• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 14
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 34
  • 17
  • 17
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Pervious Concrete: A Hydrologic Analysis For Stormwater Management Credit

Spence, Joshua 01 January 2006 (has links)
Portland Cement pervious concrete's ability to permit water infiltration has encouraged its use as a stormwater management tool. However, the material has suffered historically poor support due to a number of factors, including failures due to poor mix design and improper construction techniques, concern about lesser structural strength, concern about poor long term performance due to clogging of surface pores and undefined credit for stormwater management. This study focuses on long term performances of pervious concrete parking lots and their stormwater management credit. Before stormwater management credit could be estimated, it was necessary to develop a testing device to gather information from existing pervious concrete parking lots currently in use. Eight parking lots were examined to determine the infiltration rates of the pervious concrete, as well as to verify the soil makeup beneath pavement. A total of 30 cores were extracted from pervious concrete parking lots and evaluated for infiltration rates. Three of the sites had a pervious concrete section that included a gravel reservoir. Infiltration rates were measured using the application of an embedded single-ring infiltrometer. In an attempt to provide an estimate of credit, a mass balance model was created to be used for simulation of the hydrologic and hydraulic function of pervious concrete sections. The purpose of the model is to predict runoff and recharge volumes for different rainfall conditions and hydraulic properties of the concrete and the soil. The field derived hydraulic data were used to simulate infiltration volumes and rainfall excess given a year of rainfall as used in a mass balance operated within a spreadsheet. The results can be used for assessing stormwater management credit.
32

Construction Specifications And Analysis Of Rehabilitation Techniques Of Pervious Concrete Pavement

Ballock, Craig 01 January 2007 (has links)
The primary objective of this study is to evaluate the clogging potential of installed pervious concrete systems, to analyze rehabilitation techniques and develop construction specifications for the construction of portland cement pervious concrete specific to the state of Florida. Currently, a consistent statewide policy has not been established in reference to credit for storage volume within the voids in pervious concrete and the coarse aggregate base. For this reason a current and updated assessment of pervious pavement is needed to benefit from the advantages of pervious pavement use in low traffic volume areas. Initially by modeling a pervious concrete system in a field laboratory with test cells of typical Florida soil conditions and groundwater elevations and combining these data with field data from multiple sites of long service life, a Florida specific construction methodology has been developed. It is hoped that by developing a more standardized design criteria for pervious pavements in Florida a statewide acceptance of portland cement pervious pavement can be achieved and credit can be earned based on the volume of stored stormwater. This study of field sites was subsequently expanded to include locations in the southeastern United States. Pervious concrete has suffered historically poor support due to a number of factors, including concern about poor long term performance due to clogging of surface pores. Eight existing parking lots were evaluated to determine the infiltration rates of pervious concrete systems that have had relatively no maintenance. Infiltration rates were measured using an embedded single-ring infiltrometer developed specifically for testing pervious concrete in an in-situ state. The average infiltration rates of the pervious concrete that was properly constructed at the investigated sites ranged from 0.4 to 227.2 inches per hour. A total of 30 pervious concrete cores were extracted and evaluated for infiltration rates after various rehabilitation techniques, including pressure washing, vacuum sweeping and a combination of the two methods, have been performed to rehabilitate the infiltration capability of the concrete. By evaluating the effectiveness of these rehabilitation techniques, recommendations have been developed for a maintenance schedule for pervious concrete installations. In most cases it was found that the three methods of maintenance investigated in this study typically resulted in a 200% or greater increase over the original infiltration rates of the pervious concrete cores. It is therefore recommended that as a general rule of thumb one or a combination of these rejuvenation techniques should be performed when the system infiltration rates are below 1.5 inches per hour to maintain the infiltration capability of pervious concrete pavements.
33

Diseño de mezcla de concreto permeable para la construcción de la superficie de rodadura de un pavimento de resistencia de 210 kg/cm2 / Mix design of pervious concrete for the construction of the rolling surface of a pavement of 210 kg/cm2 compressive strength

