Spelling suggestions: "subject:"1article swarm optimization"" "subject:"1article awarm optimization""
301 |
Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in ModelsMartínez Rodríguez, David 23 December 2021 (has links)
[ES] La búsqueda novedosa es un nuevo paradigma de los algoritmos de optimización, evolucionarios y bioinspirados, que está basado en la idea de forzar la búsqueda del óptimo global en aquellas partes inexploradas del dominio de la función que no son atractivas para el algoritmo, con la intención de evitar estancamientos en óptimos locales. La búsqueda novedosa se ha aplicado al algoritmo de optimización de enjambre de partículas, obteniendo un nuevo algoritmo denominado algoritmo de enjambre novedoso (NS). NS se ha aplicado al conjunto de pruebas sintéticas CEC2005, comparando los resultados con los obtenidos por otros algoritmos del estado del arte. Los resultados muestran un mejor comportamiento de NS en funciones altamente no lineales, a cambio de un aumento en la complejidad computacional. En lo que resta de trabajo, el algoritmo NS se ha aplicado en diferentes modelos, específicamente en el diseño de un motor de combustión interna, en la estimación de demanda de energía mediante gramáticas de enjambre, en la evolución del cáncer de vejiga de un paciente concreto y en la evolución del COVID-19. Cabe remarcar que, en el estudio de los modelos de COVID-19, se ha tenido en cuenta la incertidumbre, tanto de los datos como de la evolución de la enfermedad. / [CA] La cerca nova és un nou paradigma dels algoritmes d'optimització, evolucionaris i bioinspirats, que està basat en la idea de forçar la cerca de l'òptim global en les parts inexplorades del domini de la funció que no són atractives per a l'algoritme, amb la intenció d'evitar estancaments en òptims locals. La cerca nova s'ha aplicat a l'algoritme d'optimització d'eixam de partícules, obtenint un nou algoritme denominat algoritme d'eixam nou (NS). NS s'ha aplicat al conjunt de proves sintètiques CEC2005, comparant els resultats amb els obtinguts per altres algoritmes de l'estat de l'art. Els resultats mostren un millor comportament de NS en funcions altament no lineals, a canvi d'un augment en la complexitat computacional. En el que resta de treball, l'algoritme NS s'ha aplicat en diferents models, específicament en el disseny d'un motor de combustió interna, en l'estimació de demanda d'energia mitjançant gramàtiques d'eixam, en l'evolució del càncer de bufeta d'un pacient concret i en l'evolució del COVID-19. Cal remarcar que, en l'estudi dels models de COVID-19, s'ha tingut en compte la incertesa, tant de les dades com de l'evolució de la malaltia. / [EN] Novelty Search is a recent paradigm in evolutionary and bio-inspired optimization algorithms, based on the idea of forcing to look for those unexplored parts of the domain of the function that might be unattractive for the algorithm, with the aim of avoiding stagnation in local optima. Novelty Search has been applied to the Particle Swarm Optimization algorithm, obtaining a new algorithm named Novelty Swarm (NS). NS has been applied to the CEC2005 benchmark, comparing its results with other state of the art algorithms. The results show better behaviour in high nonlinear functions at the cost of increasing the computational complexity. During the rest of the thesis, the NS
algorithm has been used in different models, specifically the design of an Internal Combustion Engine, the prediction of energy demand estimation with Grammatical Swarm, the evolution of the bladder cancer of a specific patient and the evolution of COVID-19. It is also remarkable that, in the study of COVID-19 models, uncertainty of the data and the evolution of the disease has been taken in account. / Martínez Rodríguez, D. (2021). Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/178994
|
302 |
[pt] ESNPREDICTOR: FERRAMENTA DE PREVISÃO DE SÉRIES TEMPORAIS BASEADA EM ECHO STATE NETWORKS OTIMIZADAS POR ALGORITMOS GENÉTICOS E PARTICLE SWARM OPTIMIZATION / [en] ESNPREDICTOR: TIME SERIES FORECASTING APPLICATION BASED ON ECHO STATE NETWORKS OPTIMIZED BY GENETICS ALGORITHMS AND PARTICLE SWARM OPTIMIZATIONCAMILO VELASCO RUEDA 18 June 2015 (has links)
[pt] A previsão de séries temporais é fundamental na tomada de decisões de curto, médio e longo prazo, em diversas áreas como o setor elétrico, a bolsa de valores, a meteorologia, entre outros. Tem-se na atualidade uma diversidade de técnicas e modelos para realizar essas previsões, mas as ferramentas estatísticas são as mais utilizadas principalmente por apresentarem um maior grau de interpretabilidade. No entanto, as técnicas de inteligência computacional têm sido cada vez mais aplicadas em previsão de séries temporais, destacando-se as Redes Neurais Artificiais (RNA) e os Sistemas de Inferência Fuzzy (SIF). Recentemente foi criado um novo tipo de RNA, denominada Echo State Networks (ESN), as quais diferem das RNA clássicas por apresentarem uma camada escondida com conexões aleatórias, denominada de Reservoir (Reservatório). Este Reservoir é ativado pelas entradas da rede e pelos seus estados anteriores, gerando o efeito de Echo State (Eco), fornecendo assim um dinamismo e um desempenho melhor para tarefas de natureza temporal. Uma dificuldade dessas redes ESN é a presença de diversos parâmetros, tais como Raio Espectral, Tamanho do