• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise

Starkloff, Hans-Jörg, Wunderlich, Ralf 07 October 2005 (has links)
The paper considers systems of linear first-order ODEs with a randomly perturbed system matrix and stationary additive noise. For the description of the long-term behavior of such systems it is necessary to study their stationary solutions. We deal with conditions for the existence of stationary solutions as well as with their representations and the computation of their moment functions. Assuming small perturbations of the system matrix we apply perturbation techniques to find series representations of the stationary solutions and give asymptotic expansions for their first- and second-order moment functions. We illustrate the findings with a numerical example of a scalar ODE, for which the moment functions of the stationary solution still can be computed explicitly. This allows the assessment of the goodness of the approximations found from the derived asymptotic expansions.
22

[pt] ESTRATÉGIAS DE APROXIMAÇÕES ANALÍTICAS HIERÁRQUICAS DE PROBLEMAS NÃO LINEARES: MÉTODOS DE PERTURBAÇÃO / [en] STRATEGIES OF HIERARCHICAL ANALYTICAL APPROXIMATIONS OF NON-LINEAR PROBLEMS: PERTURBATION METHODS

MARIANA GOMES DIAS DOS SANTOS 29 April 2019 (has links)
[pt] Problemas dinâmicos governados por problemas de valor inicial (PVI) não lineares, em geral, despertam grande interesse da comunidade científica. O conhecimento da solução desses PVI facilita o entendimento das características dinâmicas do problema. Porém, infelizmente, muitos dos PVI de interesse não têm solução conhecida. Nesse caso, uma alternativa é o cálculo de aproximações para a solução. Métodos numéricos e analíticos são eficientes nessa tarefa e podem fornecer aproximações com a precisão desejada. Os métodos numéricos foram muito desenvolvidos nos últimos anos e amplamente aplicados em problemas de diversas áreas da engenharia. Pacotes computacionais de fácil utilização foram criados e hoje fazem parte dos mais tradicionais programas de simulação numérica. Entretanto, as aproximações numéricas têm uma desvantagem em relação às aproximações analíticas. Elas não permitem o entendimento de como a solução depende dos parâmetros do problema. Visto isso, esta dissertação foca na análise e implementação de técnicas analíticas denominadas métodos de perturbação. Foram estudados os métodos de Lindstedt-Poincaré e de múltiplas escalas de tempo. As metodologias foram aplicadas em um PVI envolvendo a equação de Duffing não amortecida. Programas em álgebra simbólica foram desenvolvidos com objetivo de calcular aproximações analíticas hierárquicas para a solução desse problema. Foi feita uma análise paramétrica, ou seja, estudo de como as condições iniciais e os valores de parâmetros influem nas aproximações. Além disso, as aproximações analíticas obtidas foram comparadas com aproximações numéricas calculadas através do método do Runge- Kutta. O método de múltiplas escalas de tempo também foi aplicado em um PVI que representa a dinâmica de um sistema massa-mola-amortecedor com atrito seco. Devido ao atrito, a resposta do sistema pode ser caracterizada em duas fases alternadas, a fase de stick e a fase de slip, compondo um fenômeno chamado stick-slip. Verificou-se que as aproximações obtidas para resposta do sistema pelo método de múltiplas escalas de tempo têm boa acurácia na representação da dinâmica do stick-slip. / [en] Dynamical problems governed by non-linear initial value problems (IVP), in general, are of great interest of the scientific community. The knowledge of the solution of these IVPs facilitates the understanding of the dynamic characteristics of the problem. However, unfortunately, many of the IVPs of interest does not present a known solution. In this case, an alternative is to calculate approximations for the solution. Numerical and analytical methods are efficient in this assignment and can provide approximations with the desired precision. Numerical methods have been developed over the last years and have been widely applied to dynamical problems in various engineering areas. Computational packages, easy to use, were created and today are part of the most traditional numerical simulation programs. However, numerical approximations have a disadvantage in relation to analytical approaches. They do not allow the understanding of how the solution depends on the problem parameters. Given this, this dissertation focuses on the analysis and implementation of analytical techniques called perturbation methods. The Lindstedt-Poincaré method and multiple time scales method were studied. The methodologies were applied in an IVP involving the non-damped Duffing equation. Symbolic algebra programs were developed with the purpose of calculating hierarchical analytical approximations to the solution of this problem. A parametric analysis was performed, in other words, a study of how the approximations are influenced by initial conditions and parameter values. In addition, the analytical approximations obtained were compared with numerical approximations calculated using the Runge-Kutta method. The multiple scales method was also applied in a IVP that represents the dynamics of a mass-spring-damper oscillator with dry friction. Due to friction, the system response can be characterized in two alternating phases, the stick phase and the slip phase, composing a phenomenon called stick-slip. It was verified that the approximations obtained for system response by the multiple scales method represent the stick-slip dynamics with good accuracy.
23

