Spelling suggestions: "subject:"percloratos"" "subject:"perclorato""
1 |
Estudo cinético do perclorato de amônio por calorimetria exploratória diferencial e termogravimetria.Darci Côrtes Pires 00 December 2004 (has links)
Foi realizado o estudo cinético da decomposição do perclorato de amônio nacional em composição trimodal. Foram utilizadas as técnicas DSC e TG, em condições isotérmicas e não-isotérmicas e aplicados os métodos de deslocamento da temperatura do máximo do pico (Ozawa e Kissinger) e o método isoconversional. Após a seleção do tamanho de amostra, do tipo de porta-amostra e razão de aquecimento, foram obtidos dados da reação de decomposição térmica do estado sólido do PA por DSC e TG para avaliação da energia de ativação. Para uma maior precisão dos resultados foram usadas massas pequenas na faixa de 1,3 mg, para evitar auto-aquecimento das reações muito exotérmica e problema com transferência de calor junto à amostra. Foi possível minimizar a sublimação ao usar porta-amostra fechado com alívio de pressão. Os ensaios mostraram que a decomposição do PA ocorrem em duas etapas. Em porta-amostra de Al a separação dos dois picos foi a mais nítida, mostrando ser o melhor porta-amostra para estudar a decomposição térmica do PA. Quando o ensaio foi realizado em porta-amostra de Al anodizado estes dois picos ficaram sobrepostos transformando o processo, praticamente, em etapa única. Usando o método de deslocamento da temperatura do máximo do pico, os resultados médios calculados para os dois picos em cada porta-amostra e as duas técnicas (DSC/ALV, DSC/ANV e DTG/ALV) foram 1203, 111 3 e 1213 kJ/mol os quais estão compatíveis com os resultados da literatura. A análise cinética usando método isoconversional de dados provenientes das técnicas DSC e TG em porta-amostra (ALV) forneceu resultados similares, indicando que estas técnicas, para este cálculo específico respondem a uma mesma distribuição de Ea em função do grau de avanço da reação, sugerindo seguirem o mesmo mecanismo, sendo equivalentes. A Ea obtida foi próxima à obtida pelo método de deslocamento do pico, com a vantagem de fornecer o perfil de distribuição de Ea ao longo da reação.
|
2 |
Aplicação do estudo de empacotamento de partículas de perclorato de amônio, e a utilização de modelo para a otimização de formulações de propelentes compósitos com alto desempenho à base de PBLH e aluminioMaria Cecília Cândida da Silva 23 December 2008 (has links)
O objetivo deste trabalho foi obter formulações de propelente à base de AP/PBLH/Al, na qual as quantidades de sólidos fossem maiores do que as utilizadas atualmente. O aumento da fração de sólidos acarreta um aumento do impulso do motor-foguete. Entretanto, ele deve seguir um conjunto de critérios que também foi objeto de estudo neste trabalho. Esses critérios foram baseados nas teorias de empacotamento de partículas, as quais têm sido utilizadas como uma ferramenta para a definição da modalidade, distribuição, granulometria e carga de sólidos. Alguns ensaios também foram realizados para verificar a aplicabilidade de um modelo de empacotamento linear. O modelo testado se mostrou aplicável e as predições teóricas apresentaram boa concordância com os resultados experimentais. Um modelo de correlação foi ainda proposto neste trabalho para correlacionar os dados de viscosidade da mistura final a 50, 55 e 60C sob pressão atmosférica. Um outro modelo de correlação também foi proposto para correlacionar dados experimentais do módulo de Young a 25C. Ambos os modelos foram bem sucedidos na correlação dos pontos experimentais. As propriedades balísticas foram ainda determinadas para uma faixa de pressões variando de 4 a 10 MPa. Os efeitos da ordem de adição do agente de ligação e do Alumínio também foram avaliados. Os melhores resultados foram obtidos quando o Alumínio e o agente de ligação foram adicionados ao PBLH no início do processo de mistura. O catalisador de cura também foi substituído por DBTDL nos ensaios seguintes a fim de acelerar o processo de cura. Os testes conduzidos com 5 ppm de DBTDL apresentaram os melhores resultados para a viscosidade da mistura final e para as demais propriedades do propelente. A utilização de sistemas de partículas com alto empacotamento, associados com a utilização de 5 ppm de DBTDL como agente de cura, permitiu elevar a carga sólidos até 88%, muito superior aos 84% em uso no propelente do VLS. Além disso, as propriedades mecânicas e balísticas deste propelente produzido em escala de laboratório são apropriadas para os projetos em andamento no IAE.