Reservoir e a Percentual de Conexão, que precisam ser calibrados para que a ESN forneça bons resultados. Portanto, este trabalho tem como principal objetivo o desenvolvimento de uma ferramenta computacional capaz de realizar previsões de séries temporais, baseada nas ESN, com ajuste automático de seus parâmetros por Particle Swarm Optimization (PSO) e Algoritmos Genéticos (GA), facilitando a sua utilização pelo usuário. A ferramenta computacional desenvolvida oferece uma interface gráfica intuitiva e amigável, tanto em termos da modelagem da ESN, quanto em termos de realização de eventuais pré-processamentos na série a ser prevista. / [en] The time series forecasting is critical to decision making in the short, medium and long term in several areas such as electrical, stock market, weather and industry. Today exist different techniques to model this forecast, but statistics are more used, because they have a bigger interpretability, due by the mathematic models created. However, intelligent techniques are being more applied in time series forecasting, where the principal models are the Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS). A new type of ANN called Echo State Networks (ESN) was created recently, which differs from the classic ANN in a randomly connected hidden layer called Reservoir. This Reservoir is activated by the network inputs, and the historic of the reservoir activations generating so, the Echo State and giving to the network more dynamism and a better performance in temporal nature tasks. One problem with these networks is the presence of some parameters as, Spectral Radius, Reservoir Size and Connection Percent, which require calibration to make the network provide positive results. Therefore the aim of this work is to develop a computational application capable to do time series forecasting, based on ESN, with automatic parameters adjustment by Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), facilitating its use by the user. The developed computational tool offers an intuitive and friendly interface, both in terms of modeling the ESN, and in terms of achievement of possible pre-process on the series to be forecasted.
|
303 |
Enhancing numerical modelling efficiency for electromagnetic simulation of physical layer componentsSasse, Hugh Granville January 2010 (has links)
The purpose of this thesis is to present solutions to overcome several key difficulties that limit the application of numerical modelling in communication cable design and analysis. In particular, specific limiting factors are that simulations are time consuming, and the process of comparison requires skill and is poorly defined and understood. When much of the process of design consists of optimisation of performance within a well defined domain, the use of artificial intelligence techniques may reduce or remove the need for human interaction in the design process. The automation of human processes allows round-the-clock operation at a faster throughput. Achieving a speedup would permit greater exploration of the possible designs, improving understanding of the domain. This thesis presents work that relates to three facets of the efficiency of numerical modelling: minimizing simulation execution time, controlling optimization processes and quantifying comparisons of results. These topics are of interest because simulation times for most problems of interest run into tens of hours. The design process for most systems being modelled may be considered an optimisation process in so far as the design is improved based upon a comparison of the test results with a specification. Development of software to automate this process permits the improvements to continue outside working hours, and produces decisions unaffected by the psychological state of a human operator. Improved performance of simulation tools would facilitate exploration of more variations on a design, which would improve understanding of the problem domain, promoting a virtuous circle of design. The minimization of execution time was achieved through the development of a Parallel TLM Solver which did not use specialized hardware or a dedicated network. Its design was novel because it was intended to operate on a network of heterogeneous machines in a manner which was fault tolerant, and included a means to reduce vulnerability of simulated data without encryption. Optimisation processes were controlled by genetic algorithms and particle swarm optimisation which were novel applications in communication cable design. The work extended the range of cable parameters, reducing conductor diameters for twisted pair cables, and reducing optical coverage of screens for a given shielding effectiveness. Work on the comparison of results introduced ―Colour maps‖ as a way of displaying three scalar variables over a two-dimensional surface, and comparisons were quantified by extending 1D Feature Selective Validation (FSV) to two dimensions, using an ellipse shaped filter, in such a way that it could be extended to higher dimensions. In so doing, some problems with FSV were detected, and suggestions for overcoming these presented: such as the special case of zero valued DC signals. A re-description of Feature Selective Validation, using Jacobians and tensors is proposed, in order to facilitate its implementation in higher dimensional spaces.