The natural transform decomposition method for solving fractional differential equations

Ncube, Mahluli Naisbitt 09 1900 (has links)
In this dissertation, we use the Natural transform decomposition method to obtain approximate analytical solution of fractional differential equations. This technique is a combination of decomposition methods and natural transform method. We use the Adomian decomposition, the homotopy perturbation and the Daftardar-Jafari methods as our decomposition methods. The fractional derivatives are considered in the Caputo and Caputo- Fabrizio sense. / Mathematical Sciences / M. Sc. (Applied Mathematics)
24

以最小平方法處理有限離散型條件分配相容性問題 / Addressing the compatibility issues of finite discrete conditionals by the least squares approach

李宛靜, Lee, Wan Ching Unknown Date (has links)
給定兩個有限離散型條件分配,我們可以去探討有關相容性及唯一性的問題。Tian et al.(2009)提出一個統合的方法,將相容性的問題轉換成具限制條件的線性方程系統(以邊際機率為未知數),並藉由 l_2-距離測量解之誤差,進而求出最佳解來。他們也提出了電腦數值計算法在檢驗相容性及唯一性時的準則。 由於 Tian et al.(2009)的方法是把邊際機率和為 1 的條件放置在線性方程系統中,從理論的觀點來看,我們認為該條件在此種做法下未必會滿足。因此,本文中將邊際機率和為 1 的條件從線性方程系統中抽離出來,放入限制條件中,再對修正後的問題求最佳解。 我們提出了兩個解決問題的方法:(一) LRG 法;(二) 干擾參數法。LRG 法是先不管機率值在 0 與 1 之間的限制,在邊際機率和為 1 的條件下,利用 Lagrange 乘數法導出解的公式,之後再利用 Rao-Ghangurde 法進行修正,使解滿足機率值在 0 與 1 之間的要求。干擾參數法是在 Lagrange 乘數法公式解中有關廣義逆矩陣的計算部份引進了微量干擾值,使近似的逆矩陣及解可快速求得。理論證明,引進干擾參數所增加的誤差不超過所選定的干擾值,易言之,由干擾參數法所求出的解幾近最佳解。故干擾參數法在處理相容性問題上,是非常實用、有效的方法。從進一步分析Lagrange 乘數法公式解的過程中,我們也發現了檢驗條件分配"理論"相容的充分條件。 最後,為了驗證 LRG 法與干擾參數法的可行性,我們利用 MATLAB 設計了程式來處理求解過程中的運算,並以 Tian et al.(2009)文中四個可涵蓋各種情況的範例來解釋說明處理的流程,同時將所獲得的結果和 Tian et al. 的結果做比較。 / Given two finite discrete conditional distributions, we could study the compatibility and uniqueness issues. Tian et al.(2009) proposed a unified method by converting the compatibility problem into a system of linear equations with constraints, in which marginal probability values are assumed unknown. It locates the optimum solution by means of the error of l_2 - discrepancy. They also provided criteria for determining the compatibility and uniqueness. Because the condition of sum of the marginal probability values being equal to one is in Tian et al.s’linear system, it might not be fulfilled by the optimum solution. By separating this condition from the linear system and adding into constraints, we would look for the optimum solution after modification. We propose two new methods: (1) LRG method and (2) Perturbation method. LRG method ignores the requirement of the probability values being between zero and one initially, it then uses the Lagrange multipliers method to derive the solution for a quadratic optimization problem subject to the sum of the marginal probability values being equal to 1. Afterward we use the Rao-Ghangurde method to modify the computed value to meet the requirement. The perturbation method introduces tiny perturbation parameter in finding the generalized inverse for the optimum solution obtained by the Lagrange multipliers method. It can be shown that the increased error is less than the perturbation value introduced. Thus it is a practical and effective method in dealing with compatibility issues. We also find some sufficient conditions for checking the compatibility of conditional distributions from further analysis on the solution given by Lagrange multipliers method. To show the feasibilities of LRG method and Perturbation method, we use MATLAB to device a program to conduct them. Several numerical examples raised by Tian et al.(2009) in their article are applied to illustrate our methods. Some comparisons with their method are also presented.
25