Amorós Morote, Carlos Enrique, Bendezú Ulloa, José Carlos 09 August 2019 (has links)
El concreto permeable es un concreto especial, el cual permite el paso del agua a través de su estructura gracias al alto porcentaje de vacíos que posee a diferencia del concreto tradicional. Esta cualidad del concreto permeable permite acabar con la falta de permeabilidad en las estructuras tradicionales de concreto evitando las fallas estructurales debido al encharcamiento y escurrimiento del agua. En esta investigación se realizó el diseño de mezcla del concreto permeable con una resistencia de 210 kg/cm2, aplicando el método ACI 522.R para poder aplicarlo como una alternativa de carpeta de rodadura en pavimentos. Para ello se realizaron diferentes diseños de mezcla en laboratorio hasta encontrar el diseño óptimo para obtener una resistencia a la compresión de 210 kg/cm2, el diseño de mezcla elegido contaba con las siguientes características: relación agua/cemento de 0.38, porcentaje de vacíos de 13%, 1.5% de aditivo Superplastificante y 7% de arena. Para validar la investigación se realizó la construcción de un prototipo con el diseño elaborado en laboratorio con un área de 2.00 m2 (1.00m x 2.00m). Al concreto en estado fresco se le analizaron sus características de consistencia, densidad y contenido de vacíos; en el estado endurecido se realizaron los ensayos de compresión, permeabilidad y flexión, además de aplicarle una prueba de carga. Los resultados indicaron que el diseño de mezcla usado en el prototipo con resistencia a la compresión de 261.58 kg/cm2 y permeabilidad de 0.01744 m/s puede usarse como alternativa de superficie de rodadura para un pavimento. / Pervious concrete is a special type of concrete which allows the passage of water through its structure due to its high percentage of voids unlike traditional concrete. This quality of pervious concrete allows to end the lack of permeability in traditional concrete structures thus preventing structural failures due to flooding and water runoff. This research will seek to find a mix design for pervious concrete to apply it as an alternative road surface for pavements. To verify the above, different mix designs were performed in laboratory to find the design that give us a compressive strength of 210 kg/cm2, the chosen design had the following features: water - cement ratio of 0.38, 13% air content, 1.5% additive superplasticizer and 7% of sand. To validate the research, a prototype was built with the chosen mix design, this prototype had an area of 2 m2 (1m x 2m). The fresh concrete was analyzed for its consistency, density, and void percentage; the hardened concrete was analyzed for its compressive strength, permeability and flexural strength, finally the prototype was load tested. The results indicated that the mix design used in the prototype with compressive strength of 261.58 kg/cm2 and a permeability of 0.01744 m/s can be used as an alternative rolling surface for pavements. / Tesis
34

Investigating Properties of Pavement Materials Utilizing Loaded Wheel Tester (LWT)

