• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 38
  • 38
  • 18
  • 17
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fundamental Analysis of the Interaction of Low Pressure Plasmas with Polymer Surfaces

Bach, Markus 25 November 2003 (has links)
The treatment of polymer surfaces by low pressure plasmas is of technological interest in a variety of applications for modification and functionalisation. Until now the interactions of the individual plasma species (especially electrons) with polymeric material have not been subject of a microscopic study.In an anticipated chapter the inner plasma parameters were characterised by Langmuir probe measurements, leading to a precise knowledge about the density and energy distributions of plasma electrons and ions. The values for electrons were later used for an exclusive treatment with this species. The main part of this thesis describes and interprets the chemical composition after UV, plasma and electron treatment by x-ray photoelectron spectroscopy (XPS), structural changes by atomic force microscopy (AFM) and their combination to distinguish the fundamental interactions with polyethylene and polypropylene surfaces. It was found that all treatments show specific modification behaviour according to the chemical composition, topography and modification depth. For an argon microwave discharge, the plasma effects can also be obtained by a combination of UV and electron treatment. Fundamental radical reactions have been traced indirectly by chemical derivatisation as well as their passivation reactions through cross-linkage and the creation of double bonds.
12

Die autokatalytische H 2 O 2 -Reduktion an Ag-Elektroden

Eickes, Christian 31 May 2001 (has links)
Es konnte vor kurzem gezeigt werden, daß die Reduktion von Wasserstoffperoxid (H2O2) an Silber in Perchlorsäure (HClO4) über zwei parallele Wege verläuft. Die normale Reduktion wird bei einer Überspannung von -1,5 V beobachtet, während die zweite Reduktionsreaktion bei einer deutlich geringeren Überspannung bei -1,0 V stattfindet. Im zweiten Reaktionsweg wird OHad als instabile Zwischenspezies gebildet und wirkt katalytisch auf die H2O2-Reduktion. Daher wird angenommen, daß die zweite Reaktion eine autokatalytische Reduktion ist. Diese autokatalytische Reaktion wird nach einer ge-wissen Zeit deaktiviert, die von der Rotationsgeschwindigkeit der Elektrode abhängig ist. Sie kann wiedererlangt werden, wenn die Elektrode negativ polarisiert wird. In dieser Arbeit wurden Ex-situ-XPS-Messungen an herausgezogenen Ag(111)-Elektroden durch-geführt. Die Analyse führt zu dem Ergebnis, daß die Deaktivierung durch geringe Chlorid-Verunreinigungen verursacht wird. Elektrochemische Impedanzspektren werden zusammen mit numerischen Simulationen der Faradayschen Impedanz des autokata-lytischen Bereiches gezeigt. Diese basieren auf Annahmen von kinetischen Geschwin-digkeitsgesetzen, die früher postuliert wurden. Die experimentellen Daten stimmen sehr gut mit den Ergebnissen der theoretischen Rechnungen überein. Dies unterstützt den angenommen autokatalytischen Mechanismus. / Recently, it was shown that the hydrogen peroxide (H2O2) reduction on silver in perchloric acid (HClO4) proceeds in two parallel paths. The normal reduction is observed at an overpotential of -1.5 V, whereas a second reduction reaction occurs at a significantly lower overpotential at -1.0 V. The second reaction involves the unstable intermediate OHad, which also acts as a catalyst. Hence, the second reaction has been proposed to be an autocatalytic one. This autocatalytic reaction is deactivated after a certain time that depends on the rotation speed of the electrode. It can be recovered if the electrode is negatively polarized. In this thesis work, ex-situ XPS measurements on emersed Ag(111) electrodes were conducted. The analysis leads to the conclusion that the deactivation is caused by a small amount of chloride contamination. Electrochemical impedance spectra are presented together with numerical simulations for the faradaic impedance in the autocatalytic region based on previously suggested kinetic rate laws. The experimental data fit well with the results of the theoretical calculations, which strongly supports the autocatalytic mechanism.
13