Explorative study for stochastic failure analysis of a roughened bi-material interface: implementation of the size sensitivity based perturbation method

Fukasaku, Kotaro 24 May 2011 (has links)
In our age in which the use of electronic devices is expanding all over the world, their reliability and miniaturization have become very crucial. The thesis is based on the study of one of the most frequent failure mechanisms in semiconductor packages, the delamination of interface or the separation of two bonded materials, in order to improve their adhesion and a fortiori the reliability of microelectronic devices. It focuses on the metal (-oxide) / polymer interfaces because they cover 95% of all existing interfaces. Since several years, research activities at mesoscopic scale (1-10µm) have proved that the more roughened the surface of the interface, i.e., presenting sharp asperities, the better the adhesion between these two materials. Because roughness exhibits extremely complex shapes, it is difficult to find a description that can be used for reliability analysis of interfaces. In order to investigate quantitatively the effect of roughness variation on adhesion properties, studies have been carried out involving analytical fracture mechanics; then numerical studies were conducted with Finite Element Analysis. Both were done in a deterministic way by assuming an ideal profile which is repeated periodically. With the development of statistical and stochastic roughness representation on the one hand, and with the emergence of probabilistic fracture mechanics on the other, the present work adds a stochastic framework to the previous studies. In fact, one of the Stochastic Finite Element Methods, the Perturbation method is chosen for implementation, because it can investigate the effect of the geometric variations on the mechanical response such as displacement field. In addition, it can carry out at once what traditional Finite Element Analysis does with numerous simulations which require changing geometric parameters each time. This method is developed analytically, then numerically by implementing a module in a Finite Element package MSc. Marc/Mentat. In order to get acquainted and to validate the implementation, the Perturbation method is applied analytically and numerically to the 3 point bending test on a beam problem, because the input of the Perturbation method in terms of roughness parameters is still being studied. The capabilities and limitations of the implementation are outlined. Finally, recommendations for using the implementation and for furture work on roughness representation are discussed.
26

Damage modeling and damage detection for structures using a perturbation method

Dixit, Akash 06 January 2012 (has links)
This thesis is about using structural-dynamics based methods to address the existing challenges in the field of Structural Health Monitoring (SHM). Particularly, new structural-dynamics based methods are presented, to model areas of damage, to do damage diagnosis and to estimate and predict the sensitivity of structural vibration properties like natural frequencies to the presence of damage. Towards these objectives, a general analytical procedure, which yields nth-order expressions governing mode shapes and natural frequencies and for damaged elastic structures such as rods, beams, plates and shells of any shape is presented. Features of the procedure include the following: 1. Rather than modeling the damage as a fictitious elastic element or localized or global change in constitutive properties, it is modeled in a mathematically rigorous manner as a geometric discontinuity. 2. The inertia effect (kinetic energy), which, unlike the stiffness effect (strain energy), of the damage has been neglected by researchers, is included in it. 3. The framework is generic and is applicable to wide variety of engineering structures of different shapes with arbitrary boundary conditions which constitute self adjoint systems and also to a wide variety of damage profiles and even multiple areas of damage. To illustrate the ability of the procedure to effectively model the damage, it is applied to beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff's theory, supported on different types of boundary conditions. Analytical results are compared with experiments using piezoelectric actuators and non-contact Laser-Doppler Vibrometer sensors. Next, the step of damage diagnosis is approached. Damage diagnosis is done using two methodologies. One, the modes and natural frequencies that are determined are used to formulate analytical expressions for a strain energy based damage index. Two, a new damage detection parameter are identified. Assuming the damaged structure to be a linear system, the response is expressed as the summation of the responses of the corresponding undamaged structure and the response (negative response) of the damage alone. If the second part of the response is isolated, it forms what can be regarded as the damage signature. The damage signature gives a clear indication of the damage. In this thesis, the existence of the damage signature is investigated when the damaged structure is excited at one of its natural frequencies and therefore it is called ``partial mode contribution". The second damage detection method is based on this new physical parameter as determined using the partial mode contribution. The physical reasoning is verified analytically, thereupon it is verified using finite element models and experiments. The limits of damage size that can be determined using the method are also investigated. There is no requirement of having a baseline data with this damage detection method. Since the partial mode contribution is a local parameter, it is thus very sensitive to the presence of damage. The parameter is also shown to be not affected by noise in the detection ambience.
27