|
3 |
Compostos de adição entre nitratos, cloretos e percloratos de ítrio e alguns lantanídeos(iii) e a 2,6-lutidina-n-oxido (2,6-LNO) / Addition compounds between nitrates, chlorides and perchlorates, of yttrium and some lanthanides (III) and 2,6-lutidine N-oxide (2,6-LNO)Oliveira, Wanda de 16 October 1975 (has links)
A reação entre nitratos, cloretos e percloratos dos lantanídeos e de ítrio com a 2,6-lutidina-N-óxido (2,6-LNO) conduziu à formação de compostos de adição de composição geral: Ln(NO3)3.4(2,6-LNO), LnCl3.3 (2,6-LNO) e Ln(ClO4)3.8(2,6-LNO) (Ln= La, Pr, Nd, Gd, Ho, Er e Y). Os produtos de reação são cristalinos, apresentam as mesmas colorações dos íons lantanídeos hidratados, porém bastante esmaecidas. Os compostos de adição contendo o íon cloreto não fundem até 300ºC. Os compostos de adição contendo os íons nitratos e percloratos são solúveis em acetona, acetonitrila, etanol, metanol, nitrobenzeno e nitrometano, ligeiramente solúveis em clorofórmio. Os compostos de adição contendo o íon cloreto são solúveis em etanol e metanol e praticamente insolúveis em acetona, acetonitrila, clorofórmio, nitrobenzeno e nitrometano. Todos os compostos de adição são praticamente insolúveis em benzeno; tetracloreto de carbono e éter etílico. Os compostos foram caracterizados por meio de análise elementar, espectros na região do infra-vermelho e do visível, medidas de condutância molar em nitrometano, acetonitrila e etanol, e diagramas de raios-x. Para alguns compostos de adição contendo o íon nitrato foram obtidos os espectros Raman. Os dados obtidos nos espectros na região do infravermelho indicam que a coordenação da 2,6-LNO ao ion lantanídeo ocorre pelo oxigênio do grupo N-O. Foram observadas cinco bandas que podem ser atribuídas ao íon nitrato, nos correspondentes compostos de adição, indicando que estes íons estão coordenados aos íons lantanídeos. As bandas atribuídas aos íons percloratos indicaram que os mesmos não estão coordenados. Os espectros eletrônicos dos compostos de adição contendo o íon perclorato, no estado sólido e em solução de nitrometano são muito semelhantes, sugerindo que a simetria em torno do íon central, é a mesma em ambos os casos. Os dados de condutância eletrolítica indicaram que os nitratos comportam-se como não-eletrólitos em nitrometano e acetonitrila e como eletrólito 1:1 em metanol. É interessante notar que os percloratos comportam-se como eletrólitos 1:3 em nitrometano e acetonitrila, mas em metanol, provavelmente devido a existência de pares iônicos, comportam-se como eletrólitos 1:2. Os dados para os cloretos em metanol estão de acordo com aqueles para eletrólitos 1:1. Todos os compostos preparados foram caracterizados por meio de diagramas de raios-X. De acordo com os dados três séries diferentes foram obtidas para os nitratos: (a) para o composto de La, (b) para os compostos de Pr, Nd and Gd, que são isomorfos, (c) para os compostos de Ho, Er and Y, que também são isomorfos. Para os percloratos duas séries de substâncias são observadas: a primeira série contém os compostos de Y, Pr, Gd, Ho e Er, e a segunda série os compostos de La e Nd. Para os cloretos duas séries diferentes foram também obtidas: (a) para os compostos de La, Pr e Nd, (b) para os compostos de Y, Gd, Ho e Er. / The reaction between hydrated lanthanide and ytrium nitrates, chlorides and perchlorates with 2,6-lutidine-N-oxide (2,6-LNO) provided adducts of general composition: Ln(NO3)3.4(2,6-LNO), LnCl3.3(2,6-LNO) and Ln(ClO4)3.8(2,6-LNO) (Ln= La, Pr, Nd, Gd, Ho, Er and Y). The products are crystalline, present the same, but less intense colors of the hydrated lanthanide ions. The chloride adducts do not melt up to 300ºC. The nitrate and perchlorate adducts are solube in acetone, acetonitrile, ethanol, methanol, nitrobenzene and nitromethane, slightly soluble in chloroform. The chloride adducts are soluble in ethanol and methanol and practically insoluble in acetone, acetonitrile, chloroform, nitrobenzene