• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 317
  • 96
  • 72
  • 58
  • 52
  • 51
  • 48
  • 48
  • 34
  • 29
  • 24
  • 23
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Engineering of Pharmaceutical Particles : Modulation of Particle Structural Properties, Solid-State Stability and Tabletting Behaviour by the Drying Process

Berggren, Jonas January 2003 (has links)
Relationships between stresses during the drying process, particle structural and functional properties, and particle engineering by the drying process were addressed in this thesis. In the first part, the importance of the drying phase and the effect of the drying rate on the intragranular porosity of microcrystalline cellulose pellets were investigated. Differences in porosities of dried pellets could be explained by liquid-related differences in densification during convective drying rather than by differences in densification during wet agglomeration. An increased drying rate gave more porous pellets with a lower compression shear strength, and thereby stronger tablets. The next part dealt with modulation of solid-state stability and tabletting behaviour of amorphous lactose by incorporation of different polymers by spray drying. Increased content and molecular weight of poly(vinylpyrrolidone) (PVP) resulted in an increased resistance to crystallisation provoked by heat and moisture. The stabilising effect was even more evident after long-term storage. However, the glass transition temperature was almost unaffected and may, therefore, be questioned as a stability indicator for these types of materials. The presence of the polymers resulted in somewhat less deformable particles. Incorporation of PVP increased the compactability, whilst a surfactant decreased it, which could be shown to be related to differences in particle-particle adhesivity between the different particles. This thesis contributes to increased mechanistic understanding in the area of particle engineering that may lead to better prediction and optimisation of the functionality of pharmaceutical particles, which is of the utmost importance in the development and production of solid dosage forms.
242

Computational and Experimental Models for the Prediction of Intestinal Drug Solubility and Absorption

Bergström, Christel A. S. January 2003 (has links)
New effective experimental techniques in medicinal chemistry and pharmacology have resulted in a vast increase in the number of pharmacologically interesting compounds. However, the number of new drugs undergoing clinical trial has not augmented at the same pace, which in part has been attributed to poor absorption of the compounds. The main objective of this thesis was to investigate whether computer-based models devised from calculated molecular descriptors can be used to predict aqueous drug solubility, an important property influencing the absorption process. For this purpose, both experimental and computational studies were performed. A new small-scale shake flask method for experimental solubility determination of crystalline compounds was devised. This method was used to experimentally determine solubility values used for the computational model development and to investigate the pH-dependent solubility of drugs. In the computer-based studies, rapidly calculated molecular descriptors were used to predict aqueous solubility and the melting point, a solid state characteristic of importance for the solubility. To predict the absorption process, drug permeability across the intestinal epithelium was also modeled. The results show that high quality solubility data of crystalline compounds can be obtained by the small-scale shake flask method in a microtiter plate format. The experimentally determined pH-dependent solubility profiles deviated largely from the profiles predicted by a traditionally used relationship, highlighting the risk of data extrapolation. The in silico solubility models identified the non-polar surface area and partitioned total surface areas as potential new molecular descriptors for solubility. General solubility models of high accuracy were obtained when combining the surface area descriptors with descriptors for electron distribution, connectivity, flexibility and polarity. The used descriptors proved to be related to the solvation of the molecule rather than to solid state properties. The surface area descriptors were also valid for permeability predictions, and the use of the solubility and permeability models in concert resulted in an excellent theoretical absorption classification. To summarize, the experimental and computational models devised in this thesis are improved absorption screening tools applicable to the lead optimization in the drug discovery process.
243

Preparation of Pharmaceutical Powders using Supercritical Fluid Technology : Pharmaceutical Applications and Physicochemical Characterisation of Powders

