Spelling suggestions: "subject:"passivation layer"" "subject:"assivation layer""
1 |
Elucidation of reaction mechanism at the anode/electrolyte interface and cathode material for rechargeable magnesium battery / マグネシウム二次電池負極/電解質界面および正極材料における反応機構の解明Tuerxun, Feilure 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23288号 / 人博第1003号 / 新制||人||236(附属図書館) / 2020||人博||1003(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 高木 紀明, 教授 中村 敏浩 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
2 |
Herstellung, Charakterisierung und Modellierung dünner aluminium(III)-oxidbasierter Passivierungsschichten für Anwendungen in der PhotovoltaikBenner, Frank 25 October 2016 (has links) (PDF)
Hocheffiziente Solarzellen beruhen auf der exzellenten Oberflächenpassivierung, die minimale Rekombinationsverluste gewährleistet. Innerhalb des letzten Jahrzehnts wurde Al2O3 in der Photovoltaikindustrie zum bevorzugten Material für p-leitendes Si. Unterschiedliche Abscheidetechnologien erreichten Passivierungen mit effektiven Minoritätsladungsträgerlebensdauern nahe der AUGER–Grenze. Die ausgezeichnete Passivierungswirkung von Al2O3wird zwei Effekten zugeschrieben: Einerseits werden Si−SiO2-grenzflächennahe Rekombinationszentren passiviert, wenn Wasserstoff, beispielsweise aus der Al2O3-Schicht, offene Bindungen absättigt. Bedingt durch die hohe Konzentration intrinsischer negativer Ladungen an der SiO2-Grenzfläche weist Al2O3 andererseits einen charakteristischen Feldeffekt auf. Das resultierende elektrische Feld hält Elektronen von Oberflächenrekombinationszentren fern. Negative Ladungen im Al2O3 werden generell als fest bezeichnet. Allerdings hat Al2O3 zusätzlich eine hohe Dichte an Haftstellen, die von Elektronen besetzt werden können. Die Dichte negativer Ladungen im Al2O3-Passivierungsschichten hängt vom elektrischen Feld und der Bestrahlungsintensität ab.
Ziel dieser Arbeit ist die systematische Untersuchung dielektrischer Passivierungsschichtstapel für die Anwendung auf Si-Solarzellen. Der Qualität und Dicke der SiO2-Grenzschicht kommt in diesem Kontext eine besondere Rolle zu, da sie Ladungsträgertunneln ermöglicht. Der Elektronentransport ist eine Funktion der Oxiddicke und das Optimum zwischen Ladungseinfang und -haltung liegt bei etwa 2 nm SiO2. Vier relevante Al2O3-Abscheidetechnologien werden untersucht: Atomlagenabscheidung, Kathodenzerstäubung, Sprühpyrolyse und Rotationsbeschichtung, wobei die erstgenannte dominiert. Es werden Nanolaminate verglichen, die aus Al2O3 und TiO2, HfO2 oder SiO2 mit subnanometerdicken Zwischenschichten bestehen. Während letztgenannte die Oberflächenrekombination nicht vermindern, beeinflussen TiO2- und HfO2-Nanolaminate die Passivierungswirkung. Ein dynamisches Wachstumsmodell, das initiale und stationäre Wachstumsraten der beteiligten Metalloxide berücksichtigt, beschreibt die physikalischen Parameter. Schichtsysteme mit 0,2 % TiO2 oder 7 % HfO2 sind konventionellen Al2O3-Schichten überlegen. In beiden Fällen überwiegt die veränderte Feldeffekt- der chemischen Passivierung, die mit einer Grenzflächenzustandsdichte von maximal 5·1010 eV−1·cm−2 unverändert auf hohem Niveau verbleibt. Die Ladungsdichte beider Schichtsysteme wird entweder über die Änderung ihrer Polarität der festen Ladungen oder der Fähigkeit zum Ladungseinfang bestimmt. Das Tunneln von Elektronen wird durch ein mathematisches Modell erklärt, dass eine bewegliche Ladungsfront innerhalb der Oxidschicht beschreibt. / High-efficiency solar cells rely on excellent passivation of the surface to ensure minimal recombination losses. In the last decade, Al2O3 became the material of choice for p-type Si in the photovoltaic industry. A remarkable surface passivation with effective minority carrier lifetimes close to the AUGER–limit was demonstrated with different deposition techniques. The excellent passivation effect of Al2O3 is attributed to two effects: Firstly, recombination centers at the Si−SiO2 interface get chemically passivated when hydrogen, for instance from the Al2O3 layer, saturates dangling bonds. Secondly, Al2O3 presents an outstanding level of field effect passivation due to its high concentration of intrinsic negative charges close to the SiO2 interface. The generated electrical field effectively repels electrons from surface recombination centers. Negative charges in Al2O3 are generally termed fixed charges. However, Al2O3 incorporates a high density of trap sites, too, that can be occupied by electrons. It was shown that the negative charge density in Al2O3 passivation layers depends on the electrical field and on the illumination intensity.