and nitromethane. All the adducts are practically insoluble in benzene, carbon tetrachloride and ethyl eter. The compounds were characterized by elemental analyses, infrared and visible spectra, molar conductance measurements in nitromethane, acetonitrile and methanol, and X-ray powder patterns. For some of the nitrate adducts the Raman spectra were obtained. Infrared data indicate that the 2,6-LNO is coordinated to the lanthanide ions through of oxygen. Five bands attributed to the nitrate ions were observed for the corresponding adducts, indicating these ions are coordinated to the lanthanides ions. The bands due to perchlorate ions indicate that they are not coordinated to the lanthanides ions.The electronic spectra of the perchlorates adducts in the solid state and in nitromethane solution indicate the existence of the same symmetry around the central ions in both cases. The electrolytic conductance data indicate that the nitrates behave as non-electrolytes in nitromethane and acetonitrile and 1:1 electrolytes in methanol. It is interesting to note that the perchlorates behave as 1:3 electrolytes in nitromethane and acetonitrile, but in methanol, probably due to the existence of ions pairs, they behave as 1:2 electrolytes. The data for the chlorides in methanol are in accordance of 1:1 electrolytes. to that All the compounds prepared were characterized by X-ray powder patterns. According to the data three different patterns were obtained for the nitrates: (a) for the compounds of La; (b) for the compounds of Pr, Nd and Gd, that are isomorphous, (c) for the oompounds of Ho, Er and Y, that are also isomorphous. For the perchlorates two series of isomorphous substances were observed: the first series contains the compounds of Y, Pr, Gd, Ho and Er, and the second series the adducts of La and Nd. For the chlorides two different patterns were also obtained: (a) for the compounds of La, Pr and Nd, (b) for the compounds of Y, Gd, Ho and Er.
|
4 |
Compostos de adição entre nitratos, cloretos e percloratos de ítrio e alguns lantanídeos(iii) e a 2,6-lutidina-n-oxido (2,6-LNO) / Addition compounds between nitrates, chlorides and perchlorates, of yttrium and some lanthanides (III) and 2,6-lutidine N-oxide (2,6-LNO)Wanda de Oliveira 16 October 1975 (has links)
A reação entre nitratos, cloretos e percloratos dos lantanídeos e de ítrio com a 2,6-lutidina-N-óxido (2,6-LNO) conduziu à formação de compostos de adição de composição geral: Ln(NO3)3.4(2,6-LNO), LnCl3.3 (2,6-LNO) e Ln(ClO4)3.8(2,6-LNO) (Ln= La, Pr, Nd, Gd, Ho, Er e Y). Os produtos de reação são cristalinos, apresentam as mesmas colorações dos íons lantanídeos hidratados, porém bastante esmaecidas. Os compostos de adição contendo o íon cloreto não fundem até 300ºC. Os compostos de adição contendo os íons nitratos e percloratos são solúveis em acetona, acetonitrila, etanol, metanol, nitrobenzeno e nitrometano, ligeiramente solúveis em clorofórmio. Os compostos de adição contendo o íon cloreto são solúveis em etanol e metanol e praticamente insolúveis em acetona, acetonitrila, clorofórmio, nitrobenzeno e nitrometano. Todos os compostos de adição são praticamente insolúveis em benzeno; tetracloreto de carbono e éter etílico. Os compostos foram caracterizados por meio de análise elementar, espectros na região do infra-vermelho e do visível, medidas de condutância molar em nitrometano, acetonitrila e etanol, e diagramas de raios-x. Para alguns compostos de adição contendo o íon nitrato foram obtidos os espectros Raman. Os dados obtidos nos espectros na região do infravermelho indicam que a coordenação da 2,6-LNO ao ion lantanídeo ocorre pelo oxigênio do grupo N-O. Foram observadas cinco bandas que podem ser atribuídas ao íon nitrato, nos correspondentes compostos de adição, indicando que estes íons estão coordenados aos íons lantanídeos. As bandas atribuídas aos íons percloratos indicaram que os mesmos não estão coordenados. Os espectros eletrônicos dos compostos