• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 47
  • 21
  • 9
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 223
  • 61
  • 56
  • 46
  • 33
  • 31
  • 24
  • 23
  • 22
  • 22
  • 19
  • 19
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Study of Charges Present in Silicon Nitride Thin Films and Their Effect on Silicon Solar Cell Efficiencies

January 2013 (has links)
abstract: As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
102

Development of a Diffused Junction Silicon Solar Cell Pilot Line

January 2014 (has links)
abstract: In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction, screen-printed silicon solar cells are expounded upon. An experiment is conducted in which the thickness of a PECVD deposited anti-reflection coating (ARC) is varied across several samples and modeled as a function of deposition time. Using this statistical model in tandem with reflectance measurements for each sample, the ARC thickness is optimized to increase light trapping in the solar cells. A response surface model (RSM) experiment is conducted in which 3 process parameters are varied on the PECVD tool for the deposition of the ARCs on several samples. A contactless photoconductance decay (PCD) tool is used to measure the dark saturation currents of these samples. A statistical analysis is performed using JMP in which optimum deposition parameters are found. A separate experiment shows an increase in the passivation quality of the a-SiNx:H ARCs deposited on the solar cells made on the line using these optimum parameters. A RSM experiment is used to optimize the printing process for a particular silver paste in a similar fashion, the results of which are confirmed by analyzing the series resistance of subsequent cells fabricated on the line. An in-depth explanation of a more advanced analysis using JMP and PCD measurements on the passivation quality of 3 aluminum back-surface fields (BSF) is given. From this experiment, a comparison of the means is conducted in order to choose the most effective BSF paste for cells fabricated on the line. An experiment is conducted in parallel which confirms the results via Voc measurements. It is shown that in a period of 11 months, the pilot line went from producing a top cell efficiency of 11.5% to 17.6%. Many of these methods used for the development of this pilot line are equally applicable to other cell structures, and can easily be applied to other solar cell pilot lines. / Dissertation/Thesis / M.S. Electrical Engineering 2014
103

Charged Silicon Nitride Films: Field-Effect Passivation of Silicon Solar Cells and a Novel Characterization Method through Lifetime Measurements

January 2014 (has links)
abstract: Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona charging technique showed the ability to inject charges into the SiNx films in a short time. Minority carrier lifetimes of the Czochralski (CZ) Si wafers increased significantly after either positive or negative charging. A fast and contactless method to characterize the charged overlying insulators on Si wafer through lifetime measurements is proposed and studied in this work, to overcome the drawbacks of capacitance-voltage (CV) measurements such as time consuming, induction of contanmination and hysteresis effect, etc. Analytical simulations showed behaviors of inverse lifetime (Auger corrected) vs. minority carrier density curves depend on insulator charge densities (Nf). From the curve behavior, the Si surface condition and region of Nf can be estimated. When the silicon surface is at high strong inversion or high accumulation, insulator charge density (Nf) or surface recombination velocity parameters (Sn0 and Sp0) can be determined from the slope of inverse lifetime curves, if the other variable is known. If Sn0 and Sp0 are unknown, Nf values of different samples can be compared as long as all have similar Sn0 and Sp0 values. Using the saturation current density (J0) and intercept fit extracted from the lifetime measurement, the bulk lifetime can be calculated. Therefore, this method is feasible and promising for charged insulator characterization. / Dissertation/Thesis / M.S. Electrical Engineering 2014
104