Development Of High Performance Uncooled Infrared Detector Materials

Kebapci, Basak 01 February 2011 (has links) (PDF)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in microbolometers by Honeywell, who provides its recipe with license agreements, and there is not much information in the literature for its deposition recipe. This is the first study at METU for development of vanadium oxide thin film for microbolometers. The VOx material deposition studies started by identifying the deposition parameters of the magnetron sputtering system in order to obtain proper VOx resistors for the readout electronics. The obtained recipe includes high temperature deposition conditions of VOx, however, this causes a diffusion problem on the electrodes, preventing to obtain a good contact to VOx. Also, high oxygen level in the depositions makes a contamination on the electrodes. A number of studies were done to determine a proper electrode material which is proper with the deposition conditions of the VOx. Characterization of the vanadium oxide samples is done by XRD and XPS measurements to see the relation between the phases and resistivity of the vanadium oxide. It is known that V2O5 phase provides a high TCR and resistivity value, and the XRD results show that this phase is dominant in the highly-oxygen doped or annealed resistors. The TCR and noise measurements are done using resistors implemented with the developed VOx film, after the etching processes of the both VOx and the electrodes are optimized. The contamination on the electrodes is prevented by the help of a newly designed process. The TCR measurement results show that annealing of the resistors affect the TCR values, i.e., increasing the annealing duration increases the TCR values of the resistors. Two different resistors with different deposition conditions are annealed to see the effect of annealing, where TCR results of the resistors are -0.74%/K and -0.8 %/K before annealing. The TCR values of these resistors increase to -1.6 %/K and -4.35 %K, respectively, after annealing in same conditions, showing that both the deposition conditions and annealing change the TCR significantly. Although good TCR values are obtained, the noise values of the VOx resistors are much higher than the expected values, which suggest a further study to determine the cause of this noise.
14

Development Of High Performance Active Materials For Microbolometers

Eroglu, Numan 01 September 2011 (has links) (PDF)
This thesis reports the development of Vanadium Tungsten Oxide (VWO) film as an active detector material for uncooled infrared detectors by using the reactive DC magnetron co-sputtering method. VWO is a doped form of the Vanadium Oxide (VOx) which is known as a prominent material for uncooled infrared detectors with its high TCR, low resistivity, and low noise properties. VOx is a widely preferred material for commercialized uncooled infrared detectors along with its drawbacks. Fabrication is fairly difficult due to its unstable material properties and the need for low process temperatures for a monolithic, CMOS compatible surface micromachining process. Hence, a new material with high performance and easier fabrication is needed. This thesis is the first study at METU on the development of high-performance VWO as an active detector material for uncooled infrared detectors. Deposition studies of VWO primarily started by measuring the effects of deposition parameters upon the magnetron sputtering system. Because the high effectiveness of the tungsten doping has been obtained for the doping level below 10% according to literary information, maximum vanadium (V) deposition rate together with minimum tungsten (W) deposition rate has been initially aimed. TCR of the VWO films has been measured between -2.48 %/K and -3.31 %/K, and the variation of noise corner frequency from 0.6 kHz to 8 kHz has been observed. In addition to these results of VWO, a favorable VOx recipe which has the highest performance done at METU in terms of resistance, TCR, noise and uniformity has also attained during the studies. Structural characterization of VWO is achieved using XPS, XRD, and AFM characterization techniques. Other than the sputtering parameters, post-annealing process and oxygen plasma exposure was examined as well. A general observation of the post-annealing is that it decreases not merely the TCR but also the noise of the deposited film. A short-period oxygen plasma exposure has a constructive effect on the noise behavior. Fabricated vanadium tungsten oxide with sandwich type resistor structure shows very close but better bolometric properties when compared with the yttrium barium copper oxide (YBCO), which is another material being studied in scope of other theses at METU. XPS, XRD and AFM characterization methods have been used for the structural characterization of vanadium-tungsten-oxide.
15

Surface chemistry of a Cu(I) beta-diketonate precursor and the atomic layer deposition of Cu2O on SiO2 studied by x-ray photoelectron spectroscopy

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Gessner, Thomas, Lang, Heinrich, Mothes, Robert, Tuchscherer, Andre 07 July 2014 (has links) (PDF)
This article has been published online on 21st May 2014, in Journal of Vacuum Science & Technology A: Vac (Vol.32, Issue 4): http://scitation.aip.org/content/avs/journal/jvsta/32/4/10.1116/1.4878815?aemail=author DOI: 10.1116/1.4878815 This article may be accessed via the issue's table of contents at this link: http://scitation.aip.org/content/avs/journal/jvsta/32/4?aemail=author The surface chemistry of the bis(tri-n-butylphosphane) copper(I) acetylacetonate, [(nBu3P)2Cu(acac)], and the thermal atomic layer deposition (ALD) of Cu2O using this Cu precursor as reactant and wet oxygen as co-reactant on SiO2 substrates are studied by in-situ X-ray photoelectron spectroscopy (XPS). The Cu precursor was evaporated and exposed to the substrates kept at temperatures between 22 °C and 300 °C. The measured phosphorus and carbon concentration on the substrates indicated that most of the [nBu3P] ligands were released either in the gas phase or during adsorption. No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. However, disproportionation of the Cu precursor was observed at 200 °C, since C/Cu concentration ratio decreased and substantial amounts of metallic Cu were present on the substrate. The amount of metallic Cu increased, when the substrate was kept at 300 °C, indicating stronger disproportionation of the Cu precursor. Hence, the upper limit for the ALD of Cu2O from this precursor lies in the temperature range between 145 °C and 200 °C, as the precursor must not alter its chemical and physical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigations depicted a homogeneous, fine, and granular morphology of the Cu2O ALD film on SiO2. AFM investigations suggest that the deposited Cu2O film is continuous on the SiO2 substrate.
16

