• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 121
  • 45
  • Tagged with
  • 347
  • 146
  • 128
  • 101
  • 97
  • 87
  • 83
  • 80
  • 61
  • 57
  • 56
  • 55
  • 55
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Photosensitization of elastomeric polymers based on pdms for photonics and laser applications

Rih Hlil, Antsar 21 November 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / Le polydiméthylsiloxane (PDMS) est un matériau polyvalent en raison de sa biocompatibilité, de son inertie, de sa durabilité, de son élasticité, de sa transparence, de son faible coût, de sa grande disponibilité et de sa facilité de fabrication. Ce matériau a prouvé son importance dans de nombreux domaines en agissant comme matériau hôte pour les nanoparticules et le milieu de gain pour produire un système laser aléatoire largement ajustable. La photosensibilité des matériaux est un paramètre clé pour la fabrication de dispositifs pour une variété d'applications telles que les télécommunications, la détection et les lasers. Par conséquent, cette thèse porte sur une méthodologie expérimentale de fabrication de nouveaux matériaux photosensibles à base de PDMS ainsi que sur l'élaboration d'un laser aléatoire élastomère stable (SERL) composé en combinaison avec un matériau inorganique, Nd:YAB (NdxY1-xAl₃B₄O₁₂), les intégrer dans des guides d'ondes photoniques en silicone et explorer leurs applications. Tout d'abord, des stratégies ont été développées pour rendre le PDMS photosensible pour l'écriture femtoseconde (fs). Nous avons utilisé un laser femtoseconde pour écrire directement dans les PDMS, ainsi que de matériaux vitreux photosensibles sous la forme de PDMS chargés de nouveaux dérivés de germanium (Ge) et d'autres initiateurs pouvant agir en tant que photosensibilisateurs, afin d'obtenir le changement d'indice de réfraction le plus élevé sans compromettre de manière significative, conduisant à une écriture optimale de guides d'ondes ou de dispositifs photoniques dans un tel hôte souple. De plus, des réseaux de diffraction de Bragg hautement accordables ont été intégrés à l'intérieur des PDMS. Pour le développement de futurs dispositifs, nous avons exploré l'effet de l'écriture laser fs sur la structure du polymère ainsi que de leurs propriétés mécaniques et optiques. Ensuite, dans la deuxième approche de cette étude de doctorat, un système de laser aléatoire élastomère (SERL) très stable composé de deux matériaux stables : nanoparticules inorganiques Nd:YAB (NdₓY₁₋ₓ Al₃(BO₃)₄) et polydiméthylsiloxane (PDMS) a été fabriqué. Ce RL très stable est le premier système élastomère, donc accordable, qui permet l'étude systématique de la stabilité. Nous avons pu explorer les aspects d'adaptabilité du système RL en étirant le composite PDMS et en explorant l'aspect multidirectionnel du laser. En tant qu'application nécessitant un fonctionnement à long terme, un comportement statistique de type Lévy a également été démontré. / Polydimethylsiloxane (PDMS) is a versatile material due to its biocompatibility, inertness, durability, elasticity, transparency, low cost, wide availability, and ease of manufacture. This material has proved its importance in many fields by acting as a host material for nanoparticles and gain medium to produce a widely tunable random lasing system. Photosensitivity of materials has been shown to be a key parameter for the fabrication of devices for a variety of applications such as in telecommunications, sensing and lasers. Hence, this thesis involves the experimental methodology for fabricating novel photosensitive materials based on PDMS as well as the realization of a Stable Elastomeric Random Laser (SERL) composed in combination with an inorganic material, Nd:YAB (NdₓY₁₋ₓAl₃B₄O₁₂), for integration into silicone photonic waveguides and exploration of potential applications. Firstly, a strategy has been developed to render PDMS photosensitive for femtosecond (fs) writing. We then used a femtosecond laser to write directly into PDMS, as well as into a new photosensitive glassy material in the form of PDMS loaded with novel germanium (Ge)-derivatives and other initiators as photosensitizers. This combination yielded a higher refractive index material for optimal writing of waveguides or photonic devices in a very soft host. In addition, for the first time to the best of our knowledge, highly tunable Bragg diffraction gratings were embedded inside the bulk PDMS. For future device engineering, the effect of fs laser writing on the polymer structure, mechanical and optical properties has been explored. Then, in the second approach of a very stable elastomeric random laser (SERL) system composed of two stable materials: inorganic Nd:YAB (NdₓY₁₋ₓ Al₃(BO₃)₄)-nanoparticles and polydimethylsiloxane (PDMS) has been fabricated. This very stable RL is the first elastomeric system, hence tunable, which allows the systematic investigation of stability. The tunability aspects of the RL system has been investigated by stretching the PDMS composite and explored the multi-directionality of lasing. As an application which requires long term operation, Levy-like statistical behavior were also demonstrated.
42