Μαγνητοϋδροδυναμική μελέτη περιστρεφομένων αστέρων νετρονίων

Κατελούζος, Αναστάσιος 31 March 2010 (has links)
Στην παρούσα διατριβή υπολογίζονται σχετικιστικά πολυτροπικά μοντέλα περιστρεφομένων αστέρων νετρονίων, καθώς και μοντέλα που περιγράφονται από ρεαλιστικές καταστατικές εξισώσεις. Σκοπός αυτής της μελέτης είναι να υπολογιστούν σημαντικές φυσικές ποσότητες ενός αστέρα νετρονίων, στην περίπτωση της υδροστατικής ισορροπίας, της ομοιόμορφης αλλά και της διαφορικής περιστροφής, καθώς και στην περίπτωση που ο αστέρας έχει μαγνητικό πεδίο με πολοειδή και τοροειδή συνιστώσα. Μία σύντομη περιγραφή της αριθμητικής διαπραγμάτευσης έχει ως εξής. Καταρχάς, επιλύεται το σύστημα διαφορικών εξισώσεων Oppenheimer-Volkov (OV). Το σύστημα αυτό περιγράφει την υδροστατική ισορροπία μη περιστρεφομένων πολυτροπικών μοντέλων. Στη συνέχεια, θεωρείται η ομοιόμορφη περιστροφή ως διαταραχή, σύμφωνα με την «μέθοδο διαταραχής Hartle» και υπολογίζονται διορθώσεις στην μάζα και την ακτίνα, διορθώσεις που οφείλονται σε σφαιρικές και τετραπολικές παραμορφώσεις. Ακολούθως, εφαρμόζεται μία διαταρακτική προσέγγιση με όρους τρίτης τάξης στην γωνιακή ταχύτητα, Ω. Η στροφορμή, J, η ροπή αδράνειας, I, η περιστροφική κινητική ενέργεια, T, και η βαρυτική δυναμική ενέργεια, W, είναι ποσότητες που υφίστανται σημαντικές διορθώσεις από την προσέγγιση τρίτης τάξης. Η διαφορική περιστροφή ϑεωρείται ότι (i) υπακούει σε έναν συγκεκριμένο νόμο, ή (ii) επάγεται από το συνδυασμό ομοιόμορφης περιστροφής και ακτινικών ταλαντώσεων του αστέρα· ο στόχος είναι να υπολογισθεί η μεταβολή σημαντικών φυσικών ποσοτήτων που οφείλεται στη διαφορική περιστροφή. Στο δεύτερο μέρος, μελετάται η επίδραση του μαγνητικού πεδίου, το οποίο αποτελείται από πολοειδή και τοροειδή συνιστώσα, με τη «μέθοδο διαταραχής κατά Ioka-Sasaki» (IS). Στην παρούσα διαπραγμάτευση, το πρόβλημα περιγράφεται από μία «γενικευμένη διαφορική εξίσωση Grad-Shafranov» (GS),η επίλυση της οποίας δίνει τη συνάρτηση ροής (flux function), ψ. Μέσω αυτής της συνάρτησης υπολογίζονται οι συνιστώσες του μαγνητικού πεδίου και η γεωμετρική παραμόρφωση που υφίσταται ο αστέρας λόγω του μαγνητικού πεδίου. Η αντιμετώπιση του προβλήματος γίνεται και σε αυτήν την περίπτωση με τη ϑεωρία διαταραχών. ΄Εχοντας υπολογίσει μοντέλα περιστρεφομένων αστέρων νετρονίων και διάφορα μοντέλα με μαγνητικό πεδίο, μπορούμε να συνθέσουμε τα αποτελέσματά μας και να προσδιορίσουμε μοντέλα αστέρων νετρονίων μηδενικής