de adição contendo o íon perclorato, no estado sólido e em solução de nitrometano são muito semelhantes, sugerindo que a simetria em torno do íon central, é a mesma em ambos os casos. Os dados de condutância eletrolítica indicaram que os nitratos comportam-se como não-eletrólitos em nitrometano e acetonitrila e como eletrólito 1:1 em metanol. É interessante notar que os percloratos comportam-se como eletrólitos 1:3 em nitrometano e acetonitrila, mas em metanol, provavelmente devido a existência de pares iônicos, comportam-se como eletrólitos 1:2. Os dados para os cloretos em metanol estão de acordo com aqueles para eletrólitos 1:1. Todos os compostos preparados foram caracterizados por meio de diagramas de raios-X. De acordo com os dados três séries diferentes foram obtidas para os nitratos: (a) para o composto de La, (b) para os compostos de Pr, Nd and Gd, que são isomorfos, (c) para os compostos de Ho, Er and Y, que também são isomorfos. Para os percloratos duas séries de substâncias são observadas: a primeira série contém os compostos de Y, Pr, Gd, Ho e Er, e a segunda série os compostos de La e Nd. Para os cloretos duas séries diferentes foram também obtidas: (a) para os compostos de La, Pr e Nd, (b) para os compostos de Y, Gd, Ho e Er. / The reaction between hydrated lanthanide and ytrium nitrates, chlorides and perchlorates with 2,6-lutidine-N-oxide (2,6-LNO) provided adducts of general composition: Ln(NO3)3.4(2,6-LNO), LnCl3.3(2,6-LNO) and Ln(ClO4)3.8(2,6-LNO) (Ln= La, Pr, Nd, Gd, Ho, Er and Y). The products are crystalline, present the same, but less intense colors of the hydrated lanthanide ions. The chloride adducts do not melt up to 300ºC. The nitrate and perchlorate adducts are solube in acetone, acetonitrile, ethanol, methanol, nitrobenzene and nitromethane, slightly soluble in chloroform. The chloride adducts are soluble in ethanol and methanol and practically insoluble in acetone, acetonitrile, chloroform, nitrobenzene and nitromethane. All the adducts are practically insoluble in benzene, carbon tetrachloride and ethyl eter. The compounds were characterized by elemental analyses, infrared and visible spectra, molar conductance measurements in nitromethane, acetonitrile and methanol, and X-ray powder patterns. For some of the nitrate adducts the Raman spectra were obtained. Infrared data indicate that the 2,6-LNO is coordinated to the lanthanide ions through of oxygen. Five bands attributed to the nitrate ions were observed for the corresponding adducts, indicating these ions are coordinated to the lanthanides ions. The bands due to perchlorate ions indicate that they are not coordinated to the lanthanides ions.The electronic spectra of the perchlorates adducts in the solid state and in nitromethane solution indicate the existence of the same symmetry around the central ions in both cases. The electrolytic conductance data indicate that the nitrates behave as non-electrolytes in nitromethane and acetonitrile and 1:1 electrolytes in methanol. It is interesting to note that the perchlorates behave as 1:3 electrolytes in nitromethane and acetonitrile, but in methanol, probably due to the existence of ions pairs, they behave as 1:2 electrolytes. The data for the chlorides in methanol are in accordance of 1:1 electrolytes. to that All the compounds prepared were characterized by X-ray powder patterns. According to the data three different patterns were obtained for the nitrates: (a) for the compounds of La; (b) for the compounds of Pr, Nd and Gd, that are isomorphous, (c) for the oompounds of Ho, Er and Y, that are also isomorphous. For the perchlorates two series of isomorphous substances were observed: the first series contains the compounds of Y, Pr, Gd, Ho and Er, and the second series the adducts of La and Nd. For the chlorides two different patterns were also obtained: (a) for the compounds of La, Pr and Nd, (b) for the compounds of Y, Gd, Ho and Er.
|
Page generated in 0.0479 seconds