|
304 |
Ανάπτυξη και θεμελίωση νέων μεθόδων υπολογιστικής νοημοσύνης, ευφυούς βελτιστοποίησης και εφαρμογές / Development and foundation of new methods of computational intelligence, intelligent optimization and applicationsΕπιτροπάκης, Μιχαήλ 17 July 2014 (has links)
Η παρούσα διατριβή ασχολείται με τη μελέτη, την ανάπτυξη και τη θεμελίωση νέων μεθόδων Υπολογιστικής Νοημοσύνης και Ευφυούς Βελτιστοποίησης. Συνοπτικά οργανώνεται στα ακόλουθα τρία μέρη: Αρχικά παρουσιάζεται το πεδίο της Υπολογιστικής Νοημοσύνης και πραγματοποιείται μία σύντομη αναφορά στους τρεις κύριους κλάδους της, τον Εξελικτικό Υπολογισμό, τα Τεχνητά Νευρωνικά Δίκτυα και τα Ασαφή Συστήματα. Το επόμενο μέρος αφιερώνεται στην παρουσίαση νέων, καινοτόμων οικογενειών των αλγορίθμων Βελτιστοποίησης Σμήνους Σωματιδίων (ΒΣΣ) και των Διαφοροεξελικτικών Αλγόριθμων (ΔΕΑ), για την επίλυση αριθμητικών προβλημάτων βελτιστοποίησης χωρίς περιορισμούς, έχοντας είτε ένα, είτε πολλαπλούς ολικούς βελτιστοποιητές. Οι αλγόριθμοι ΒΣΣ και ΔΕΑ αποτελούν τις βασικές μεθοδολογίες της παρούσας διατριβής. Όλες οι οικογένειες μεθόδων που προτείνονται, βασίζονται σε παρατηρήσεις των κοινών δομικών χαρακτηριστικών των ΒΣΣ και ΔΕΑ, ενώ η κάθε προτεινόμενη οικογένεια τις αξιοποιεί με διαφορετικό τρόπο, δημιουργώντας νέες, αποδοτικές μεθόδους με αρκετά ενδιαφέρουσες ιδιότητες και δυναμική. Η παρουσίαση του ερευνητικού έργου της διατριβής ολοκληρώνεται με το τρίτο μέρος στο οποίο περιλαμβάνεται μελέτη και ανάπτυξη μεθόδων ολικής βελτιστοποίησης για την εκπαίδευση Τεχνητών Νευρωνικών Δικτύων Υψηλής Τάξης, σε σειριακά και παράλληλα ή / και κατανεμημένα υπολογιστικά συστήματα. Η διδακτορική διατριβή ολοκληρώνεται με βασικά συμπεράσματα και τη συνεισφορά της. / The main subject of the thesis at hand revolves mainly around the development and foundations of new methods of computational intelligence and intelligent optimization. The thesis is organized into the following three parts: Firstly, we briefly present an overview of the field of Computational Intelligence, by describing its main categories, the Evolutionary Computation, the Artificial Neural Networks and the Fuzzy Systems. In the second part, we provide a detailed description of the newly developed families of algorithms for solving unconstrained numerical optimization problems in continues spaces with at least one global optimum. The proposed families are based on two well-known and widely used algorithms, namely the Particle Swarm Optimization (PSO) and the Differential Evolution (DE) algorithm. Both DE and PSO are the basic components for almost all methodologies proposed in the thesis. The proposed methodologies are based on common observations of the dynamics, the structural and the spacial characteristics of DE and PSO algorithms. Four novel families are presented in this part which exploit the aforementioned characteristics of the DE and the PSO algorithms. The proposed methodologies are efficient methods with quite interesting properties and dynamics. The presentation and description of our research contribution ends with the third and last part of the thesis, which includes the study and the development of novel global optimization methodologies for training Higher order Artificial Neural Networks in serial and parallel / distributed computational environments. The thesis ends with a brief summary, conclusions and discussion of the contribution of this thesis.
|
305 |
Trajectory planning and control of collaborative systems : Application to trirotor UAVS. / Planification de trajectoire et contrôle d'un système collaboratif : Application à un drone trirotorServais, Etienne 18 September 2015 (has links)
L'objet de cette thèse est de proposer un cadre complet, du haut niveau au bas niveau, de génération de trajectoires pour un groupe de systèmes dynamiques indépendants. Ce cadre, basé sur la résolution de l'équation de Burgers pour la génération de trajectoires, est appliqué à un modèle original de drone trirotor et utilise la platitude des deux systèmes différentiels considérés. La première partie du manuscrit est consacrée à la génération de trajectoires. Celle-ci est effectuée en créant formellement, par le biais de la platitude du système considéré, des solutions à l'équation de la chaleur. Ces solutions sont transformées en solution de l'équation de Burgers par la transformation de Hopf-Cole pour correspondre aux formations voulues. Elles sont optimisées pour répondre à des contraintes spécifiques. Plusieurs exemples de trajectoires sont donnés.La deuxième partie est consacrée au suivi autonome de trajectoire par un drone trirotor. Ce drone est totalement actionné et un contrôleur en boucle fermée non-linéaire est proposé. Celui-ci est testé en suivant, en roulant, des trajectoires au sol et en vol. Un modèle est présenté et une démarche pour le contrôle est proposée pour transporter une charge pendulaire. / This thesis is dedicated to the creation of a complete framework, from high-level to low-level, of trajectory generation for a group of independent dynamical systems. This framework, based for the trajectory generation, on the resolution of Burgers equation, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of dynamical systems.The first part of this thesis is dedicated to the generation of trajectories. Formal solutions to the heat equation are created using the differential flatness of this equation. These solutions are transformed into solutions to Burgers' equation through Hopf-Cole transformation to match the desired formations. They are optimized to match specific requirements. Several examples of trajectories are given.The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV. This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory. A model is presented and a control approach is suggested to transport a pendulum load.
