• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 27
  • 25
  • 25
  • 24
  • 23
  • 14
  • 13
  • 13
  • 13
  • 11
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approach

Villoutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
52

Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approach

Villoutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
53

Persistence in discrete Morse theory / Persistenz in der diskreten Morse-Theorie

Bauer, Ulrich 12 May 2011 (has links)
No description available.
54

Topological inference from measures / Inférence topologique à partir de mesures

Buchet, Mickaël 01 December 2014 (has links)
La quantité de données disponibles n'a jamais été aussi grande. Se poser les bonnes questions, c'est-à-dire des questions qui soient à la fois pertinentes et dont la réponse est accessible est difficile. L'analyse topologique de données tente de contourner le problème en ne posant pas une question trop précise mais en recherchant une structure sous-jacente aux données. Une telle structure est intéressante en soi mais elle peut également guider le questionnement de l'analyste et le diriger vers des questions pertinentes. Un des outils les plus utilisés dans ce domaine est l'homologie persistante. Analysant les données à toutes les échelles simultanément, la persistance permet d'éviter le choix d'une échelle particulière. De plus, ses propriétés de stabilité fournissent une manière naturelle pour passer de données discrètes à des objets continus. Cependant, l'homologie persistante se heurte à deux obstacles. Sa construction se heurte généralement à une trop large taille des structures de données pour le travail en grandes dimensions et sa robustesse ne s'étend pas au bruit aberrant, c'est-à-dire à la présence de points non corrélés avec la structure sous-jacente.Dans cette thèse, je pars de ces deux constatations et m'applique tout d'abord à rendre le calcul de l'homologie persistante robuste au bruit aberrant par l'utilisation de la distance à la mesure. Utilisant une approximation du calcul de l'homologie persistante pour la distance à la mesure, je fournis un algorithme complet permettant d'utiliser l'homologie persistante pour l'analyse topologique de données de petite dimension intrinsèque mais pouvant être plongées dans des espaces de grande dimension. Précédemment, l'homologie persistante a également été utilisée pour analyser des champs scalaires. Ici encore, le problème du bruit aberrant limitait son utilisation et je propose une méthode dérivée de l'utilisation de la distance à la mesure afin d'obtenir une robustesse au bruit aberrant. Cela passe par l'introduction de nouvelles conditions de bruit et l'utilisation d'un nouvel opérateur de régression. Ces deux objets font l'objet d'une étude spécifique. Le travail réalisé au cours de cette thèse permet maintenant d'utiliser l'homologie persistante dans des cas d'applications réelles en grandes dimensions, que ce soit pour l'inférence topologique ou l'analyse de champs scalaires. / Massive amounts of data are now available for study. Asking questions that are both relevant and possible to answer is a difficult task. One can look for something different than the answer to a precise question. Topological data analysis looks for structure in point cloud data, which can be informative by itself but can also provide directions for further questioning. A common challenge faced in this area is the choice of the right scale at which to process the data.One widely used tool in this domain is persistent homology. By processing the data at all scales, it does not rely on a particular choice of scale. Moreover, its stability properties provide a natural way to go from discrete data to an underlying continuous structure. Finally, it can be combined with other tools, like the distance to a measure, which allows to handle noise that are unbounded. The main caveat of this approach is its high complexity.In this thesis, we will introduce topological data analysis and persistent homology, then show how to use approximation to reduce the computational complexity. We provide an approximation scheme to the distance to a measure and a sparsifying method of weighted Vietoris-Rips complexes in order to approximate persistence diagrams with practical complexity. We detail the specific properties of these constructions.Persistent homology was previously shown to be of use for scalar field analysis. We provide a way to combine it with the distance to a measure in order to handle a wider class of noise, especially data with unbounded errors. Finally, we discuss interesting opportunities opened by these results to study data where parts are missing or erroneous.
55

Aléatoire et variabilité dans l’embryogenèse animale, une approche multi-échelle / Randomness and variability in animal embryogenesis, a multi-scale approach