Nanowire Specialty Diodes for Integrated Applications

January 2014 (has links)
abstract: Semiconductor nanowires are important candidates for highly scaled three dimensional electronic devices. It is very advantageous to combine their scaling capability with the high yield of planar CMOS technology by integrating nanowire devices into planar circuits. The purpose of this research is to identify the challenges associated with the fabrication of vertically oriented Si and Ge nanowire diodes and modeling their electrical behavior so that they can be utilized to create unique three dimensional architectures that can boost the scaling of electronic devices into the next generation. In this study, vertical Ge and Si nanowire Schottky diodes have been fabricated using bottom-up vapor-liquid-solid (VLS) and top-down reactive ion etching (RIE) approaches respectively. VLS growth yields nanowires with atomically smooth sidewalls at sub-50 nm diameters but suffers from the problem that the doping increases radially outwards from the core of the devices. RIE is much faster than VLS and does not suffer from the problem of non-uniform doping. However, it yields nanowires with rougher sidewalls and gets exceedingly inefficient in yielding vertical nanowires for diameters below 50 nm. The I-V characteristics of both Ge and Si nanowire diodes cannot be adequately fit by the thermionic emission model. Annealing in forming gas which passivates dangling bonds on the nanowire surface is shown to have a considerable impact on the current through the Si nanowire diodes indicating that fixed charges and traps on the surface of the devices play a major role in determining their electrical behavior. Also, due to the vertical geometry of the nanowire diodes, electric field lines originating from the metal and terminating on their sidewalls can directly modulate their conductivity. Both these effects have to be included in the model aimed at predicting the current through vertical nanowire diodes. This study shows that the current through vertical nanowire diodes cannot be predicted accurately using the thermionic emission model which is suitable for planar devices and identifies the factors needed to build a comprehensive analytical model for predicting the current through vertically oriented nanowire diodes. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014
105

Desenvolvimento de dispositivos baseados em substrato de GaAs com passivação por plasma ECR / Development of devices based on GaAs substrate with passivation by ECR plasma

Zoccal, Leonardo Breseghello 12 May 2007 (has links)
Orientador: Jose Alexandre Diniz / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-10T02:20:44Z (GMT). No. of bitstreams: 1 Zoccal_LeonardoBreseghello_D.pdf: 6734188 bytes, checksum: 05f6c64d923bafb5e071d89514d0fa43 (MD5) Previous issue date: 2007 / Resumo: Este trabalho apresenta um método simples de passivação de superfícies semicondutoras III-V de substratos de arseneto de gálio (GaAs) e de heteroestruturas de fosfeto de gálio-índio sobre arseneto de gálio (InGaP/GaAs), que são utilizados em transist res de efeito de campo, MESFET (Metal-Semiconductor Field Effect Transistor) e MISFET Metal-Insulator-Semiconductor Field Effect Transistor), e transistores bipolares de heterojunção (HBT), respectivamente. O processo de passivação visa à máxima redução da densidade de estados de superfícies semicondutoras para níveis menores que 1012 cm-2. A alta densidade de estados na superfície do GaAs provoca corrente