|
306 |
Contribución a los métodos de optimización basados en procesos naturales y su aplicación a la medida de antenas en campo próximoPérez López, Jesús Ramón 16 December 2005 (has links)
Durante la última década, los métodos de optimización heurísticos basados en imitar a nivel computacional procesos naturales, biológicos, sociales o culturales, han despertado el interés de la comunidad científica debido a su capacidad para explorar eficientemente espacios de soluciones multimodales y multidimensionales. En este ámbito, esta tesis aborda el desarrollo, análisis y puesta a punto de diferentes métodos de optimización tradicionales y heurísticos. En concreto, se considera un método de búsqueda local basado en símplex y varios métodos heurísticos, tales como el recocido simulado, los algoritmos genéticos y la optimización con enjambre de partículas. Para estos dos últimos algoritmos se investigan diferentes esquemas con el objetivo de superar las limitaciones propias de los esquemas clásicos.La puesta a punto de los diferentes métodos de optimización se realiza considerando como problema de referencia la caracterización de la radiación de antenas a partir de medidas en campo próximo sobre geometría plana, utilizando un método de transformación de campo cercano a campo lejano basado en corrientes equivalentes. Para cada método de optimización se incluye un análisis paramétrico, en los casos en los que se ha considerado necesario, así como resultados de transformación de campo teóricos obtenidos para diferentes antenas de apertura y antenas de bocina piramidal. Los resultados de un estudio comparativo, realizado utilizando fuentes teóricas y medidas, demuestran la utilidad del método y permiten concluir que la optimización con enjambre de partículas es el algoritmo que proporciona las mejores prestaciones para esta aplicación.Los métodos de optimización desarrollados e investigados en este trabajo han sido también aplicados a otros problemas como son la síntesis de agrupaciones lineales o el modelado de fuente en aplicaciones de compatibilidad electromagnética. / For the last decade, heuristic optimization methods based on imitating natural, biological, social or cultural processes in a computational way have aroused great interest among the scientific community, due to its ability to explore efficiently multimodal and high-dimension solution spaces. On this basis, this thesis tackles the development, analysis and tuning of different traditional and heuristic optimization methods. In short, a local search method based on simplex and several heuristic methods, such as simulated annealing, genetic algorithms and particle swarm optimization are considered. For these last two algorithms different schemes are investigated so as to overcome the typical limitations of classical schemes.The tuning of the optimization methods is carried out considering as a reference problem the antenna radiation characterization from near-field measurements over a planar geometry, using a near-field to far-field transformation method based on equivalent currents. A parametric analysis is included for each optimization method, in those cases in which it has been considered necessary, as well as theoretical field transformation results obtained with aperture and pyramidal horn antennas. Results of a comparative study, carried out using theoretical sources and measurements, demonstrate the usefulness of the method and make it possible to conclude that the particle swarm optimization is the algorithm that provides the best performance for this application.The optimization methods developed and investigated in this work have also been applied to other problems, such as the synthesis of linear arrays or the source modelling in electromagnetic compatibility applications.
|
307 |
Swarm Intelligence And Evolutionary Computation For Single And Multiobjective Optimization In Water Resource SystemsReddy, Manne Janga 09 1900 (has links)
Most of the real world problems in water resources involve nonlinear formulations in
their solution construction. Obtaining optimal solutions for large scale nonlinear
optimization problems is always a challenging task. The conventional methods, such as linear programming (LP), dynamic programming (DP) and nonlinear programming
(NLP) may often face problems in solving them. Recently, there has been an increasing
interest in biologically motivated adaptive systems for solving real world optimization
problems. The multi-member, stochastic approach followed in Evolutionary Algorithms
(EA) makes them less susceptible to getting trapped at local optimal solutions, and they
can search easier for global optimal solutions.
In this thesis, efficient optimization techniques based on swarm intelligence and
evolutionary computation principles have been proposed for single and multi-objective
optimization in water resource systems. To overcome the inherent limitations of
conventional optimization techniques, meta-heuristic techniques like ant colony
optimization (ACO), particle swarm optimization (PSO) and differential evolution (DE) approaches are developed for single and multi-objective optimization. These methods are then applied to few case studies in planning and operation of reservoir systems in India.
First a methodology based on ant colony optimization (ACO) principles is investigated for reservoir operation. The utility of the ACO technique for obtaining
optimal solutions is explored for large scale nonlinear optimization problems, by solving a reservoir operation problem for monthly operation over a long-time horizon of 36 years. It is found that this methodology relaxes the over-year storage constraints and provides efficient operating policy that can be implemented over a long period of time. By using ACO technique for reservoir operation problems, some of the limitations of traditional nonlinear optimization methods are surmounted and thus the performance of the reservoir system is improved.
To achieve faster optimization in water resource systems, a novel technique based
on swarm intelligence, namely particle swarm optimization (PSO) has been proposed. In
general, PSO has distinctly faster convergence towards global optimal solutions for numerical optimization. However, it is found that the technique has the problem of
getting trapped to local optima while solving real world complex problems. To overcome such drawbacks, the standard particle swarm optimization technique has been further improved by incorporating a novel elitist-mutation (EM) mechanism into the algorithm. This strategy provides proper exploration and exploitation throughout the iterations. The improvement is demonstrated by applying it to a multi-purpose single reservoir problem and also to a multi reservoir system. The results showed robust performance of the EM-PSO approach in yielding global optimal solutions.