The goal of this work is to systematically investigate dielectric passivation layer stacks for application on Si solar cells. The SiO2 interface quality and thickness plays a major role in this context, enabling or inhibiting carrier tunneling. Since the electron transport is a function of the oxide thickness, the balance between charge trapping and retention is achieved with approximately 2 nm of SiO2. Additionally, four relevant Al2O3 deposition techniques are compared: atomic layer deposition, sputtering, spray pyrolysis and spin–on coating, whereas the former is predominant. Using its flexibility, laminates comprising of Al2O3 and TiO2, HfO2 or SiO2 with subnanometer layers are compared. Although the latter do not show decreased surface recombination, nanolaminates with TiO2 and HfO2 contribute to the passivation. Their physical properties are described with a dynamic growth model that considers initial and steady–state growth rates for the involved metal oxides. Thin films with 0.2 % TiO2 or 7 % HfO2 are superior to conventional Al2O3 layers. In both cases, the modification of the field effect prevails the chemical effect, that is, however, virtually unchanged on a very high level with a density of interface traps of 5·1010 eV−1·cm−2 and below. The density of charges in both systems is changed via modifying either the polarity of intrinsic fixed charges or the ability of trapping charges within the layers. The observations of electron tunneling are explained by means of a mathematical model, describing a charging front, which moves through the dielectric layer.
|
3 |
Processing of Sub-micrometer Features for Rear Contact Passivation Layer of Ultrathin Film Solar Cells Using Optical LithographyRoxner, Evelina, Olsmats Baumeister, Ronja January 2019 (has links)
Thin film copper, indium, gallium, selenide (CIGS) solar cells are promising in the field of photovoltaic technology. To reduce material and fabrication cost, as well as increasing electrical properties of the cell, research is ongoing towards ultra-thin film solar cells (absorption layer thickness less than 500 nm). Ultra-thin CIGS solar cells has shown a decrease in interface recombination and improved optical properties when adding a rear contact passivation layer of aluminium oxide. In this work, the process of creating sub-micrometer features of a passivation layer using conventional optical lithography is investigated. To specify, the objective was to optimize the development conditions in the optical lithography process when fabricating equidistant line contacts in aluminium oxide with 800 nm feature size. It was found that line contacts with smaller feature sizes require longer development time, than line contacts with larger feature sizes. The experiments conducted showed that the pre-set development and exposure conditions used by the NOA group are not optimized for 800 nm or smaller line contacts. Further, for the optical lithography process, silicon substrates are not comparable with substrates of soda lime glass coated with molybdenum. Slight underdevelopment of a sample, showed line contacts smaller than the resolution of the laser used in the exposure – suggesting an alternative method of processing small line contacts with optical lithography.
|
4 |
Solární články z monokrystalického křemíku typu n s vysokou účinností / High Efficiency n-type Monocrystalline Silicon Solar CellsMojrová, Barbora January 2019 (has links)
Tato dizertační práce je zaměřena vývoj a ověřování nových postupů přispívajících ke zvýšení účinnosti bifaciálních solárních článků založených na monokrystalickém křemíku n-typové vodivosti. Tato práce přináší nové poznatky o vylepšených výrobních procesech a postupech použitých během výroby článků v ISC Konstanz. V rámci práce byly vyrobeny solární články typu n-PERT (Passivated Emitter Rear Totally diffused) s vysokou účinností, a to pomocí standartních procesů a zařízení používaných běžně při průmyslové výrobě. Zapojení těchto průmyslových postupů a metod umožnilo ověřit možnosti výroby n-typových článků za použití téměř totožného vybavení, jaké je potřeba pro výrobu p-typových článků. Zvýšení účinnosti bylo založeno především na vylepšení jednotlivých procesních kroků. Experimenty popsané v této práci dosvědčují zlepšení procesu difúze bóru, přizpůsobení parametrů pasivační a antireflexní vrstvy nově navrženému emitoru, zlepšení procesu metalizace ve smyslu využití past neobsahujících hliník, testování tisku rozličných motivů spolu s různými sekvencemi výpalu. V rámci práce byla testována možnost zamezení jevu potenciální indukované degradace (Potential Induced Degradation – PID) pomocí vhodného složení ARC a pasivační vrstvy. Vyrobené n-typové solární články dosáhly maximální hodnoty účinnosti 20,9 %.