de fuga nas regiões ativas dos transistores MESFET e HBT, reduzindo o desempenho destes dispositivos. Além disso, impossibilita a formação de dispositivos MISFET sobre os substratos de GaAs, devido à alta densidade de estados na região da interface isolante-semicondutor. Para o estudo da passivação de superfícies, filmes de nitreto de silício (SiNX) são depositados diretam nte por plasma ECR-CVD (Electron Cyclotron Resonance - Chemical Vapor Deposition) sobre substratos de GaAs e heteroestruturas do tipo InGaP/GaAs. Os plasmas ECR foram analisados por espectroscopia de emissão óptica (OES), e identificou-se baixa formação de espécies H e NH na fase gasosa para pressão de processo de 2,5 mTorr. Os filmes de SiNX foram caracterizados estruturalmente por espectroscopia de absorção do infravermelho (FTIR) e por elipsometria, que indicaram, respectivamente, a formação de ligações Si-N e valores de índice de refração es de nitreto de silício. Capacitores MIS e transisto T foram fabricados para avaliar os efeitos da passivação sobre os dispositivos. Os excelentes resultados obtidos, tais como transist o e em torno de 2,0 nos filmres MISFET e HB ores HBT passivados apresentando maiores ganhos de corrente do que os não-passivados, e os transistores MISFET apresentando maiores valores de transcondutância do que os MESFET (que foram usados como dispositivos de controle), indicam que o nosso processo de passivação é muito eficiente, sendo completamente compatível com a tecnologia de fabricação de circuitos integrados monolíticos de microondas (MMIC) / Abstract: This work presents a simple passivation method for III-V semiconductor surfaces of gallium arsenide (GaAs) substrates and indium-gallium phosphide on gallium arsenide (InGaP/GaAs) heterostructures, which are us in field effect transistors MESFET (Metal-Semiconductor Field Effect Transistor) and MISFET (Metal-Insulator-Semiconductor Field Effect Transistor) and heterojunction bip lar transistors (HBT), respectively. The passivation process aims the maximum reduction of semiconductor surface state density at levels lower than 1012 states/cm2. The high surface state density on GaAs surface produces current leakage in active regions of MESFET and HBT transistors, reducing the device performance. Furthermore, the MISFET device formation on GaAs substrate is not allowed, passivation study, silicon nitride films (SiNX) are deposited by ECR-CVD (Electron Cyclotron Resonance - Chemical Deposition Vapor) plasma directly over GaAs substrate and InGaP/GaAs heterostructures. The ECR plasmas were analyzed by optical emission spectroscopy, (OES), and low formation of H and NH molecules in the gas phase was detected at process pressure of 2.5 mTorr. The SiNX film structural characterization was obtained by infra-red absorption spectrometry (FTIR) and ellipsometry, which, respectively, indicate the Si-N bo tive index values of about 2.0 at the silicon nitride films. MIS cap BT transistors were fabricated to verify the passivation process effect on devices. The excellent results obtained, such as higher and formation and refracacitors, MISFET and H current gain of passivated device compared to unpassivated HBTs and higher transconductances of MISFET devices compared to MESFET (which were used as control devices), indicate that our simple passivation process is very efficient, being fully compatible with monolithic microwave integrated circuits (MMIC) / Doutorado / Eletrônica, Microeletrônica e Optoeletrônica / Doutor em Engenharia Elétrica
106