Most of the practical problems in water resources are not only nonlinear in their
formulations but are also multi-objective in nature. For multi-objective optimization,
generating feasible efficient Pareto-optimal solutions is always a complicated task. In the past, many attempts with various conventional approaches were made to solve water resources problems and some of them are reported as successful. However, in using the conventional linear programming (LP) and nonlinear programming (NLP) methods, they usually involve essential approximations, especially while dealing withdiscontinuous, non-differentiable, non-convex and multi-objective functions. Most of these methods consider multiple objective functions using weighted approach or constrained approach without considering all the objectives simultaneously. Also, the conventional approaches use a point-by-point search approach, in which the outcome of these methods is a single optimal solution. So they may require a large number of simulation runs to arrive at a good Pareto optimal front. One of the major goals in multi-objective optimization is to find a set of well distributed optimal solutions along the true Pareto optimal front. The
classical optimization methods often fail to attain a good and true Pareto optimal front
due to accretion of the above problems. To overcome such drawbacks of the classical
methods, there has recently been an increasing interest in evolutionary computation methods for solving real world multi-objective problems. In this thesis, some novel approaches for multi-objective optimization are developed based on swarm intelligence and evolutionary computation principles.
By incorporating Pareto optimality principles into particle swarm optimization
algorithm, a novel approach for multi-objective optimization has been developed. To
obtain efficient Pareto-frontiers, along with proper selection scheme and diversity
preserving mechanisms, an efficient elitist mutation strategy is proposed. The developed
elitist-mutated multi-objective particle swarm optimization (EM-MOPSO) technique is
tested for various numerical test problems and engineering design problems. It is found
that the EM-MOPSO algorithm resulting in improved performance over a state-of-the-art
multi-objective evolutionary algorithm (MOEA). The utility of EM-MOPSO technique
for water resources optimization is demonstrated through application to a case study, to obtain optimal trade-off solutions to a reservoir operation problem. Through multi-objective analysis for reservoir operation policies, it is found that the technique can offer wide range of efficient alternatives along with flexibility to the decision maker.
In general, most of the water resources optimization problems involve interdependence relations among the various decision variables. By using differential
evolution (DE) scheme, which has a proven ability of effective handling of this kind of
interdependence relationships, an efficient multi-objective solver, namely multi-objective differential evolution (MODE) is proposed. The single objective differential evolution algorithm is extended to multi-objective optimization by integrating various operators like, Pareto-optimality, non-dominated sorting, an efficient selection strategy, crowding distance operator for maintaining diversity, an external elite archive for storing non-
dominated solutions and an effective constraint handling scheme. First, different
variations of DE approaches for multi-objective optimization are evaluated through
several benchmark test problems for numerical optimization. The developed MODE
algorithm showed improved performance over a standard MOEA, namely non-dominated
sorting genetic algorithm–II (NSGA-II). Then MODE is applied to a case study of Hirakud reservoir operation problem to derive operational tradeoffs in the reservoir
system optimization. It is found that MODE is achieving robust performance in
evaluation for the water resources problem, and that the interdependence relationships
among the decision variables can be effectively modeled using differential evolution operators.
For optimal utilization of scarce water resources, an integrated operational model
is developed for reservoir operation for irrigation of multiple crops. The model integrates the dynamics associated with the water released from a reservoir to the actual water utilized by the crops at farm level. It also takes into account the non-linear relationship of root growth, soil heterogeneity, soil moisture dynamics for multiple crops and yield response to water deficit at various growth stages of the crops. Two types of objective functions are evaluated for the model by applying to a case study of Malaprabha reservoir project. It is found that both the cropping area and economic benefits from the crops need to be accounted for in the objective function. In this connection, a multi-objective frame
work is developed and solved using the MODE algorithm to derive simultaneous policies
for irrigation cropping pattern and reservoir operation. It is found that the proposed frame work can provide effective and flexible policies for decision maker aiming at maximization of overall benefits from the irrigation system.
For efficient management of water resources projects, there is always a great
necessity to accurately forecast the hydrologic variables. To handle uncertain behavior of hydrologic variables, soft computing based artificial neural networks (ANNs) and fuzzy inference system (FIS) models are proposed for reservoir inflow forecasting. The forecast models are developed using large scale climate inputs like indices of El-Nino Southern Oscialltion (ENSO), past information on rainfall in the catchment area and inflows into the reservoir. In this purpose, back propagation neural network (BPNN), hybrid particle
swarm optimization trained neural network (PSONN) and adaptive network fuzzy
inference system (ANFIS) models have been developed. The developed models are
applied for forecasting inflows into the Malaprabha reservoir. The performances of these models are evaluated using standard performance measures and it is found that the hybrid PSONN model is performing better than BPNN and ANFIS models. Finally by adopting PSONN model for inflow forecasting and EMPSO technique for solving the reservoir
operation model, the practical utility of the different models developed in the thesis are demonstrated through application to a real time reservoir operation problem. The
developed methodologies can certainly help in better planning and operation of the scarce water resources.