Wu, Hao 01 May 2011 (has links)
Loaded wheel tester (LWT) is a common testing equipment usually used to test the permanent deformation and moisture susceptibility of asphalt mixtures by applying moving wheel loads on asphalt mixture specimens. It has been widely used in the United States since 1980s and practically each Department of Transportation or highway agency owns one or more LWT(s). Compared to other testing methods for pavement materials, LWT features movable wheel loads that allow more realistic situations existing on the actual pavement to be simulated in the laboratory. Due to its potential of creating a condition of repetitive loading, the concept of using LWT for characterizing the properties of pavement materials were promoted through four innovative or modified tests in this study. (1) The first test focuses on evaluating the effect of geogrids in reinforcing pavement base courses. In this test, a base course specimen compacted in a testing box with or without geogrids reinforced was tested under cyclic loading provided by LWT. The results showed that LWT test was able to characterize the improvement of the pavement base courses with geogrids reinforcement. In addition, the results from this study were repeatable and generally in agreement with the results from another independent study conducted by the University of Kansas with similar testing method and base materials. (2) A simple and efficient abrasion test was developed for characterizing the abrasion resistance of pervious concrete utilizing LWT. According to the abrading mechanisms for pervious concrete, some modifications were made to the loading system of LWT to achieve better simulations of the spalling/raveling actions on pervious concrete pavements. By comparing the results from LWT abrasion tests to Cantabro abrasion tests, LWT abrasion test was proved effective to differentiate the abrasion resistances for various pervious concretes. (3) Two innovative LWT tests were developed for characterizing the viscoelastic and fatigue properties of asphalt mixtures in this study. In the test, asphalt beam specimens are subjected to the cyclic loads supplied by the moving wheels of LWT, and the tensile deformations of the beam specimens are measured by the LVDTs mounted on the bottom. According to the stress and strain, the parameters associated to the viscoelastic and fatigue properties of the asphalt mixture can be obtained through theoretical analyses. In order to validate the concepts associated with the above mentioned tests, corresponding conventional tests have also been conducted to the same materials in the study. According to the comparisons between the conventional and the LWT tests, the LWT tests proposed in this study provided satisfactory repeatability and efficiency.
35

Development of Treatment Train Techniques for the Evaluation of Low Impact Development in Urban Regions

Hardin, Mike 01 January 2014 (has links)
Stormwater runoff from urban areas is a major source of pollution to surface water bodies. The discharge of nutrients such as nitrogen and phosphorus is particularly damaging as it results in harmful algal blooms which can limit the beneficial use of a water body. Stormwater best management practices (BMPs) have been developed over the years to help address this issue. While BMPs have been investigated for years, their use has been somewhat limited due to the fact that much of the data collected is for specific applications, in specific regions, and it is unknown how these systems will perform in other regions and for other applications. Additionally, the research was spread across the literature and performance data was not easily accessible or organized in a convenient way. Recently, local governments and the USEPA have begun to collect this data in BMP manuals to help designers implement this technology. That being said, many times a single BMP is insufficient to meet water quality and flood control needs in urban areas. A treatment train approach is required in these regions. In this dissertation, the development of methodologies to evaluate the performance of two BMPs, namely green roofs and pervious pavements is presented. Additionally, based on an extensive review of the literature, a model was developed to assist in the evaluation of site stormwater plans using a treatment train approach for the removal of nutrients due to the use of BMPs. This model is called the Best Management Practices Treatment for Removal on an Annual basis Involving Nutrients in Stormwater (BMPTRAINS) model. The first part of this research examined a previously developed method for designing green roofs for hydrologic efficiency. The model had not been tested for different designs and assumed that evapotranspiration was readily available for all regions. This work tested this methodology against different designs, both lab scale and full scale. Additionally, the use of the Blaney-Criddle equation was examined as a simple way to determine the ET for regions where data was not readily available. It was shown that the methods developed for determination of green roof efficiency had good agreement with collected data. Additionally, the use of the Blaney-Criddle equation for estimation of ET had good agreement with collected and measured data. The next part of this research examined a method to design pervious pavements. The water storage potential is essential to the successful design of these BMPs. This work examined the total and effective porosities under clean, sediment clogged, and rejuvenated conditions. Additionally, a new type of porosity was defined called operating porosity. This new porosity was defined as the average of the clean effective porosity and the sediment clogged effective porosity. This porosity term was created due to the fact that these systems exist in the exposed environment and subject to sediment loading due to site erosion, vehicle tracking, and spills. Due to this, using the clean effective porosity for design purposes would result in system failure for design type storm events towards the end of its service life. While rejuvenation techniques were found to be somewhat effective, it was also observed that often sediment would travel deep into the pavement system past the effective reach of vacuum sweeping. This was highly dependent on the pore structure of the pavement surface layer. Based on this examination, suggested values for operating porosity were presented which could be used to calculate the storage potential of these systems and subsequent curve number for design purposes. The final part of this work was the development of a site evaluation model using treatment train techniques. The BMPTRAINS model relied on an extensive literature review to gather data on performance of 15 different BMPs, including the two examined as part of this work. This model has 29 different land uses programmed into it and a user defined option, allowing for wide applicability. Additionally, this model allows a watershed to be split into up to four different catchments, each able to have their own distinct pre- and post-development conditions. Based on the pre- and post-development conditions specified by the user, event mean concentrations (EMCs) are assigned. These EMCs can also be overridden by the user. Each catchment can also contain up to three BMPs in series. If BMPs are to be in parallel, they must be in a separate catchment. The catchments can be configured in up to 15 different configurations, including series, parallel, and mixed. Again, this allows for wide applicability of site designs. The evaluation of cost is also available in this model, either in terms of capital cost or net present worth. The model allows for up to 25 different scenarios to be run comparing cost, presenting results in overall capital cost, overall net present worth, or cost per kg of nitrogen and phosphorus. The wide array of BMPs provided and the flexibility provided to the user makes this model a powerful tool for designers and regulators to help protect surface waters.
36

