapter provides an output feedback design for two Korteweg-de Vries equations using the backstepping method. The fourth chapter is about the output feedback design of nonlinear finite-dimensional systems for which there exists a hybrid controller. A high-gain observer strategy is used.
337

Some contribution to analysis and stochastic analysis

Liu, Xuan January 2018 (has links)
The dissertation consists of two parts. The first part (Chapter 1 to 4) is on some contributions to the development of a non-linear analysis on the quintessential fractal set Sierpinski gasket and its probabilistic interpretation. The second part (Chapter 5) is on the asymptotic tail decays for suprema of stochastic processes satisfying certain conditional increment controls. Chapters 1, 2 and 3 are devoted to the establishment of a theory of backward problems for non-linear stochastic differential equations on the gasket, and to derive a probabilistic representation to some parabolic type partial differential equations on the gasket. In Chapter 2, using the theory of Markov processes, we derive the existence and uniqueness of solutions to backward stochastic differential equations driven by Brownian motion on the Sierpinski gasket, for which the major technical difficulty is the exponential integrability of quadratic processes of martingale additive functionals. A Feynman-Kac type representation is obtained as an application. In Chapter 3, we study the stochastic optimal control problems for which the system uncertainties come from Brownian motion on the gasket, and derive a stochastic maximum principle. It turns out that the necessary condition for optimal control problems on the gasket consists of two equations, in contrast to the classical result on &Ropf;<sup>d</sup>, where the necessary condition is given by a single equation. The materials in Chapter 2 are based on a joint work with Zhongmin Qian (referenced in Chapter 2). Chapter 4 is devoted to the analytic study of some parabolic PDEs on the gasket. Using a new type of Sobolev inequality which involves singular measures developed in Section 4.2, we establish the existence and uniqueness of solutions to these PDEs, and derive the space-time regularity for solutions. As an interesting application of the results in Chapter 4 and the probabilistic representation developed in Chapter 2, we further study Burgers equations on the gasket, to which the space-time regularity for solutions is deduced. The materials in Chapter 4 are based on a joint work with Zhongmin Qian (referenced in Chapter 4). In Chapter 5, we consider a class of continuous stochastic processes which satisfy the conditional increment control condition. Typical examples include continuous martingales, fractional Brownian motions, and diffusions governed by SDEs. For such processes, we establish a Doob type maximal inequality. Under additional assumptions on the tail decays of their marginal distributions, we derive an estimate for the tail decay of the suprema (Theorem 5.3.2), which states that the suprema decays in a manner similar to the margins of the processes. In Section 5.4, as an application of Theorem 5.3.2, we derive the existence of strong solutions to a class of SDEs. The materials in this chapter is based on the work [44] by the author (Section 5.2 and Section 5.3) and an ongoing joint project with Guangyu Xi (Section 5.4).
338

O problema de Dirichlet assintótico para a equação das superfícies mínimas em uma variedade Cartan-Hadamard rotacionalmente simétrica

Pereira, Fabiano January 2015 (has links)
Neste trabalho estudamos o problema de Dirichlet assintótico para a equação das superfícies mínimas em uma superfície de Cartan-Hadamard rotacionalmente simétrica e mostramos que o problema e unicamente solúvel para qualquer dado contínuo em seu bordo assintótico. / In this work we study the asymptotic Dirichlet problem for the minimal surface equation on rotationally symmetric Cartan-Hadamard surfaces. We prove that the problem is uniquely solvave for any continuous asymptotic boundary data.
339

O problema de Dirichlet para a equação de hipersuperfície mínima em M x R com bordo assintótico prescrito

Telichevesky, Miriam January 2010 (has links)
O objetivo central deste trabalho consiste em demonstrar a existência de gráficos mínimos C2,x com fronteira assintótica prescrita na variedade produto M R, onde M e completa, simplesmente conexa, com curvatura seccional KM satisfazendo KM ≤ -k2 < 0 e tal que, para algum p Є M, o subgrupo de isotropia de Iso(M) em p age de modo 2-pontos homogêneo nas esferas geodésicas centradas em p. / The main purpose of this work consists on proving the existence of minimal C2,x graphics with prescribed asymptotic boundary in the product manifold M R, where M is a complete, simply connected manifold with sectional curvature KM satisfying KM ≤ -k2 < 0 and such that, for some p 2 M, the isotropy subgroup of Iso(M) in p acts in a 2-points homogeneous way in the geodesic spheres centered in p.
340

NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

Liu, Jun 01 August 2015 (has links)
Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6.

Page generated in 0.133 seconds