Líquidos iônicos como eletrólitos para baterias: comportamento eletroquímico de metais e propriedades físico-químicas dos líquidos / Ionic liquids as electrolytes for batteries: electrochemical behavior of metals and the liquids physicochemical properties

Vitor Leite Martins 18 February 2014 (has links)
O armazenamento de energia em larga escala é um dos maiores desafios que temos que sanar em médio prazo para que tenhamos um impacto importante na matriz energética. As baterias aparecem como fortes candidatas para esta função, porém, é preciso melhorar todos os componentes das baterias, como eletrodos e eletrólitos, para aplicação em larga escala. Líquidos Iônicos (LIs) são interessantes alternativas para a utilização como eletrólito em bateria, pois abrem ampla possibilidades, como a utilização de ânodos metálicos e operação em alta temperatura. Sendo assim, este trabalho apresenta o estudo do uso do LI bis(trifluorometanosulfonil)imideto de N-n-butil-N-metilpiperidínio ([BMP][Tf2N]) na eletrodeposição de Mg utilizando vários procedimentos eletroquímicos e analíticos. A deposição/dissolução de Mg é irreversível quando há água (50 mmol L-1) no sistema, e uma reversibilidade de apenas 7,4 % em sistemas mais secos (5 mmol L-1). Imagens de MEV e espectros de EDS mostram que há Mg na superfície do eletrodo, porém é indicada a formação de um filme passivador. Além disso, também foi estudado o comportamento eletroquímico de Cu no LI [BMP][Tf2N], que apresenta um ânion com boa capacidade de coordenação e no LI tetracianoborato de N-n-butil-N-metilpiperidínio ([BMP][B(CN)4]), que apresenta um ânion com baixa capacidade de coordenação. A propriedade de coordenação tem grande influência na oxidação e corrosão do metal, enquanto que no [Tf2N] há corrosão por pitting e não há passivação do metal, o uso do [B(CN)4] leva a precipitação do sal Cu[B(CN)4], causando a passivação do metal. Além disso, mesmo em baixa concentração de água, há formação de óxido durante a oxidação do metal nos dois LIs. Como a água afeta o comportamento eletroquímico dos LIs, foi realizado um estudo das propriedades físico-químicas do LI bis(trifluorometanosulfonil)imideto de 1-n-butil-2,3-dimetilimidazólio ([BMMI][Tf2N]) e sua mistura com Li+ com diferentes quantidades de água. A presença de Li+ causa um grande aumento na capacidade do LI hidrofóbico em absorver água. Experimentos sugerem que há uma quebra nos agregados Li+-ânion, que foi confirmado por dinâmica molecular (DM). Ainda, a água apresenta grande modificação nas propriedades como densidade, viscosidade e condutividade iônica, sem contar que os resultados experimentais sugerem uma quebra na regra de Walden em altas temperaturas. Por fim, foi avaliado a estrutura local do LI tetracianoborato de 1-n-butil-2,3-dimetilimidazólio ([BMMI][B(CN)4]), para entender como é a interação entre o ânion de baixa capacidade de coordenação e o Li+. A distância entre os ânions e o Li+ é maior do que no caso do [Tf2N], indicando assim uma menor interação entre estes dois. A utilização de LIs como eletrólitos para baterias se apresenta como alternativa promissora, porém ainda demanda estudos para encontrar o melhor sistema. / Energy storage at large scale is one of the most important challenges that needs to be solved in medium term to have an important impact in the electrical grid. Batteries seem to be strong candidates for this function, however, it is needed to improve all battery components, as electrodes and electrolytes, to be applied in large scale. Ionic Liquids (ILs) are interesting alternatives to be used as electrolyte in a battery, since they open a wide range of possibilities, as the use of metallic anodes and operation at high temperature. This work presents the study of electrodeposition of Mg using the IL N-butyl,methyl-piperidinium bis((trifluoromethyl)sulfonyl)imide ([BMP][Tf2N]) by several electrochemical and analytical techniques. The deposition/dissolution is irreversible in presence of high water concentration (50 mmol L-1), and a small reversibility of 7.4 % in dryer system (5 mmol L-1). EDS spectra show Mg presence in the electrode surface, however it is also observed the formation of passivating film. Besides this, it was also studied the electrochemical behavior of Cu in the IL [BMP][Tf2N], which presents a strong coordinating anion and in the IL N-butyl,methyl-piperidinium tetracyanoborate ([BMP][B(CN)4]), which presents a weak coordinating anion. It was observed that the oxidation and corrosion of Cu depends strongly on the anions coordinating properties, while on [Tf2N] it was observed pitting corrosion and no metal passivation, the use of [B(CN)4] leads to salt (Cu[B(CN)4]) precipitation, causing the metal passivation. It was also observed that even at low water concentration there is the formation of oxide in both ILs. As the water affects the electrochemical behavior of the ILs, it was realized a study of the physicochemical properties of the IL 1-Butyl-2,3-dimethylimidazolium bis((trifluoromethyl)sulfonyl)imide ([BMMI][Tf2N]) and its mixture with Li+ with different amounts of water. The Li+ presence provokes a huge increase in the water absorption ability of the hydrophobic IL. Experiments suggest that there is a break in the Li+-anion aggregates, which was confirmed by molecular dynamics (MD) simulations. In addition, water causes important changes in properties as density, viscosity and ionic conductivity; moreover, the experimental results suggest a break in the Walden\'s rule at high temperatures, due to aggregates modification. Lastly, it was evaluated the local structure of the IL 1-Butyl-2,3-dimethylimidazolium tetracyanoborate ([BMMI][B(CN)4]), to understand how a weak coordinating anion and the Li+ interact. It was showed by MD simulations that this property results in a bigger distance between anion and Li+ than in the case of [Tf2N], indicating a lower interaction between both. The use of ILs as electrolytes for batteries is a promising alternative, however it is needed more studies to find the best system.
107