Climate Change Adaptation: A Green Infrastructure Planning Framework for Resilient Urban Regions

Abunnasr, Yaser F 01 September 2013 (has links)
The research explores multiple facets of a green infrastructure planning framework for climate change adaptation in urban regions. The research is organized in three distinct, but related parts. The first develops an adaptation implementation model based on triggering conditions rather than time. The approach responds to policy makers' reluctance to engage in adaptation planning due to uncertain future conditions. The model is based on planning and adaptation literature and applied to two case studies. Uncertainty during implementation may be reduced by incremental and flexible policy implementation, disbursing investments as needs arise, monitoring conditions, and organizing adaptation measures along no-regrets to transformational measures. The second part develops the green infrastructure transect as an organizational framework for mainstreaming adaptation planning policies. The framework integrates multi-scalar and context aspects of green infrastructure for vertical and horizontal integration of policy. The framework integrates literature from urban and landscape planning and tested on Boston. Prioritization of adaptation measures depends on location. Results suggest that green infrastructure adaptation policies should respond to configuration of zones. Cross jurisdiction coordination at regional and parcel scales supports mainstreaming. A secondary conclusion suggests that green infrastructure is space intensive and becomes the basis of the empirical study in part three. A spatial assessment method is introduced to formulate opportunities for green infrastructure network implementation within land-uses and across an urban-rural gradient. Spatial data in GIS for Boston is utilized to develop a percent pervious metric allowing the characterization of the study area into six zones of varying perviousness. Opportunities across land uses were assessed then maximum space opportunities were defined based on conservation, intensification, transformation and expansion. The opportunities for transformation of impervious surfaces to vegetal surfaces are highest in the urban center and its surrounding. Intensification of vegetation on pervious surfaces along all land uses is high across the gradient. Conservation of existing forested land is significant for future climate proofing. The concluding section argues for a green infrastructure planning framework for adaptation based on integration into existing infrastructural bodies, regional vision, incremental implementation, ecosystem benefits accounting, and conditions based planning rather than time based.
37

INVENTORY OF STORMWATER MANAGEMENT PRACTICES IN THE CITY OF OXFORD, OHIO

Kitheka, Bernard M., Mr. 25 May 2010 (has links)
No description available.
38

Quantification des bénéfices des revêtements perméables. Modélisation à l'échelle de la structure et du bassin versant / Quantifying benefits of permeable pavement. Modeling at pavement and catchment scale