Velaga, Sitaram P. January 2004 (has links)
The main aim of the thesis was to explore the potential of supercritical fluid (SF) techniques in the field of drug delivery. In particular, the relatively recently developed solution-enhanced dispersion by supercritical fluids (SEDS) technology has been employed in the preparation of particles/powders. The manufacturing, stability and bioavailability of a dosage form strongly depend on the physicochemical properties of the formulation particles. For example, dry powder inhalation (DPI) for administering drugs to the respiratory tract require particles in a narrow size range (1-5 μm) to be effective. The identification of polymorphs and control of purity are also important issues since the physicochemical properties and therapeutic effects of the alternative forms of a drug may differ substantially. Solvent-based traditional crystallisation processes provide the product that may require further down-stream processing to obtain particles for advanced drug delivery applications. This can result in unwanted changes in the physicochemical properties of the particles and thus affect the performance of the dosage form. SF processing has addressed many of the challenges in particle formation research. Among several SF technologies developed for particle processing over the last decade, the SEDS process with its specially designed co-axial nozzle with mixing chamber has resulted in improved control over the particle formation process. Carbon dioxide (CO2) was used as the SF, because it has low critical points and is non-toxic, non-flammable and relatively inexpensive. The initial part of the thesis concerns the formation of particles of model drugs such as hydrocortisone, budesonide and flunisolide using SEDS technology and the determination of the influence of processing conditions and solvents on particle characteristics such as size, shape and crystal structure. Particles of model drugs of differing shapes in a size range suitable for inhalation delivery were prepared. In the process, two new polymorphic forms of flunisolide were identified. This was the first report of SEDS technology being shown as a polymorph-screening tool. The remainder of the thesis deals with the development of SEDS technology for precipitating therapeutic proteins such as recombinant human growth hormone (hGH) from aqueous solutions. Powders of hGH were precipitated using SEDS without significant changes in the chemical or physical stability of the protein. The addition of sucrose to hGH in the feed solution promoted precipitation and minimised the detrimental effects of the solvent and/or the process on the physical aggregation of the protein. In conclusion, this thesis highlights the applicability of the SEDS process in drug delivery research and advances general understanding of the particle formation phenomenon. The SEDS process may also prove to be a potential alternative technology for the precipitation of stable powders of therapeutic proteins.
244

A CNS-Active siRNA Chemical Scaffold for the Treatment of Neurodegenerative Diseases

Alterman, Julia F. 13 May 2019 (has links)
Small interfering RNAs (siRNAs) are a promising class of drugs for treating genetically-defined diseases. Therapeutic siRNAs enable specific modulation of gene expression, but require chemical architecture that facilitates efficient in vivodelivery. siRNAs are informational drugs, therefore specificity for a target gene is defined by nucleotide sequence. Thus, developing a chemical scaffold that efficiently delivers siRNA to a particular tissue provides an opportunity to target any disease-associated gene in that tissue. The goal of this project was to develop a chemical scaffold that supports efficient siRNA delivery to the brain for the treatment of neurodegenerative diseases, specifically Huntington’s disease (HD). HD is an autosomal dominant neurodegenerative disorder that affects 3 out of every 100,000 people worldwide. This disorder is caused by an expansion of CAG repeats in the huntingtin gene that results in significant atrophy in the striatum and cortex of the brain. Silencing of the huntingtin gene is considered a viable treatment option for HD. This project: 1) identified a hyper-functional sequence for siRNA targeting the huntingtin gene, 2) developed a fully chemically modified architecture for the siRNA sequence, and 3) identified a new structure for siRNA central nervous system (CNS) delivery—Divalent-siRNA (Di-siRNA). Di-siRNAs, which are composed of two fully chemically-stabilized, phosphorothioate-containing siRNAs connected by a linker, support potent and sustained gene modulation in the CNS of mice and non-human primates. In mice, Di-siRNAs induced potent silencing of huntingtin mRNA and protein throughout the brain one month after a single intracerebroventricular injection. Silencing persisted for at least six months, with the degree of gene silencing correlating to guide strand tissue accumulation levels. In Cynomolgus macaques, a bolus injection exhibited significant distribution and robust silencing throughout the brain and spinal cord without detectable toxicity. This new siRNA scaffold opens the CNS for RNAi-based gene modulation, creating a path towards developing treatments for genetically-defined neurological disorders.
245