Single and Two-Step Adsorption of Alkanethiolate and Sulfide Layers on InSb and InGaAs in the Liquid Phase

Contreras, Yissel, Contreras, Yissel January 2017 (has links)
III-V semiconductors have higher charge carrier mobilities than silicon and are used in photovoltaic devices, optical sensors, and emitters. The high injection velocities obtained with III-V channels allow for faster transistors with low power consumption. However, the large-scale implementation in electronic devices is currently limited by the defective interface formed between III-Vs and their oxides. Clean III-V surfaces are highly reactive in air and form amorphous oxides that lead to a high density of dangling bonds. Satisfying these dangling bonds has been associated with an improvement in electrical performance, directing the development of strategies that decrease the surface reactivity (chemical passivation) and the density of surface states that cause power dissipation (electrical passivation). Sulfur bonds easily to III-V surfaces and has been used to chemically and electrically passivate GaAs. In this work, we investigated liquid phase sulfur chemistries in the chemical passivation of clean InSb(100) and In0.53Ga0.47As(100) surfaces terminated by their group V elements. Our strategy consisted of maximizing the number of bonds between sulfur and antimony or arsenic. A long alkane chain thiol, 1-eicosanethiol (ET, 20 carbon atoms), was used to produce a hydrophobic surface and deposit a dense organic layer by taking advantage of the van der Waals interactions between thiol molecules. The first part of the study involved the optimization of the thiol deposition process on InSb. Self-assembled alkanethiol monolayers were formed by immersing clean InSb substrates in ET solutions in ethanol for 20 h. The layers prevented the formation of detectable oxides for 20 min based on the O Auger x-ray photoelectron spectroscopy (XPS) peak. The thiol layer was completely removed by heating the surface to 227 C in vacuum. In the second part of the study, a 20 h ET deposition was performed on In0.53Ga0.47As(100), and re-oxidation was prevented for up to 4 min based on the O 1s XPS peak. The alkanethiolate layer was removed by heating the samples to 350 C in vacuum. The sulfur coverage after 20 min and 20 h ET depositions was increased by performing a second immersion in (NH4)2S without modifying the thickness of the layer. The best process studied consisted of a 20 h immersion in ET solution followed by a short (NH4)2S step, preventing the formation of oxides for up to 9 min. This is due to the presence of available surface sites and weakly bonded molecules in the layer after a long 20 h ET process. The chemical passivation effect is not uniquely influenced by surface termination, roughness, or lattice constant, but is rather a result of a combination of these factors. Future work will involve the fabrication and electrical characterization of III-V devices modified with various chemical passivation strategies.
108

Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative back-contacts / Optimisation de cellules solaires ultra-minces à base de Cu(In,Ga)Se2 avec contact arrière alternatif