φαινόμενης παραμόρφωσης (equalizers), δηλαδή αστέρων νετρονίων που η περιστροφή και το μαγνητικό πεδίο προκαλούν ίσες και αντίθετες γεωμετρικές παραμορφώσεις στο σχήμα του αστέρα. / We compute relativistic polytropic models as well as models obeying realistic equations of state, of rotating neutron stars. The purpose of this study is to calculate significant physical quantities of a neutron star, in the case of hydrostatic equilibrium, rigid and differential rotation, as well as in the case of a magnetic neutron star with both poloidal and toroidal components. A short description of the numerical treatment has as follows. First, we solve the Oppenheimer-Volkov system of differential equations. This system refers to hydrostatic equilibrium of non rotating polytropic models. Then, solid rotation is added as a perturbation, according to "Hartle’s perturbation method" and corrections to mass and radius are calculated, as also corrections due to spherical and quadrupole deformations. In addition a third order perturbation in angular velocity, Ω, is implemented. Angular momentum, J, moment of inertia, I, rotational kinetical energy, T, and gravitational potential energy, W, are quantites that are significally corrected by the third order approximation. Differential rotation is assumed that (i) obeys a specific law, or (ii) follows as a result of the solid rotation and radial oscillations combination; our purpose is the calculation of the main physical quantities that are altered by differential rotation. In the second part the effect of magnetic field is studied, which consists of a poloidal and a toroidal component. The "Ioka-Sasaki perturbation method" (IS) is implemented. This problem is described by the quantification of the flux function ψ, which comes as a solution of the "Grad-Shafranov" (GS) differential equation. Then the components of the magnetic field and the quadrupole deformation of the star are calculated. This method is also a perturbative method similar to "Hartle’s perturbation method". Having calculated models of rotating neutron stars, as also various models of magnetic fields, we can compose our results and determine models of neutron stars with zero deformation, the equalizers, these are neutron stars that are rotating and also have a magnetic field in a way that they, rotation and magnetic field, produce equal but opposite geometrical deformations in the shape of the star.
28