Novel Antipsychotic Drug Carriers: The Development of Nanoparticle and Microgel Drug Carriers for Antipsychotic Delivery in the Treatment of Schizophrenia

Piazza, Justin E. 10 1900 (has links)
<p>Lectin-functionalized, Poly [oligo(ethylene glycol) methyl ether methacrylate] (<em>POEGMA</em>) loaded with 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) and poly(ethylene glycol)–block-poly(D,L-lactic-co-glycolic acid) (PEG-PLGA) nanoparticles loaded with haloperidol were prepared with narrow size distributions and sizes < 135 nm. The microgels and nanoparticles exhibited high <em>Solanum tuberosum </em>lectin (STL) conjugation efficiencies, encapsulation efficiencies, and drug loading capacities. The <em>in vitro</em> release of PAOPA and haloperidol was slow in physiological conditions over 96 hours, demonstrating minimal drug leakage and the potential for efficient drug transport to the targeted brain tissue. POAPA, POEGMA and the STL-functionalized POEGMA microgels were found to be non-toxic in both cell lines, indicating that they would not be toxic when administered intranasally or when they reach the brain. The nasal epithelial cell uptake of rhodamine-labelled microgels was higher in cells when the STL-functionalization was present. All haloperidol-loaded nanoparticle formulations were found to be highly effective at inducing catalepsy, while intranasal administration of STL-functionalized nanoparticles using the intranasal spray device increased the brain tissue haloperidol concentrations by 2-3.5 fold compared to STL-functionalized particles administered intranasally with a pipette. For the first time, brain tissue concentrations of rhodamine-labelled microgels confirmed that microgels are capable of passing the blood-brain barrier and that this uptake is size dependent. These formulations demonstrate promise in the reduction of the drug dose necessary to produce a therapeutic effect with antipsychotic drugs for the treatment of schizophrenia using a non-invasive route of administration.</p> / Master of Science (MSc)
246