Mollica, Fabien 21 December 2016 (has links)
En quelques années, l'efficacité des cellules solaires à base de Cu(In,Ga)Se2 (CIGS) est passée de 20% à 22.6%. La rapidité de ce développement montre que le CIGS est un matériaux idéal pour les technologies solaires en couches minces. Pourtant, le coût de production cette technologie doit encore être abaissé pour une meilleure compétitivité. La fabrication d'un module avec une couche CIGS plus fine permettrait d'augmenter la production d'une usine et de réduire sa consommation en métaux. Ce travail de thèse vise à réduire l'épaisseur du CIGS d'un standard de 2.0-2.5 µm à une épaisseur inférieure à 500 nm sans altérer les performances des cellules. Cependant, comme rapporté dans la littérature, nous avons observé une diminution des rendements, ce que nous avons analysé en détail en comparant simulations et caractérisations d'échantillons. Celle-ci est causée à la fois par une faible absorption de la lumière dans la couche de CIGS et par un impact important du contact arrière (fortes recombinaisons et faible réflectivité). Pour dépasser ces limites, nous démontrons à la fois théoriquement et expérimentalement que le contact arrière en molybdène peut être remplacé par un oxyde transparent conducteur couplé à un miroir métallique. Nous obtenons de cette manière de meilleurs rendements de cellules. Pour atteindre ce résultat, une optimisation du dépôt de CIGS a été nécessaire. De plus, nous prouvons qu'une couche d'oxyde perforée, insérée entre le CIGS et le contact arrière, limite les recombinaisons des porteurs de charges et réduit l'influence des courants parallèles. Au final, nous avons fabriqué une cellule avec un rendement de 10.7% sur SnO2:F passivé par Al2O3. / In the past three years, record efficiency of Cu(In,Ga)Se2 (CIGS) based solar cells has improved from 20% up to 22.6%. These results show that CIGS absorber is ideal for thin-film solar cells, even if this technology could be more competitive with a lower manufacture cost. The fabrication of devices with thinner CIGS absorbers is a way to increase the throughput of a factory and to reduce material consumption. This PhD thesis aims to develop cells with a CIGS thickness below 500 nm instead of the conventional 2.0-2.5 µm. However, as reported in the literature, we observed a decrease in cell performance. We carefully analyzed this effect by the comparison between simulations and sample characterizations: it is attributed, on one hand, to a lack of light absorption in the CIGS layer and, on the other hand, to an increased impact of the back-contact (high recombination and low reflectivity). To resolve these problems, we demonstrated theoretically and experimentally that the use of an alternative back-contact, other than molybdenum, such as a transparent conducting oxide coupled with a light reflector, improves the cell efficiency. To achieve this result, an optimization of the CIGS deposition was necessary. Moreover, we proved that a porous oxide layer inserted between the CIGS and the back-contact limits the charge-carrier recombination and removes some parasitic resistance. Finally, an efficiency of 10.7% was achieved for a 480-nm-thick CIGS solar cell with a SnO2:F back-contact passivated with a porous Al2O3 layer.
109

A critical assessment of the current understanding of chromium passivation treatments in tinplate

Biermann, M.C. (Marthinus Christoffel) 17 April 2007 (has links)
Chromium passivation treatment on tinplate is important in stabilising the active tin surface in terms of oxidation resistance, sulphide stain resistance and ensuring good lacquer adhesion properties. Through this research, the reason was explored why dip passivation treatment, in sodium dichromate, provides superior lacquer adhesion properties on tinplate compared to electrolytic sodium dichromate (CDC) treatments. A critical assessment of the current knowledge of chromium passivation treatments on tinplate formed the basis of the experimental work. Through electrochemical and surface analytical techniques (X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy) both dip and CDC treated tinplate surfaces were characterised in terms of surface species. It was shown through XPS, using angle resolved techniques, that no metallic chromium forms on the tinplate surface during CDC treatments. Furthermore, a difference in chromium surface species was established for the dip and CDC processes showing additional SnO and Cr(OH)3.nH2O species for the latter. Complementary to these findings, it was verified that the formation of additional chromium hydroxide species is a function of pH, governed by the applied cathodic current during the CDC process itself. The inferior adhesion properties of CDC treated tinplate were shown to be related to the difference in the respective surface species formed during dip and CDC applications. Copyright 2004, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Biermann, MC 2004, A critical assessment of the current understanding of chromium passivation treatments in tinplate, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-04172007-123305 / > / Dissertation (MSc(Applied Sciences))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
110

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

John, Sween 05 1900 (has links)
This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ZnO by hydrogel increases the radiative efficiency of this hybrid colloidal material system thereby contributing to enhanced emission.

Page generated in 0.0857 seconds