Efeitos do atraso sobre a estabilidade de sistemas mecânicos não lineares / Effects delay about system stability nonlinear mechanics

Ferreira, Rosane Gonçalves 04 March 2016 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-06-20T18:27:52Z No. of bitstreams: 2 Dissertação - Rosane Gonçalves Ferreira - 2016.pdf: 4272548 bytes, checksum: a5f44a1be60a4ace1d85167dc75c33c4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Cláudia Bueno (claudiamoura18@gmail.com) on 2017-07-07T19:47:39Z (GMT) No. of bitstreams: 2 Dissertação - Rosane Gonçalves Ferreira - 2016.pdf: 4272548 bytes, checksum: a5f44a1be60a4ace1d85167dc75c33c4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-07-07T19:47:39Z (GMT). No. of bitstreams: 2 Dissertação - Rosane Gonçalves Ferreira - 2016.pdf: 4272548 bytes, checksum: a5f44a1be60a4ace1d85167dc75c33c4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-04 / Vibrations of mechanical systems have a wide field of research, where many work have been dedicated. Such importance is due to the fact that most human activities involve vibrations. It is worth noting that many device can suffer or produce vibrations, such as, machines, structures, motors, turbines. Vibratory systems, generally can produce complex behavior, thus the analysis of such dynamics behavior needs to use sophisticated mathematical tools. The mathematical model assigns important features of real processes with respect to linear and non-linear differential equations. In this work we are interested in the analysis of behavior of delayed mechanical systems. Time delayed can compromise the performance of controls even adding instability in the systems. On the other hand, write choose of delays can improve its performance. Systems with time delay, similar to ordinary systems, are molded by ordinary and/or partial differential equations, but, unlikely ordinary differential equations, delayed differential equations, also known as functional differential equations, are molded on Banach spaces with infinite dimension, which introduce serious difficulty in analysis of stability, since that, the spectra of solution semi-group associated with the linear part of the model can presents infinite eigenvalues. Thus, our contribution of the study of dynamics behavior of such systems will be in two directions. In the first one, we apply the perturbation method of multiple scales in themodel of differential equations, since that the system shows nonlinear vibrations. It is worth noting that the differential analysis used in the stage regarding differential equations in Banach spaces, which has infinite dimension, this approach differ substantially from standards approaches. Then we obtain numerical solutions for the amplitude at steady state using the Newton Raphson method and then we made a numerical analysis of the model of stability with delay and without delay to different parameters, using the Runge-Kuttamethod. / As vibrações possuem um campo extenso de estudos, ao quais trabalhos inteiros têm sido dedicados. Tamanha importância deve-se ao fato de que a maioria das atividades humanas envolve vibrações. Muitos sistemas construídos sofrem ou produzem vibração, tais como máquinas, estruturas, motores, turbinas e sistemas de controle. Umsistema vibratório geralmente apresenta comportamento complexo, assim a análise do comportamento dinâmicos envolve o uso de ferramentas matemáticas sofisticadas. O modelo matemático incorpora os aspectos importantes do processo real, em termos de equações diferenciais lineares ou não lineares. Neste trabalho nosso objetivo é analisar o comportamento de um modelo de sistemas mecânicos. Os tempos de atrasos quando presentes em controladores e atuadores podem ser motivo de ineficiência ou mesmo causar a instabilidade do sistema. Porém, o controle adequado desses atrasos pode melhorar o desempenho de sistemas mecânicos. Os sistemas com tempo de atraso, assim como os sistemas ordinários, são modelados por equações diferenciais ordinárias ou parciais, mas diferentemente das equações ordinárias, equações com tempo de atraso, também conhecidas como equações funcionais, são modeladas em espaços de dimensão infinita, o que dificulta enormemente a análise de estabilidade, uma vez que, o espectro do semigrupo solução associado à parte linear do modelo pode apresentar infinitos autovalores. Assim, nossa contribuição ao estudo do comportamento dinâmico de tais sistemas foi feito em duas partes. Na primeira, aplicamos o método de perturbação das múltiplas escalas no sistema de equações diferenciais do modelo, uma vez que o sistema apresenta vibrações não lineares. Nesta parte, é importante ressaltar que a análise diferencial usada foi em um espaço de dimensão infinita, também conhecido como espaço de Banach; esta análise difere substancialmente daquela usada no caso ordinário. Em seguida obtemos soluções numéricas para a amplitude em estado estacionário usando o método de Newton Raphson e depois fizemos uma análise numérica da estabilidade do modelo com atraso e sem atraso para diferentes parâmetros, usando o método de Runge- Kutta.
29

Développement de stratégies de maintenance structurales prédictives pour aéronefs utilisant le pronostic à base de modèles / Development of predictive structural maintenance strategies for aircraft using model-based prognostics