LUNG DISPOSITION MODEL-BASED ANALYSES OF CLINICAL PHARMACOKINETIC PROFILES FOR INHALED DRUGS

Raut, Anuja 01 January 2017 (has links)
There has been a desire to accurately interpret the inhaled pharmacokinetic (PK) profiles of drugs in humans to aid successful inhaled drug and product developments. However, challenges are layered, as 1) the drug dose delivered to the lung (DTL) from inhalers is a portion of the formulated dose but rarely determined; 2) lung delivery and regional deposition differ, depending on drug, formulation and inhaler; 3) drugs are not only absorbed from the lung but may also be from the gastrointestinal (GI) tract; and 4) in addition to absorption into the systemic circulation, multiple non-absorptive processes also eliminate drugs from the lung, such as mucociliary clearance, metabolism, phagocytosis and tissue binding. Hence, this thesis project aims to develop new lung disposition model-based analyses to derive the meaningful kinetic descriptors for lung disposition from inhaled PK profiles in humans. Two approaches, curve fitting- and moment-based approaches, were developed. Both approaches modeled the kinetics of lung disposition rate-controlled by absorption (ka) and non-absorptive loss (knal), assuming no contribution of GI absorption. An exhaustive literature review found necessary data sets for three drugs, tobramycin, calcitonin and ciprofloxacin. In the curve fitting-based approach, each inhaled PK profile was fitted to the lung disposition model, while the DTL was obtained from corresponding -scintigraphic lung deposition and the kinetic parameters of systemic disposition were fixed by separate intravenous PK profile model analysis. In the moment analysis-based approach, the mean lung residence times (MLRT) and the DTL-based bioavailability (FL) were estimated and used to determine the ka and knal values in the lung disposition model, given FL = MLRTka = ka/(ka+knal). The ka and knal values were successfully derived for all the three drugs delivered by dry powder inhalers (DPIs) and/or nebulizers (NEB) through both approaches. Their “goodness-of-fit” was reasonably satisfactory. The ka values appeared to be primarily described by partition-based diffusion affected by the three hydrophilic drug’s molecular weight. In contrast, the knal values differed, yet appeared to become plausible, with a notion of additional non-absorptive confoundedness due to lung tissue binding (tobramycin) and metabolism (calcitonin), in addition to mucociliary clearance. The ka and knal values derived by the two approaches were comparable in majority of the cases. The success of these PK modeling analyses enabled further attempts to identify most influential attributes by simulation. The systemic PK and lung exposure profiles were predicted by simulation upon ±20 % changes in each of the DTL, ka and knal values to examine changes in the systemic PK metrics (Cmax, AUC and Tmax) and local lung exposure metrics (AUClung and LRT0.5). For all three drugs, the Cmax and AUC changes were identical to changes in the DTL without changing the Tmax. In contrast, impacts of the ka and knal changes differed between drugs, depending on the relative contribution of the rate constant to their sum (ka+knal). It appeared that the major contributor of the sum (ka+knal) was that rate-controlling the kinetics of lung disposition. In conclusion, this thesis project has successfully proposed two new approaches of curve fitting and moment-based analysis by accurately deriving the kinetic descriptors of lung disposition (ka and knal) for three drugs from the inhaled PK profiles in humans. Their applications were extended to predict likely changes in the systemic PK and local lung exposure metrics by simulation. While attempts should continue with more drugs, these approaches are believed to be useful in identifying critical attributes to determine the lung disposition kinetics and thus predicting the lung kinetic behavior and systemic PK profiles of new drug entities in humans.
247

Development of Diverse Size and Shape RNA Nanoparticles and Investigation of their Physicochemical Properties for Optimized Drug Delivery

Jasinski, Daniel L. 01 January 2017 (has links)
RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo. In vivo biodistribution and pharmacokinetics are affected by the physicochemical properties, such as size, shape, stability, and surface chemistry/properties, of the nanoparticles being delivered. RNA has an inherent advantage for nanoparticle construction as each of these properties can be finely tuned. The focus of this study is as follows: (1) Construction of diverse size and shape RNA nanoparticles with tunable physicochemical properties; (2) Investigation of the effect that size, shape, and nanoparticle properties have on in vivo biodistribution; (3) Development of drug encapsulation and release mechanism utilizing RNA nanotechnology; and (4) Establishment of large-scale synthesis and purification methods of RNA nanoparticles. In (1), RNA triangle, square, and pentagon shaped nanoparticles were constructed using the phi29 pRNA-3WJ as a core motif. Square nanoparticles were constructed with sizes of 5, 10, and 20 nanometers. The RNA polygons were characterized by AFM to demonstrate formation of their predicted geometry per molecular models. Furthermore, the properties of RNA polygons were tuned both thermodynamically and chemically by substitution of nucleic acid type used during nanoparticle assembly. In (2), the biodistribution of RNA nanosquares of diverse sizes and RNA polygons of diverse shapes were investigated using tumor models in nude mice. It was found that increasing the size of the nanosquares led to prolonged circulation time in vivo and higher apparent accumulation in the tumor. However, it was observed that changing of shape had little effect on biodistribution. Furthermore, the effect of the hydrophobicity on RNA nanoparticles biodistribution was examined in mouse models. It was found that incorporation of hydrophobic ligands into RNA nanoparticles causes non-specific accumulation in healthy organs, while incorporation of hydrophilic ligands does not. Lower accumulation in vital organs of hydrophobic chemicals was observed after conjugation to RNA nanoparticles, suggesting RNA has the property to solubilize hydrophobic chemicals and reduce accumulation and toxicity in vital organs. In (3), a 3D RNA nanoprism was constructed to encapsulate a small molecule fluorophore acting as a model drug. The fluorophore was held inside the nanoprism by binding to an RNA aptamer. The ability of the stable frame of the nanoprism to protect the fragile aptamer inside was evidenced by a doubling of the fluorescent half-life in a degrading environment. In (4), a method for large-scale in vitro synthesis and purification of RNA nanoparticles was devised using rolling circle transcription (RCT). A novel method for preparing circular double stranded DNA was developed, overcoming current challenges in the RCT procedure. RCT produced more than 5 times more RNA nanoparticles than traditional run-off transcription, as monitored by gel electrophoresis and fluorescence monitoring. Finally, large-scale purification methods using rate-zonal and equilibrium density gradient ultracentrifugation, as well as gel electrophoresis column, were developed.
248