Polarization management : an efficient polarization rotator splitter on silicon-on-insulator platform

Sherafati, Bahareh 03 August 2018 (has links)
Ce mémoire vise à étudier la gestion de la polarisation et est axé sur la conception, la simulation et la fabrication d'un rotateur séparateur de polarisation (PSR) sur des plates-formes en silicium en utilisant une structure combinant un cône adiabatique à deux niveaux et un coupleur adiabatique. Après une introduction sur les systèmes de communication optique, spécifiquement sur les systèmes photoniques intégrés, nous introduisons le silicium sur isolateur (SOI) comme plateforme la plus attrayante pour notre circuit photonique intégré. Bien que la propriété intrinsèque de contraste élevé de SOI entraîne la petite taille de la puce, cette propriété entraîne également une forte dépendance de polarisation pour les dispositifs silicium photoniques (SiP). Pour résoudre le problème et supprimer cette dépendance, des circuits de diversité de polarisation ont été proposés et il est important de traiter la gestion de la polarisation sur la puce. Dans ce mémoire, le principe général de fonctionnement de la gestion de la polarisation est étudié en profondeur. Comme la rotation de polarisation est la fonction la plus importante de la gestion de la polarisation, nous nous concentrons sur les principes de base de la rotation de polarisation dans un dispositif à section unique. Nous discutons également de différents types de rotateurs de polarisation et donnons une introduction à l'évolution historique des rotateurs de polarisation. Enfin, les séparateurs de polarisation sont présentés comme le deuxième élément important dans la gestion de la polarisation, et différents types de séparateurs de polarisation sont présentés. Pour gérer efficacement la polarisation, il est essentiel de développer un PSR haute performance. Par conséquent, nous introduisons une structure efficace qui est basée sur la conversion de mode TM0-TE1 dans une conicité (taper) à deux niveaux sur SOI. Nous expliquons et motivons ce choix. Ensuite, nous décrivons la modélisation avec le logiciel Lumerical Finite Difference Time Domain (FDTD) ; les résultats de la simulation fournissent l'évolution des profils d'intensité des modes le long du dispositif. Par la suite, nous présentons les détails de la disposition sur la carte (layout) pour la fabrication et la caractérisation éventuelle des conceptions utilisant des coupleurs de bordure (edge couplers), ainsi que des conceptions utilisant des coupleurs à réseau (grating couplers). Pour évaluer la performance du PSR conçu pour deux applications différentes, nous proposons un modèle mathématique et iv les matrices de transfert. Enfin, la performance du PSR proposé est analysée dans un système de communication optique. / This thesis aims to study polarization management, and focuses on design, simulation and fabrication layout of a polarization splitter rotator (PSR) on silicon platforms by utilizing a structure combining an adiabatic bi-level taper and an adiabatic coupler. Following an introduction about optical communication systems and specifically integrated photonic systems, we introduce silicon-on-isolator (SOI) as the most attractive platform for our integrated photonic circuit. Although the intrinsic high-index contrast property of SOI leads to a very small footprint, this property also results in high polarization dependence for silicon photonic (SiP) devices. To solve the problem and remove this dependency, polarization diversity circuits have been proposed and it is important to deal with on-chip polarization management. In this thesis, the general operating principle of polarization management is thoroughly studied. As polarization rotation is the most important function of polarization management, we concentrate on the basic principles of polarization rotation in a single section device. We also discuss different types of polarization rotators and give an introduction to the historic evolution of polarization rotators. Finally, polarization beam splitters are introduced as the second important element in polarization management, and different types of polarization splitters are presented. To efficiently manage polarization, it is critical to develop a high performance PSR. Therefore, we introduce an efficient structure that is based on TM0-TE1 mode conversion in a bi-level taper on SOI. We explain and motivate that choice. Afterwards, we describe the modeling in Finite Difference Time Domain (FDTD) Lumerical software; simulation results provide the evolution of mode intensity profiles along the device. Subsequently, we present the layout details for fabrication and eventual characterization for designs using edge couplers, as well as designs using grating couplers. To evaluate the performance of the designed PSR for two different applications, we propose a mathematical model and the transfer matrices. Finally, the performance of the proposed PSR is analyzed in an optical communication system.
43

Intégration photonique : développements de coupleurs évanescents à haute performance et technologies associées