Villoutreix, Paul 03 July 2015 (has links)
Nous proposons dans cette thèse de caractériser quantitativement la variabilité à différentes échelles au cours de l'embryogenèse. Pour ce faire, nous utilisons une combinaison de modèles mathématiques et de résultats expérimentaux. Dans la première partie, nous utilisons une petite cohorte d'oursins digitaux pour construire une représentation prototypique du lignage cellulaire, reliant les caractéristiques des cellules individuelles avec les dynamiques à l'échelle de l'embryon tout entier. Ce modèle probabiliste multi-niveau et empirique repose sur les symétries des embryons et sur les identités cellulaires; cela permet d'identifier un niveau de granularité générique pour observer les distributions de caractéristiques cellulaires individuelles. Le prototype est défini comme le barycentre de la cohorte dans la variété statistique correspondante. Parmi plusieurs résultats, nous montrons que la variabilité intra-individuelle est impliquée dans la reproductibilité du développement embryonnaire. Dans la seconde partie, nous considérons les mécanismes sources de variabilité au cours du développement et leurs relations à l'évolution. En nous appuyant sur des résultats expérimentaux montrant une pénétrance incomplète et une expressivité variable de phénotype dans une lignée mutante du poisson zèbre, nous proposons une clarification des différents niveaux de variabilité biologique reposant sur une analogie formelle avec le cadre mathématique de la mécanique quantique. Nous trouvons notamment une analogie formelle entre l'intrication quantique et le schéma Mendélien de transmission héréditaire. Dans la troisième partie, nous étudions l'organisation biologique et ses relations aux trajectoires développementales. En adaptant les outils de la topologie algébrique, nous caractérisons des invariants du réseaux de contacts cellulaires extrait d'images de microscopie confocale d'épithéliums de différentes espèces et de différents fonds génétiques. En particulier, nous montrons l'influence des histoires individuelles sur la distribution spatiales des cellules dans un tissu épithélial. / We propose in this thesis to characterize variability quantitatively at various scales during embryogenesis. We use a combination of mathematical models and experimental results. In the first part, we use a small cohort of digital sea urchin embryos to construct a prototypical representation of the cell lineage, which relates individual cell features with embryo-level dynamics. This multi-level data-driven probabilistic model relies on symmetries of the embryo and known cell types, which provide a generic coarse-grained level of observation for distributions of individual cell features. The prototype is defined as the centroid of the cohort in the corresponding statistical manifold. Among several results, we show that intra-individual variability is involved in the reproducibility of the developmental process. In the second part, we consider the mechanisms sources of variability during development and their relations to evolution. Building on experimental results showing variable phenotypic expression and incomplete penetrance in a zebrafish mutant line, we propose a clarification of the various levels of biological variability using a formal analogy with quantum mechanics mathematical framework. Surprisingly, we find a formal analogy between quantum entanglement and Mendel’s idealized scheme of inheritance. In the third part, we study biological organization and its relations to developmental paths. By adapting the tools of algebraic topology, we compute invariants of the network of cellular contacts extracted from confocal microscopy images of epithelia from different species and genetic backgrounds. In particular, we show the influence of individual histories on the spatial distribution of cells in epithelial tissues.
56

Traffic Prediction From Temporal Graphs Using Representation Learning / Trafikförutsägelse från dynamiska grafer genom representationsinlärning

Movin, Andreas January 2021 (has links)
With the arrival of 5G networks, telecommunication systems are becoming more intelligent, integrated, and broadly used. This thesis focuses on predicting the upcoming traffic to efficiently promote resource allocation, guarantee stability and reliability of the network. Since networks modeled as graphs potentially capture more information than tabular data, the construction of the graph and choice of the model are key to achieve a good prediction. In this thesis traffic prediction is based on a time-evolving graph, whose node and edges encode the structure and activity of the system. Edges are created by dynamic time-warping (DTW), geographical distance, and $k$-nearest neighbors. The node features contain different temporal information together with spatial information computed by methods from topological data analysis (TDA). To capture the temporal and spatial dependency of the graph several dynamic graph methods are compared. Throughout experiments, we could observe that the most successful model GConvGRU performs best for edges created by DTW and node features that include temporal information across multiple time steps. / Med ankomsten av 5G nätverk blir telekommunikationssystemen alltmer intelligenta, integrerade, och bredare använda. Denna uppsats fokuserar på att förutse den kommande nättrafiken, för att effektivt hantera resursallokering, garantera stabilitet och pålitlighet av nätverken. Eftersom nätverk som modelleras som grafer har potential att innehålla mer information än tabulär data, är skapandet av grafen och valet av metod viktigt för att uppnå en bra förutsägelse. I denna uppsats är trafikförutsägelsen baserad på grafer som ändras över tid, vars noder och länkar fångar strukturen och aktiviteten av systemet. Länkarna skapas genom dynamisk time warping (DTW), geografisk distans, och $k$-närmaste grannarna. Egenskaperna för noderna består av dynamisk och rumslig information som beräknats av metoder från topologisk dataanalys (TDA). För att inkludera såväl det dynamiska som det rumsliga beroendet av grafen, jämförs flera dynamiska grafmetoder. Genom experiment, kunde vi observera att den mest framgångsrika modellen GConvGRU presterade bäst för länkar skapade genom DTW och noder som innehåller dynamisk information över flera tidssteg.

Page generated in 0.0615 seconds