Development of clinically relevant in vitro performance tests for powder inhalers

Wei, Xiangyin 01 January 2015 (has links)
While realistic in vitro testing of dry powder inhalers (DPIs) can be used to establish in vitro–in vivo correlations (IVIVCs) and predict in vivo lung doses, the aerodynamic particle size distributions (APSDs) of those doses and their regional lung deposition remains unclear. Four studies were designed to improve testing centered on the behavior of Novolizer®. Different oropharyngeal geometries were assessed by testing different mouth-throat (MT) models across a realistic range of inhalation profiles (IPs) with Salbulin® Novolizer®. Small and large Virginia Commonwealth University (VCU) and Oropharyngeal Consortium (OPC) models produced similar ranges for total lung dose in vitro (TLDin vitro), while results for medium models differed significantly. While either group may be selected to represent variations in oropharyngeal geometry, OPC models were more difficult to use, indicating that VCU models were preferable. To facilitate simulation of human IPs through DPIs, inhalation profile data from a VCU clinical trial were analyzed. Equations were developed to represent the range of flow rate vs. time curves for use with DPIs of known airflow resistance. A new method was developed to couple testing using VCU MT models and simulated IPs with cascade impaction to assess the APSDs of TLDin vitro for Budelin® Novolizer®. This method produced IVIVCs for Budelin’s total lung dose, TLD, and was sufficiently precise to distinguish between values of TLDin vitro and their APSDs, resulting from tests using appropriately selected MT models and IPs. For example, for slow inhalation, TLD values were comparable in vivo and in vitro; TLDin vitro ranged from 12.2±2.9 to 66.8±1.7 mcg aerosolized budesonide while APSDs in vitro had mass median aerodynamic diameters of 3.26±0.27 and 2.17±0.03 µm, respectively. To explore the clinical importance of these variations, a published computational fluid dynamic (CFD) model was modified and coupled to accept the output of realistic in vitro tests as initial conditions at the tracheal inlet. While simplified aerosol size metrics and flow conditions used to shorten CFD simulations produced small differences in theoretical predictions of regional lung deposition, the results broadly agreed with the literature and were generally consistent with the median values reported clinically for Budelin.
249

USING SEMIPHYSIOLOGICALLY-BASED PHARMACOKINETIC (SEMI-PBPK) MODELING TO EXPLORE THE IMPACT OF DIFFERENCES BETWEEN THE INTRAVENOUS (IV) AND ORAL (PO) ROUTE OF ADMINISTRATION ON THE MAGNITUDE AND TIME COURSE OF CYP3A-MEDIATED METABOLIC DRUG-DRUG INTERACTIONS (DDI) USING MIDAZOLAM (MDZ) AS PROTOTYPICAL SUBSTRATE AND FLUCONAZOLE (FLZ) AND ERYTHROMYCIN (ERY) AS PROTOTYPICAL INHIBITORS