|
5 |
Herstellung, Charakterisierung und Modellierung dünner aluminium(III)-oxidbasierter Passivierungsschichten für Anwendungen in der PhotovoltaikBenner, Frank 24 March 2015 (has links)
Hocheffiziente Solarzellen beruhen auf der exzellenten Oberflächenpassivierung, die minimale Rekombinationsverluste gewährleistet. Innerhalb des letzten Jahrzehnts wurde Al2O3 in der Photovoltaikindustrie zum bevorzugten Material für p-leitendes Si. Unterschiedliche Abscheidetechnologien erreichten Passivierungen mit effektiven Minoritätsladungsträgerlebensdauern nahe der AUGER–Grenze. Die ausgezeichnete Passivierungswirkung von Al2O3wird zwei Effekten zugeschrieben: Einerseits werden Si−SiO2-grenzflächennahe Rekombinationszentren passiviert, wenn Wasserstoff, beispielsweise aus der Al2O3-Schicht, offene Bindungen absättigt. Bedingt durch die hohe Konzentration intrinsischer negativer Ladungen an der SiO2-Grenzfläche weist Al2O3 andererseits einen charakteristischen Feldeffekt auf. Das resultierende elektrische Feld hält Elektronen von Oberflächenrekombinationszentren fern. Negative Ladungen im Al2O3 werden generell als fest bezeichnet. Allerdings hat Al2O3 zusätzlich eine hohe Dichte an Haftstellen, die von Elektronen besetzt werden können. Die Dichte negativer Ladungen im Al2O3-Passivierungsschichten hängt vom elektrischen Feld und der Bestrahlungsintensität ab.
Ziel dieser Arbeit ist die systematische Untersuchung dielektrischer Passivierungsschichtstapel für die Anwendung auf Si-Solarzellen. Der Qualität und Dicke der SiO2-Grenzschicht kommt in diesem Kontext eine besondere Rolle zu, da sie Ladungsträgertunneln ermöglicht. Der Elektronentransport ist eine Funktion der Oxiddicke und das Optimum zwischen Ladungseinfang und -haltung liegt bei etwa 2 nm SiO2. Vier relevante Al2O3-Abscheidetechnologien werden untersucht: Atomlagenabscheidung, Kathodenzerstäubung, Sprühpyrolyse und Rotationsbeschichtung, wobei die erstgenannte dominiert. Es werden Nanolaminate verglichen, die aus Al2O3 und TiO2, HfO2 oder SiO2 mit subnanometerdicken Zwischenschichten bestehen. Während letztgenannte die Oberflächenrekombination nicht vermindern, beeinflussen TiO2- und HfO2-Nanolaminate die Passivierungswirkung. Ein dynamisches Wachstumsmodell, das initiale und stationäre Wachstumsraten der beteiligten Metalloxide berücksichtigt, beschreibt die physikalischen Parameter. Schichtsysteme mit 0,2 % TiO2 oder 7 % HfO2 sind konventionellen Al2O3-Schichten überlegen. In beiden Fällen überwiegt die veränderte Feldeffekt- der chemischen Passivierung, die mit einer Grenzflächenzustandsdichte von maximal 5·1010 eV−1·cm−2 unverändert auf hohem Niveau verbleibt. Die Ladungsdichte beider Schichtsysteme wird entweder über die Änderung ihrer Polarität der festen Ladungen oder der Fähigkeit zum Ladungseinfang bestimmt. Das Tunneln von Elektronen wird durch ein mathematisches Modell erklärt, dass eine bewegliche Ladungsfront innerhalb der Oxidschicht beschreibt. / High-efficiency solar cells rely on excellent passivation of the surface to ensure minimal recombination losses. In the last decade, Al2O3 became the material of choice for p-type Si in the photovoltaic industry. A remarkable surface passivation with effective minority carrier lifetimes close to the AUGER–limit was demonstrated with different deposition techniques. The excellent passivation effect of Al2O3 is attributed to two effects: Firstly, recombination centers at the Si−SiO2 interface get chemically passivated when hydrogen, for instance from the Al2O3 layer, saturates dangling bonds. Secondly, Al2O3 presents an outstanding level of field effect passivation due to its high concentration of intrinsic negative charges close to the SiO2 interface. The generated electrical field effectively repels electrons from surface recombination centers. Negative charges in Al2O3 are generally termed fixed charges. However, Al2O3 incorporates a high density of trap sites, too, that can be occupied by electrons. It was shown that the negative charge density in Al2O3 passivation layers depends on the electrical field and on the illumination intensity.