Spectroscopic ellipsometry for the in-situ investigation of atomic layer depositions

Sharma, Varun 15 May 2014 (has links)
Aim of this student research project was to develop an Aluminium Oxide (Al2O3 ) ALD process from trimethylaluminum (TMA) and Ozone in comparison of two shower head designs. Then studying the detailed characteristics of Al2O3 ALD process using various measurement techniques such as Spectroscopic Ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). The real-time ALD growth was studied by in-situ SE. In-situ SE is very promising technique that allows the time-continuous as well as time-discrete measurement of the actual growth over an ALD process time. The following ALD process parameters were varied and their inter-dependencies were studied in detail: exposure times of precursor and co-reactant as well as Argon purge times, the deposition temperature, total process pressure, flow dynamics of two different shower head designs. The effect of varying these ALD process parameters was studied by looking upon ALD cycle attributes. Various ALD cycle attributes are: TMA molecule adsorption (Mads ), Ligand removal (Lrem ), growth kinetics (KO3 ) and growth per cycle (GPC).:List of abbreviations and Symbols ........................XII Lists of Figures and Tables ...................................XVIII 1 Introduction .......................................................1 I Theoretical Part ..................................................3 2 Alumina in electronic industry ............................5 3 Atomic Layer Deposition ....................................7 3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Process definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Benefits and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 ALD growth mechanism of Aluminium oxide from TMA/O 3 . . . . . . . . 9 3.5 Growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6 Comparison of TMA/O3 and TMA/H2O – A literature survey . . . . 14 4 Spectroscopic Ellipsometry .....................................................17 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Measuring Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Fitting and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 Advantages and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 X-Ray Photoelectron Spectroscopy ..............................................25 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 XPS mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 XPS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 Advantages and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Atomic Force Microscopy .............................................................29 II Experimental Part ......................................................................31 7 Methodologies ............................................................................33 7 .1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7 .2 ALD process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7 .3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7 .4 Spectroscopic Ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 .4.1 Tool and software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 .4.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 .4.3 Data evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7 .4.4 Post processing of data . . . . . . . . . . . . . . . . . . . . . . . . . 41 7 .4.5 Sources of errors in SE . . . . . . . . . . . . . . . . . . . . . . . . . 43 8 Results and discussion ..........................................................47 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2 Kinetic ALD characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . 48 8.2.1 TMA exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.2.2 Argon purging after TMA exposure . . . . . . . . . . . . . . . . . . . 50 8.2.3 Ozone exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.2.4 Argon purging after ozone exposure . . . . . . . . . . . . . . . . . . 52 8.3 Impact of process parameters on characteristic ALD growth attributes and film properties . . . . . . . . . .. . . . . . . . . . . . . . . . 53 8.3.1 Total process pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.3.2 Ozone flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.3.3 Deposition temperature . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.4 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9 Conclusions and outlook .......................................................63 References ...............................................................................68 III Appendix .............................................................................77 A Reference temperatures and ozone flow.............................. 79 B Process parameters ..............................................................81
17

In-situ XPS Investigation of ALD Cu2O and Cu Thin Films after Successive Reduction