|
308 |
Νέες μέθοδοι εκμάθησης για ασαφή γνωστικά δίκτυα και εφαρμογές στην ιατρική και βιομηχανία / New learning techniques to train fuzzy cognitive maps and applications in medicine and industryΠαπαγεωργίου, Ελπινίκη 25 June 2007 (has links)
Αντικείµενο της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων που προτείνονται για τη βελτίωση και προσαρµογή της συµπεριφοράς τους, καθώς και για την αύξηση της απόδοσής τους, αναδεικνύοντάς τα σε αποτελεσµατικά δυναµικά συστήµατα µοντελοποίησης. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα, µέσω της εκµάθησης και προσαρµογής των βαρών τους, έχουν χρησιµοποιηθεί στην ιατρική σε θέµατα διάγνωσης και υποστήριξης στη λήψη απόφασης, καθώς και σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών, µε πολύ ικανοποιητικά αποτελέσµατα. Στη διατριβή αυτή παρουσιάζονται, αξιολογούνται και εφαρµόζονται δύο νέοι αλγόριθµοι εκµάθησης χωρίς επίβλεψη των Ασαφών Γνωστικών ∆ικτύων, οι αλγόριθµοι Active Hebbian Learning (AHL) και Nonlinear Hebbian Learning (NHL), βασισµένοι στον κλασσικό αλγόριθµό εκµάθησης χωρίς επίβλεψη τύπου Hebb των νευρωνικών δικτύων, καθώς και µια νέα προσέγγιση εκµάθησης των Ασαφών Γνωστικών ∆ικτύων βασισµένη στους εξελικτικούς αλγορίθµους και πιο συγκεκριµένα στον αλγόριθµο Βελτιστοποίησης µε Σµήνος Σωµατιδίων και στον ∆ιαφοροεξελικτικό αλγόριθµο. Οι προτεινόµενοι αλγόριθµοι AHL και NHL στηρίζουν νέες µεθοδολογίες εκµάθησης για τα ΑΓ∆ που βελτιώνουν τη λειτουργία, και την αξιοπιστία τους, και που παρέχουν στους εµπειρογνώµονες του εκάστοτε προβλήµατος που αναπτύσσουν το ΑΓ∆, την εκµάθηση των παραµέτρων για τη ρύθµιση των αιτιατών διασυνδέσεων µεταξύ των κόµβων. Αυτοί οι τύποι εκµάθησης που συνοδεύονται από την σωστή γνώση του εκάστοτε προβλήµατος-συστήµατος, συµβάλλουν στην αύξηση της απόδοσης των ΑΓ∆ και διευρύνουν τη χρήση τους. Επιπρόσθετα µε τους αλγορίθµους εκµάθησης χωρίς επίβλεψη τύπου Hebb για τα ΑΓ∆, αναπτύσσονται και προτείνονται νέες τεχνικές εκµάθησης των ΑΓ∆ βασισµένες στους εξελικτικούς αλγορίθµους. Πιο συγκεκριµένα, προτείνεται µια νέα µεθοδολογία για την εφαρµογή του εξελικτικού αλγορίθµου Βελτιστοποίησης µε Σµήνος Σωµατιδίων στην εκµάθηση των Ασαφών Γνωστικών ∆ικτύων και πιο συγκεκριµένα στον καθορισµό των βέλτιστων περιοχών τιµών των βαρών των Ασαφών Γνωστικών ∆ικτύων. Με τη µεθοδο αυτή λαµβάνεται υπόψη η γνώση των εµπειρογνωµόνων για τον σχεδιασµό του µοντέλου µε τη µορφή περιορισµών στους κόµβους που µας ενδιαφέρουν οι τιµές των καταστάσεών τους, που έχουν οριστοί ως κόµβοι έξοδοι του συστήµατος, και για τα βάρη λαµβάνονται υπόψη οι περιοχές των ασαφών συνόλων που έχουν συµφωνήσει όλοι οι εµπειρογνώµονες. Έτσι θέτoντας περιορισµούς σε όλα τα βάρη και στους κόµβους εξόδου και καθορίζοντας µια κατάλληλη αντικειµενική συνάρτηση για το εκάστοτε πρόβληµα, προκύπτουν κατάλληλοι πίνακες βαρών (appropriate weight matrices) που µπορούν να οδηγήσουν το σύστηµα σε επιθυµητές περιοχές λειτουργίας και ταυτόχρονα να ικανοποιούν τις ειδικές συνθήκες- περιορισµούς του προβλήµατος. Οι δύο νέες µέθοδοι εκµάθησης χωρίς επίβλεψη που έχουν προταθεί για τα ΑΓ∆ χρησιµοποιούνται και εφαρµόζονται µε επιτυχία σε δυο πολύπλοκα προβλήµατα από το χώρο της ιατρικής, στο πρόβληµα λήψης απόφασης στην ακτινοθεραπεία και στο πρόβληµα κατηγοριοποίησης των καρκινικών όγκων της ουροδόχου κύστης σε πραγµατικές κλινικές περιπτώσεις. Επίσης όλοι οι προτεινόµενοι αλγόριθµοι εφαρµόζονται σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών µε πολύ ικανοποιητικά αποτελέσµατα. Οι αλγόριθµοι αυτοί, όπως προκύπτει από την εφαρµογή τους σε συγκεκριµένα προβλήµατα, βελτιώνουν το µοντέλο του ΑΓ∆, συµβάλλουν σε ευφυέστερα συστήµατα και διευρύνουν τη δυνατότητα εφαρµογής τους σε πραγµατικά και πολύπλοκα προβλήµατα. Η κύρια συνεισφορά αυτής της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων προτείνοντας δυο νέους αλγορίθµους µη επιβλεπόµενης µάθησης τύπου Hebb, τον αλγόριθµο Active Hebbian Learning και τον αλγόριθµο Nonlinear Hebbian Learning για την προσαρµογή των βαρών των διασυνδέσεων µεταξύ των κόµβων των Ασαφών Γνωστικών ∆ικτύων, καθώς και εξελικτικούς αλγορίθµους βελτιστοποιώντας συγκεκριµένες αντικειµενικές συναρτήσεις για κάθε εξεταζόµενο πρόβληµα. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα µέσω των αλγορίθµων προσαρµογής των βαρών τους έχουν χρησιµοποιηθεί για την ανάπτυξη ενός ∆ιεπίπεδου Ιεραρχικού Συστήµατος για την υποστήριξη λήψης απόφασης στην ακτινοθεραπεία, για την ανάπτυξη ενός διαγνωστικού εργαλείου για την κατηγοριοποίηση του βαθµού κακοήθειας των καρκινικών όγκων της ουροδόχου κύστης, καθώς και για την επίλυση βιοµηχανικών προβληµάτων για τον έλεγχο διαδικασιών. / The main contribution of this Dissertation is the development of new learning and convergence methodologies for Fuzzy Cognitive Maps that are proposed for the improvement and adaptation of their behaviour, as well as for the increase of their performance, electing them in effective dynamic systems of modelling. The new improved Fuzzy Cognitive Maps, via the learning and adaptation of their weights, have been used in medicine for diagnosis and decision-making, as well as to alleviate the problem of the potential uncontrollable convergence to undesired states in models of industrial process control systems, with very satisfactory results. In this Dissertation are presented, validated and implemented two new learning algorithms without supervision for Fuzzy Cognitive Maps, the algorithms Active Hebbian Learning (AHL) and Nonlinear Hebbian Learning (NHL), based on the classic unsupervised Hebb-type learning algorithm of neural networks, as well as a new approach of learning for Fuzzy Cognitive Maps based on the evolutionary algorithms and more specifically on the algorithm of Particles Swarm Optimization and on the Differential Evolution algorithm. The proposed algorithms AHL and NHL support new learning methodologies for FCMs that improve their operation, efficiency and reliability, and that provide in the experts of each problem that develop the FCM, the learning of parameters for the regulation (fine-tuning) of cause-effect relationships (weights) between the concepts. These types of learning that are accompanied with the right knowledge of each problem-system, contribute in the increase of performance of FCMs and extend their use. Additionally to the unsupervised learning algorithms of Hebb-type for the FCMs, are developed and proposed new learning techniques of FCMs based on the evolutionary algorithms. More specifically, it is proposed a new learning methodology for the application of evolutionary algorithm of Particle Swarm Optimisation in the adaptation of FCMs and more concretely in the determination of the optimal regions of weight values of FCMs. With this method it is taken into consideration the experts’ knowledge for the modelling with the form of restrictions in the concepts that interest us their values, and are defined as output concepts, and for weights are received the arithmetic values of the fuzzy regions that have agreed all the experts. Thus considering restrictions in all weights and in the output concepts and determining a suitable objective function for each problem, result appropriate weight matrices that can lead the system to desirable regions of operation and simultaneously satisfy specific conditions of problem. The first two proposed methods of unsupervised learning that have been suggested for the FCMs are used and applied with success in two complicated problems in medicine, in the problem of decision-making in the radiotherapy process and in the problem of tumor characterization for urinary bladder in real clinical cases. Also all the proposed algorithms are applied in models of industrial systems that concern the control of processes with very satisfactory results. These algorithms, as it results from their application in concrete problems, improve the model of FCMs, they contribute in more intelligent systems and they extend their possibility of application in real and complex problems. The main contribution of the present Dissertation is to develop new learning and convergence methodologies for Fuzzy Cognitive Maps proposing two new unsupervised learning algorithms, the algorithm Active Hebbian Learning and the algorithm Nonlinear Hebbian Learning for the adaptation of weights of the interconnections between the concepts of Fuzzy Cognitive Maps, as well as Evolutionary Algorithms optimizing concrete objective functions for each examined problem. New improved Fuzzy Cognitive Maps via the algorithms of weight adaptation have been used for the development of an Integrated Two-level hierarchical System for the support of decision-making in the radiotherapy, for the development of a new diagnostic tool for tumour characterization of urinary bladder, as well as for the solution of industrial process control problems.