Li, Mengyao 01 January 2016 (has links)
The purpose of the project was to investigate the impact of IV and PO routes difference for MDZ, a prototypical CYP3A substrate, and two CYP3A inhibitors (CYP3AI) -FLZ and ERY-, on the magnitude and time course of their inhibitory metabolic DDI. Individual semi-PBPK models for MDZ, FLZ and ERY were developed and validated separately, using pharmacokinetic (PK) parameters from clinical/in-vitro studies and published physiological parameters. Subsequently, DDI sub-models between MDZ and CYP3AIs incorporated non-competitive and mechanism-based inhibition (MBI) for FLZ and ERY, respectively, on hepatic and gut wall (GW) CYP3A metabolism of MDZ, using available in-vitro/in-vivo information. Model-simulated MDZ PK profiles were compared with observed data from available clinical PK and DDI studies, by visual predictive check and exposure metrics comparison. DDI magnitude and time course for CYP3AI (IV vs. PO) followed by MDZ (IV vs. PO) at various time points were predicted by the validated semi-PBPK-DDI models. Two hypothetical CYP3A substrates and four CYP3AI (derived from MDZ, FLZ and ERY, with GW metabolism removed, hepatic metabolism reduced, or oral bioavailability (Foral) and/or elimination half-life (t1/2) modified) were also simulated to generalize conclusions. The final semi-PBPK-DDI models predict well the PK profiles for IV/PO MDZ in absence/presence of IV/PO CYP3AI, with deviations between model-predicted and observed exposure metrics within 30%. Prospective simulations demonstrate that: 1) CYP3A substrates, e.g., MDZ, are consistently more sensitive to metabolic inhibition after PO than after IV administration, due to pre-systemic hepatic and/or GW metabolism. For substrates without GW metabolism and limited hepatic metabolism, only a marginal route difference for substrate administration is observed. 2) For high-Foral CYP3AIs, e.g., FLZ, no inhibitor IV-PO route DDI differences are expected, unless they are given simultaneously with PO MDZ. 3) For low-Foral CYP3AIs, e.g., ERY, greater inhibition is expected after IV than after PO administration for IV MDZ, but is difficult to predict for PO MDZ. 4) In addition to Foral and plasma t1/2 of CYP3AIs, the DDI onset, peak and duration are determined by their oral absorption rate and by the resulting hepatic and/or GW concentration profiles relative to Ki for noncompetitive CYP3AIs, but by CYP3A kinetics (synthesis, degradation rate) for MBI CYP3AIs.
250

Enhanced Singlet Oxygen Generation and Antimicrobial Activity of Methylene Blue Coupled with Graphene Quantum Dots as an Effective Photodynamic Therapy Agent

Kholikov, Khomidkhodzha 01 July 2018 (has links)
Growing resistance of bacteria towards antibiotics resulted in extensive research effort for development and application of new materials and techniques. Due to their unique properties, graphene quantum dots (GQDs) have attracted much attention and are a promising material with potential applications in many fields. One use of GQDs is as a photodynamic therapy agent that generates singlet oxygen. In this work, GQDs synthesized by focusing nanosecond laser pulses into a mixture of benzene and nickel(II) oxide were combined with methylene blue (MB) to eradicate Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. Theoretical calculation of pressure evolution was calculated using the standard finite difference method. Detailed characterizations were performed with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), UV-Visible (UV-Vis), and photoluminescence (PL) spectra. Furthermore, singlet oxygen generation from MB-GQD mixture was investigated by measuring the rate of 9,10-anthracenediyl-bis(methylene) dimalonic acid photobleaching at 400 nm. Combining MB with GQDs caused enhanced singlet oxygen generation, leading to improved bacterial deactivation rate. The (3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to determine if GQDs in dark conditions caused human cellular side-effects and affected cancer and noncancer cellular viability. We found that even high concentrations of GQDs do not alter viability under dark conditions. These results suggest that the MB-GQD combination is a promising photodynamic therapy agent that may be useful when antibiotics resistance is present.

Page generated in 0.0964 seconds