Cortier, Olivier 19 November 2018 (has links)
Les revêtements perméables se développent en France et à l’étranger comme une technique d’avenir en réponse aux enjeux de la protection des sols et de l’amélioration du cycle de l’eau en milieu urbain. Le développement de pavés drainants au sein du laboratoire de l’ESITC Caen a mis en évidence le besoin de quantifier les apports des revêtements perméables pour répondre aux attentes des acteurs locaux et favoriser l’utilisation de ces techniques par les aménageurs. Dans ce but, ce travail de thèse porte sur la description des processus hydrologiques au sein des revêtements perméables et la quantification de leurs bénéfices sur le ruissellement urbain. Deux modèles ont été développés pour répondre à ces objectifs.Le premier permet de modéliser les processus hydrologiques au sein des structures perméables avec une approche physique basée sur la résolution de l’équation de RICHARDS par la méthode des éléments finis. Cette modélisation apporte des éléments de compréhension sur l’influence des propriétés de la structure et de son environnement sur ses performances. Elle a abouti à la proposition d’une représentation conceptuelle du comportement hydrologique des structures perméables. Le second modèle permet de modéliser le comportement hydrologique d’un bassin versant avec une approche par systèmes multi-agents. Différents scénarios d’implantation de revêtements perméables ont été simulés sur un site d’étude réel situé à Ouistreham en Normandie. L’exploration de ce modèle apporte des éléments de quantification des bénéfices de l’implantation des revêtements perméables sur le ruissellement de surface. Les résultats obtenus mettent en évidence le lien entre le ratio de surface perméable sur la surface imperméable et la réduction du ruissellement. Ils soulignent l’importance de la dispersion des zones de revêtements perméables pour optimiser leurs bénéfices. / Permeable pavements are developing in France and abroad as a promising response to the growing issues of ground protection and the improvement of the water cycle in urban areas. The development of pervious concrete within the laboratory of ESITC Caen had highlighted the need to quantify the contributions of the permeable pavement, and thus meeting the expectations of local authorities and encouraging the use of these techniques by urban planners. In this purpose, this Phd aims at describing the hydrological mechanisms of the permeable pavements and quantifying their benefits on surface runoff. Two models were developed to respond to these objectives. The first one allows modeling the hydrological processes inside permeable pavement structures with a physically-based approach, which solves RICHARD’s law with a finite element method. This modeling enables the understanding of the influence of the properties of the structure and its environment on its performances. Results have led to the proposal of a conceptual representation of permeable structures. The second model allows modeling the hydrological behavior of an urban catchment with an agent-based approach. Various scenarios of permeable pavement implemantations were simulated on a real study site located at Ouistreham in Normandy. The analysis of this model enables the quantifying of the benefits of the implementation of permeable pavements on surface runoff. Results highlight the link between the permeable surface on the impermeable surface ratio and the reduction of runoff. They emphasize the importance of dispersing permeable pavement areas to maximize their benefits.
39

Performance and Operation of Partial Infiltration Permeable Pavement Systems in the Ontario Climate

Drake, Jennifer Anne Pauline 09 July 2013 (has links)
Partial-infiltration permeable pavement (PP) systems provide environmental benefits by increasing infiltration, attenuating storm flows and improving stormwater quality. This thesis focuses on the performance and operation of partial-infiltration PP systems over low permeability soil in Ontario. Three PP, AquaPave®, Eco-Optiloc® and Hydromedia® Pervious Concrete were monitored over two years and their performance was evaluated relative to an impermeable Asphalt control. Field data was collected from the Kortright PP pilot parking lot in Vaughan, Ontario. Through the use of restrictor valves on underdrains the PP systems were shown to provide substantial hydrologic benefits by eliminating stormwater outflow for rain events less than 7mm, reducing peak flows by 91% and reducing total stormwater volume by 43%. Stormwater quality was analyzed for winter and non-winter seasons. The PP were shown to greatly reduce the concentration and total loading of suspended solids, nutrients, hydrocarbons and most heavy metals. Some water quality data, such as pH, K, or Sr levels, indicate that the quality of PP effluent will change as the system ages. Study of PP sample boxes at the University of Guelph highlighted the role that construction materials have on effluent quality and showed that pollutants introduced by the pavement and aggregate are almost entirely in a dissolved form and decline very rapidly after a season of exposure to rainfall. Benefits to water quality were sustained during winter months. The partial-infiltration PP systems were shown to provide buffering of Na and Cl concentrations. Small and large-scale maintenance practices for PP systems were investigated. Small-sized equipment testing found that vacuum cleaning and pressure-washing have good potential to improve infiltration capacity. Testing of full-sized streetsweeping trucks demonstrated that permeability can be partially restored on PICP by suction-based sweeping. Vacuum-sweeping was beneficial on a PC pavement which had experienced large permeability losses. Results of this study indicate that partial-infiltration PP systems can be effective measures for maintaining or restoring infiltration functions on parking lots and other low volume traffic areas, even in areas with low permeability soils.
40