|
309 |
Sur l’ordonnancement d’ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires / On flexible job-shop and pharmaceutical industries flow-shop schedulings by particle swarm and genetic algorithm optimizationBoukef, Hela 03 July 2009 (has links)
Pour la résolution de problèmes d’ordonnancement d’ateliers de type flow-shop en industries pharmaceutiques et d’ateliers de type job-shop flexible, deux méthodes d’optimisation ont été développées : une méthode utilisant les algorithmes génétiques dotés d’un nouveau codage proposé et une méthode d’optimisation par essaim particulaire modifiée pour être exploitée dans le cas discret. Les critères retenus dans le cas de lignes de conditionnement considérées sont la minimisation des coûts de production ainsi que des coûts de non utilisation des machines pour les problèmes multi-objectifs relatifs aux industries pharmaceutiques et la minimisation du Makespan pour les problèmes mono-objectif des ateliers job-shop flexibles.Ces méthodes ont été appliquées à divers exemples d’ateliers de complexités distinctes pour illustrer leur mise en œuvre. L’étude comparative des résultats ainsi obtenus a montré que la méthode basée sur l’optimisation par essaim particulaire est plus efficace que celle des algorithmes génétiques, en termes de rapidité de la convergence et de l’approche de la solution optimale / For flexible job-shop and pharmaceutical flow-shop scheduling problems resolution, two optimization methods are considered: a genetic algorithm one using a new proposed coding and a particle swarm optimization one modified in order to be used in discrete cases.The criteria retained for the considered packaging lines in pharmaceutical industries multi-objective problems are production cost minimization and total stopping cost minimization. For the flexible job-shop scheduling problems treated, the criterion taken into account is Makespan minimization.These two methods have been applied to various work-shops with distinct complexities to show their efficiency.After comparison of these methods, the obtained results allowed us to notice the efficiency of the based particle swarm optimization method in terms of convergence and reaching optimal solution
|
310 |
Algoritmos de inteligência computacional em instrumentação: uso de fusão de dados na avaliação de amostras biológicas e químicas / Computational intelligence algorithms for instrumentation: biological and chemical samples evaluation by using data fusionNegri, Lucas Hermann 24 February 2012 (has links)
Made available in DSpace on 2016-12-12T20:27:37Z (GMT). No. of bitstreams: 1
LUCAS HERMANN NEGRI.pdf: 2286573 bytes, checksum: 5c0e3c77c1d910bd47dd444753c142c4 (MD5)
Previous issue date: 2012-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work presents computational methods to process data from electrical impedance spectroscopy and fiber Bragg grating interrogation in order to characterize the evaluated samples. Estimation and classification systems were developed, by using the signals isolatedly or simultaneously. A new method to adjust the parameters of functions that describes the electrical impedance spectra by using particle swarm optimization is proposed. Such method were also extended to correct distorted spectra. A benchmark for peak detection algorithms in fiber Bragg grating interrogation was performed, including the currently used algorithms as obtained from literature, where the accuracy, precision, and computational performance were evaluated. This comparative study was performed with both simulated and experimental data. It was perceived that there is no optimal algorithm when all aspects are taken into account, but it is possible to choose a suitable algorithm when one has the application requirements. A novel peak detection algorithm based on an artificial neural network is proposed, being recommended when the analyzed spectra have distortions or is not symmetrical. Artificial neural networks and support vector machines were employed with the data processing algorithms to classify or estimate sample characteristics in experiments with bovine meat, milk, and automotive fuel. The results have shown that the proposed data processing methods are useful to extract the data main information and that the employed data fusion schemes were useful, in its initial classification and estimation objectives. / Neste trabalho são apresentados métodos computacionais para o processamento de dados produzidos em sistemas de espectroscopia de impedância elétrica e sensoriamento a redes de Bragg em fibra óptica com o objetivo de inferir características das amostras analisadas. Sistemas de estimação e classificação foram desenvolvidos, utilizando os sinais isoladamente ou de forma conjunta com o objetivo de melhorar as respostas dos sistemas. Propõe-se o ajuste dos parâmetros de funções que modelam espectros de impedância elétrica por meio de um novo algoritmo de otimização por enxame de partículas, incluindo a sua utilização na correção de espectros com determinadas distorções. Um estudo comparativo foi realizado entre os métodos correntes utilizados na detecção de pico de sinais resultantes de sensores em fibras ópticas, onde avaliou-se a exatidão, precisão e desempenho computacional. Esta comparação foi feita utilizando dados simulados e experimentais, onde percebeu-se que não há algoritmo simultaneamente superior em todos os aspectos avaliados, mas que é possível escolher o ideal quando se têm os requisitos da aplicação. Um método de detecção de pico por meio de uma rede neural artificial foi proposto, sendo recomendado em situações onde o espectro analisado possui distorções ou não é simétrico. Redes neurais artificiais e máquinas de vetor de suporte foram utilizadas em conjunto com os algoritmos de processamento com o objetivo de classificar ou estimar alguma característica de amostras em experimentos que envolveram carnes bovinas, leite bovino e misturas de combustível automotivo. Mostra-se neste trabalho que os métodos de processamento propostos são úteis para a extração das características importantes dos dados e que os esquemas utilizados para a fusão destes dados foram úteis dentro dos seus objetivos iniciais de classificação e estimação.
|
Page generated in 0.1039 seconds