Wang, Yiwei 14 March 2017 (has links)
La maintenance aéronautique est fortement régulée, notamment à travers l’établissement d’un planning de maintenance obligatoire, permettant de garantir la sureté structurale. La fréquence des arrêts en maintenance est déterminée de manière très conservative en vue d’assurer les exigences de fiabilité. Développer des stratégies de maintenance moins conservatives et plus efficaces peut alors représenter une voie pour une nouvelle croissance des compagnies aériennes. Les systèmes de monitoring embarqué de structures, sont progressivement introduits dans l’industrie aéronautique. Ces développements pourraient alors permettre de nouvelles stratégies de maintenance structurale basées sur la prévision de l’état de santé de chaque élément structural, plutôt que basée sur une maintenance programmée, tel qu’implémentée actuellement. Dans ce cadre général, ce travail se concentre sur le suivi par un système embarqué de la propagation de fissures de fatigue dans les panneaux de fuselage. Une nouvelle méthode de prévision des fissures basée sur des modèles de propagation est développée, qui permet de filtrer le bruit des mesures du système embarqué, identifier la taille actuelle de la fissure et prédire son évolution future et par conséquent la fiabilité des panneaux. Cette approche prédictive est intégrée dans le processus de maintenance structurale aéronautique et deux types de maintenances prédictives sont proposés. L’étude numérique montre que ces stratégies de maintenance prédictive peuvent réduire de manière significative les coûts de maintenance en réduisant le nombre d’arrêts en maintenance et le nombre de réparations inutiles. / Aircraft maintenance represents a major economic cost for the aviation industry. Traditionally, the aircraft maintenance is highly regulated based on fixed schedules (thus called scheduled maintenance) in order to ensure safety. The frequency of scheduled maintenance is designed to be very conservative to maintain a desirable level of reliability. Developing efficient maintenance can be an important way for airlines to allow a new profit growth. With the development of sensor technology, structural health monitoring (SHM) system, which employ a sensor network sealing inside aircraft structures to monitor the damage state, are gradually being introduced in the aviation industry. Once it is possible to monitor the structure damage state automatically and continuously by SHM systems, it enables to plan the maintenance activities according to the actual or predicted health state of the aircraft rather than a fixed schedule. This work focus on the fatigue crack propagation in the fuselage panels. The SHM system is assumed to be employed. A model-based prognostics method is developed, which enables to filter the noise of SHM data to estimate the crack size, and to predict the future health state of the panels. This predictive information is integrated into the maintenance decision-making and two types of predictive maintenance are developed. The numerical study shows that the predictive maintenance significantly reduces the maintenance cost by reducing the number of maintenance stop and the repaired panels.
30

Image Degradation Due To Surface Scattering In The Presence Of Aberrations

Choi, Narak 01 January 2012 (has links)
This dissertation focuses on the scattering phenomena by well-polished optical mirror surfaces. Specifically, predicting image degradation by surface scatter from rough mirror surfaces for a two-mirror telescope operating at extremely short wavelengths (9nm~30nm) is performed. To evaluate image quality, surface scatter is predicted from the surface metrology data and the point spread function in the presence of both surface scatter and aberrations is calculated. For predicting the scattering intensity distribution, both numerical and analytic methods are considered. Among the numerous analytic methods, the small perturbation method (classical Rayleigh-Rice surface scatter theory), the Kirchhoff approximation method (classical BeckmanKirchhoff surface scatter theory), and the generalized Harvey-Shack surface scatter theory are adopted. As a numerical method, the integral equation method (method of moments) known as a rigorous solution is discussed. Since the numerical method is computationally too intensive to obtain the scattering prediction directly for the two mirror telescope, it is used for validating the three analytic approximate methods in special cases. In our numerical comparison work, among the three approximate methods, the generalized Harvey-Shack model shows excellent agreement to the rigorous solution and it is used to predict surface scattering from the mirror surfaces. Regarding image degradation due to surface scatter in the presence of aberrations, it is shown that the composite point spread function is obtained in explicit form in terms of convolutions of the geometrical point spread function and scaled bidirectional scattering distribution functions of the individual surfaces of the imaging system. The approximations and assumptions in this iv formulation are discussed. The result is compared to the irradiance distribution obtained using commercial non-sequential ray tracing software for the case of a two-mirror telescope operating at the extreme ultra-violet wavelengths and the two results are virtually identical. Finally, the image degradation due to the surface scatter from the mirror surfaces and the aberration of the telescope is evaluated in terms of the fractional ensquared energy (for different wavelengths and field angles) which is commonly used as an image quality requirement on many NASA astronomy programs.

Page generated in 0.4436 seconds