Estudo das características hidráulicas e mecânicas de calçadas em concreto permeável em pista experimental. / Study of the mechanical and hydraulic characteristics of experimental pervious concrete sidewalks.

Batezini, Rafael 30 May 2019 (has links)
A presente pesquisa teve como objetivo principal a realização de estudos laboratoriais, de campo e numéricos, buscando viabilizar duas misturas de concreto permeável que foram utilizadas na construção de duas calçadas experimentais localizadas no campus da USP em São Paulo. Nas pistas experimentais foi realizado o acompanhamento da capacidade permeável ao longo do tempo, além da avaliação das suas respostas estruturais frente à aplicação de carregamentos dinâmicos por meio de equipamento FWD, considerando a variação do teor de umidade no interior das estruturas. Por fim, foram realizadas retroanálises com uso de diferentes softwares procurando entender qual das camadas da estrutura apresenta maior vulnerabilidade estrutural frente à presença de volumes excessivos de água. Os resultados da etapa laboratorial indicaram que há uma sensibilidade muito grande no comportamento das misturas em função do teor de aditivo superplastificante, uma vez que houve segregação severa da pasta de cimento no fundo dos corpos de prova quando esse teor ultrapassou determinado limite. Os resultados dos ensaios de taxa de infiltração em campo possibilitaram a proposição um modelo empírico para estimativa do desempenho da capacidade hidráulica para calçadas em concreto permeável executadas na região de São Paulo. Os resultados dos levantamentos deflectométricos e das retroanálises indicaram variação considerável na capacidade de suporte do conjunto base+subleito entre as calçadas, além de evidenciar considerável perda da capacidade de suporte dessas estruturas quanto submetidas à presença de elevados volumes de água no seu interior. Palavras chave: concreto permeável, calçada, pavimento, taxa de infiltração, levantamento deflectométrico, análise estrutural, retroanálise. / The main goal of this research was to carry out laboratorial, field and numerical studies with the purpose of defining two feasible pervious concrete mixtures to be used as the surface layer of two experimental sidewalks in the campus of the University of São Paulo. The permeability capacity of the sidewalks was monitored along time, as well as its structural responses in terms of deflections due to application of FWD dynamic loadings, assessing how the structural behavior was impacted by the presence of high volumes of water into the permeable structure. A backcalculation procedure was used in order to assess the elastic behavior of the structure layers, as well as find out which layer of the structure is the most vulnerable in terms of mechanical behavior under the presence of excessive volumes of water. The results in the laboratory indicates that pervious concrete mixtures are considerable sensitives to the amount of superplasticizer additive, since a severe mortar segregation was observed on the bottom of the specimens casted using some of the mixtures produced. The results of infiltration tests in field made it possible to develop an empirical model capable of estimating the hydraulic performance of pervious concrete permeable sidewalks in São Paulo region. The results of the deflection measurements and the backcalculations indicated a considerable variation on the bearing capacity of the infrastructure (base+subgrade) between the two sidewalks. In addition, it is evident the loss of bearing capacity of the structure under the presence of excessive amount of water into the sidewalk.

Page generated in 0.0974 seconds