The goal of this work is to systematically investigate dielectric passivation layer stacks for application on Si solar cells. The SiO2 interface quality and thickness plays a major role in this context, enabling or inhibiting carrier tunneling. Since the electron transport is a function of the oxide thickness, the balance between charge trapping and retention is achieved with approximately 2 nm of SiO2. Additionally, four relevant Al2O3 deposition techniques are compared: atomic layer deposition, sputtering, spray pyrolysis and spin–on coating, whereas the former is predominant. Using its flexibility, laminates comprising of Al2O3 and TiO2, HfO2 or SiO2 with subnanometer layers are compared. Although the latter do not show decreased surface recombination, nanolaminates with TiO2 and HfO2 contribute to the passivation. Their physical properties are described with a dynamic growth model that considers initial and steady–state growth rates for the involved metal oxides. Thin films with 0.2 % TiO2 or 7 % HfO2 are superior to conventional Al2O3 layers. In both cases, the modification of the field effect prevails the chemical effect, that is, however, virtually unchanged on a very high level with a density of interface traps of 5·1010 eV−1·cm−2 and below. The density of charges in both systems is changed via modifying either the polarity of intrinsic fixed charges or the ability of trapping charges within the layers. The observations of electron tunneling are explained by means of a mathematical model, describing a charging front, which moves through the dielectric layer.
|
6 |
Elaboration de masques nano poreux de polymères et gravure profonde du silicium / Elaboration of nano porous polymers masks and silicon deep etchingVital, Alexane 13 July 2016 (has links)
En microélectronique, les techniques actuelles de fabrication des supercondensateurs requièrent le développement de motifs nanostructurés de surface spécifique élevée. Nous nous intéressons à une alternative émergeante aux techniques classiques ‘top-down’ de fabrication des masques de gravure : les mélanges d’homopolymères. En effet, deux polymères avec des chimies différentes sous forme de films minces peuvent conduire à une séparation de phase avec des domaines cylindriques de taille sub-micrométrique. Une gravure cryogénique au travers de ces masques produit une nanostructuration avec une importante surface spécifique. Les travaux de cette thèse ont porté sur la réalisation des films minces et sur la compréhension des mécanismes d’obtention de la morphologie finale. Une étude a été menée sur les solvants de dépôt et d’exposition pour déterminer leur influence sur les morphologies. Les paramètres influençant la taille des motifs sont ensuite étudiés. Des domaines de moins de 100 nm ont été obtenus. Finalement, l’étude d’une méthode alternative de dépôt par dip-coating a permis l’obtention d’une grande variété de morphologies en une seule étape et pour une même solution. Ces travaux se sont ensuite orientés sur la réalisation des motifs en gravant par plasma le silicium au travers de ces masques. Deux procédés ont été retenus, adaptés et optimisés afin de réaliser des gravures profondes sans défaut. Le procédé STiGer aniso permet de les obtenir et ce, avec la meilleure répétabilité. Un autre axe, portant sur l’optimisation de la sélectivité en modifiant la nature du masque, a été développé. Une sélectivité de 70 : 1 est obtenue pour un masque de poly(styrène) marqué au Ru. / In microelectronics, current techniques for supercapacitors manufacturing requires the development of nanostructured patterns with high specific surface. We are interested in an emerging alternative approach to conventional 'top-down' fabrication techniques based on blends of homopolymers. Indeed, two polymers with different chemistries in thin films can lead to phase separation with cylindrical domains of sub-micrometer size. A cryogenic plasma through these masks can produce nanostructuration with a high specific surface. The work of this thesis focused on the realization of thin films and on the understanding of the mechanisms to obtain the final morphology. A study on solvent deposition and exposure was led to determine their influence on the morphologies. The parameters influencing the size of the domains are then studied. Domains of less than 100 nm were obtained. Finally, the study of an alternative method of deposition by dip-coating enabled to obtain a variety of morphologies in one step and for the same solution. This work was then directed towards the realization of structured surfaces by plasma etching of the silicon through this masks. Two methods were used, adapted and optimized to achieve deep etched without default. The process StiGer aniso allows to obtain this and with better repeatability. Another axis is developed. It is focused on the optimization of the selectivity by modifying the nature of the mask. We succeed in obtaining a selectivity of 70: 1 with a mask of poly(styrene) stained by Ru.
|
Page generated in 0.1079 seconds