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Moeckel, Stefan, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links)
This talk was presented in the 14th International Conference on Atomic Layer Deposition (ALD 2014) in Kyoto, Japan on 18th June 2014. Abstract Atomic Layer Deposition (ALD) is emerging as a ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate [(nBu3P)2Cu(acac)] (1) used as Cu precursor, has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. It was found that the subsequent gas-phase reduction of the Cu2O films can be aided by introducing catalytic amounts of a Ru precursor into the Cu precursor, so that metallic copper films could potentially obtained also on non-catalytic substrates [3, 4]. In this work, in situ X-ray photoelectron spectroscopy (XPS) investigation of the surface chemistry during Cu2O ALD from the mixture of 99 mol % of 1 and 1 mol % of [Ru(η5 C5H4SiMe3)(η5-C7H11)] (2) as ruthenium precursor, and the reduction of Cu2O to metallic Cu by formic acid carried out on SiO2 substrate are demonstrated. Oxidation states of the Cu in the film are identified by comparing the Cu Auger parameter (α) [5] with literature data. α calculated after ALD equals 362.2 eV and after reduction equals 363.8 eV, comparable to the Cu2O and metallic Cu in thin-films [6] respectively. In addition, <10 % of Cu(I), Cu(II), and Cu(OH)2 species are identified from the Cu 2p3/2 and Cu L3VV Auger spectrum after reduction. Consequently, the ALD Cu2O is successfully reduced to metallic copper by in-situ thermal reduction using formic acid. [1] T. Waechtler et al., J. Electrochem. Soc., 156 (6), H453 (2009). [2] T. Waechtler et al., Microelectron. Eng., 88, 684 (2011). [3] S. Mueller et al., Conference Proceedings SCD 2011, Semiconductor Conference Dresden, pp. 1-4. [4] T. Waechtler et al., US Patent Application Publication, US 2013/0062768. [5] C. D. Wagner, Faraday Discuss. Chem. Soc., 60, 291 (1975). [6] J. P. Espinós et al., J. Phys. Chem. B, 106, 6921 (2002).
18

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>
19

Surface characterization and functional properties of carbon-based materials

Nelson, Geoffrey Winston January 2012 (has links)
Carbon-based materials are poised to be an important class of 21st century materials, for bio-medical, bio-electronic, and bio-sensing applications. Diamond and polymers are two examples of carbon-based materials of high interest to the bio-materials community. Diamond, in its conductive form, can be used as an electrochemical bio-sensor, whilst its nanoparticle form is considered a non-inflammatory platform to deliver drugs or to grow neuronal cells. Polymers, especially when chemically modified, have been used extensively in biological environments, from anti-microbial use to drug delivery. The large-scale use of either material for biological use is limited by two factors: ease of chemical modification and the paucity of knowledge of their surface chemistry in aqueous media. This thesis addresses aspects of both these issues. The first study reported is an in situ study of the adsorption dynamics of an exemplar globular protein (bovine serum albumin, BSA) on nanodiamond using the relatively novel quartz crystal microbalance with dissipation (QCM-D) technique. For the first time, QCM-D enabled the detailed study of protein dynamics (i.e. kinetics, viscoelastic properties, overlayer structure, etc.) onto nanodiamond thin films having various surface chemistry and roughness. The dynamics of protein adsorption is found to be sensitive to surface chemistry at all stages of adsorption, but it is only sensitive to surface roughness during initial adsorption phases. Our understanding of the nanodiamond-biology interface is enhanced by this study, and it suggests that QCM-D is useful for the study of the surface chemistry of nanoparticle forms of inorganic materials. A second study concerns a novel surface functionalization scheme, based on carbene and azo-coupling chemistry, which has been recently introduced as a practical, facile method for modifying the surfaces of polymers. Using modern surface characterization techniques, it is demonstrated that a chemical linker can be attached to polystyrene surfaces using carbene-based chemistry, and that further chemical functionality can be added to this chemical linker via an azo-coupling reaction. In situ studies of protein dynamics at these interfaces were conducted using QCM-D, thus enabling a link between specific protein behaviour and the polymer surface chemical termination chemistry to be made. A third area of study of investigates the use of diamond electrodes as a bio-sensor for dopamine under physiological conditions. For these conditions, ascorbic acid interferes with the dopamine oxidation signal, in ways that render the two signals irresolvable. Various modifications are used in attempts to reduce this interference, including: small and large cathodic treatments, grafting of electro-active polymers, addition of carbon nanotubes, and hydrogen plasma treatment. Those modifications leading to the hydrogen-termination of diamond are shown to work the best. Notably, hydrogen plasma treatment effects the complete electrochemical separation of dopamine and ascorbic acid at a diamond electrode. This is the first time this has been accomplished without adding non-diamond materials to the diamond electrode surface.
20

Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and Lasers

Rander, Torbjörn January 2007 (has links)
<p>Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects.</p><p>In this thesis, some atomic, molecular and cluster systems (clusters of O<sub>2</sub>, CH<sub>3</sub>Br, Ar/O<sub>2</sub>, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using <i>ab initio</i> methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of <i>ab initio</i> and molecular dynamics (MD) methods.</p><p>Results on the dissociation behavior of CH<sub>3</sub>Br and O<sub>2</sub> molecules in clusters are presented. The dissociation of the Na<sub>2</sub> molecule has been characterized and the molecular field splitting of the Na 2<i>p</i> level in the dimer has been measured. The molecular field splitting of the CH<sub>3</sub>Br 3<i>d</i> level has been measured and the structure of CH<sub>3</sub>Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O<sub>2</sub>, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.</p>

Page generated in 0.0973 seconds