Beaudin, Guillaume January 2015 (has links)
La photonique sur silicium a le potentiel de rendre des technologies de télécommunication optiques accessibles au grand public. Alors que l’indice de réfraction élevé du silicium permet de fabriquer des circuits photoniques intégrés (CPI) compacts, il rend difficile l’injection de lumière sur les puces de silicium. Pour faciliter le transfert de lumière d’une fibre optique vers un guide d’onde en silicium, une plateforme technologique nommée coupleur évanescent optimisé pour les différences d’indice de réfraction élevées (CEIRE) a été développée à l’Université de Sherbrooke. Afin d’appuyer cette méthode d’injection, des technologies complémentaires ont également été étudiées.
44

Etude de structures hybrides couches minces organiques/boîtes quantiques semiconductrices inorganiques

Lin, Hung-Ju 12 December 2013 (has links) (PDF)
Les nanocristaux de semi-conducteurs, ou boites quantiques, trouvent leur application dans de nombreux domaines. Pendant cette thèse nous avons étudié les propriétés optiques de couches minces nanocomposites de polymère PMMA contenant différentes concentrations de boites quantiques CdSe/ZnS. Les spectres d'absorption et de luminescence peuvent être expliqués par la mécanique quantique. A partir des spectres de luminescence mesurés nous montrons clairement l'effet du couplage entre les boites quantiques. Sous l'effet d'un faisceau pompe à 514nm le spectre de luminescence centré à 560nm évolue fortement au cours du temps. Nous montrons que ces couches luminescentes qui convertissent ainsi les fréquences optiques peuvent permettre d'augmenter l'efficacité de cellules solaires. Par ailleurs, pour bénéficier au mieux du fort rendement de photoluminescence, il est nécessaire de contrôler la répartition spatiale de la lumière émise. Pour contrôler cette répartition une nanostructure bi périodique a été réalisée dans des couches de PMMA contenant les boites quantiques par nano-impression, en utilisant un moule en silicium gravé. La caractérisation de la structure réalisée met en évidence la qualité de la méthode utilisée. On montre également, par la théorie, à la fois que le champ local est résonant dans la structure et que la lumière se répartie en champ lointain dans les directions de diffraction contrôlées par la période du réseau.
45

Piégeage et manipulation d'objets colloïdaux à l'aide de structures photoniques en silicium intégrées dans des puces optofluidiques / Trapping and manipulation of colloidal objects using silicon photonic structures integrated into optofluidic chips

Pin, Christophe 30 June 2016 (has links)
Les champs électromagnétiques évanescents sont à l'origine de forces optiques de champ proche, comme par exemple à la surface de guides d'onde ou de nanocavités photoniques où la lumière se trouve très fortement confinée. Ces forces sans-contact peuvent être avantageusement utilisées pour piéger et manipuler des micro- et nano-objets en solution. Cette thèse a pour but l'étude de ces interactions et de leurs potentielles applications. Le premier chapitre consiste en une brève introduction aux domaines des systèmes colloïdaux et du piégeage optique, notamment en champ proche. Le deuxième chapitre présente les moyens instrumentaux utilisés, ainsi que le procédé mis au point pour la fabrication de puces optofluidiques dotées d'un canal microfluidique. Le troisième chapitre est dédié à l'étude du potentiel de piégeage perçu par des microbilles de 2 $µm$, 1 $µm$ et 500 $nm$ à la surface d'une nanocavité photonique, et aboutit à la notion de microscopie optofluidique en champ proche optique. Dans le quatrième chapitre, nous étudions le comportement dynamique et la manipulation d'agrégats de microbilles piégés en présence d'écoulements. Le dernier chapitre est consacré à l'étude du piégeage et de la manipulation de microbilles à la surface de guides d'onde sous l'action de modes copropagatifs. / Near-field optical forces arise from evanescent electromagnetic fields, such as in the near-field of photonic waveguides and nanocavities where light is highly confined. These contactless forces can be advantageously used to trap and manipulate micro- and nano-objects in solution. This thesis aims at studying these intriguing interactions and investigating their potential applications. The first chapter is an introduction to the fields of colloidal systems and optical trapping, more especially using near-field optical forces. The second chapter presents the experimental setup and the process used to fabricate optofluidic chips with microfluidic channels. The trapping potential experienced by 2 $µm$, 1 $µm$, and 500 $nm$ microbeads at the surface of a photonic nanocavity is studied in the third chapter. Our results lead to the concept of optofluidic near-field optical microscopy. In the fourth chapter, we study the dynamics and the manipulation of trapped microbeads clusters in fluidic flows. The last chapter focuses on the trapping and the manipulation of microbeads at the surface of waveguides using copropagating modes.
46

Oscillateurs optoélectroniques à base de résonateurs silicium pour applications à la génération de signaux hyperfréquences et aux capteurs / Silicon resonators based optoelectronic oscillators for applications in microwave signal generation and sensing

Do, Thi Phuong 02 July 2019 (has links)
Ces travaux portent sur l'insertion de résonateurs en anneau de silicium dans des boucles d’oscillateurs optoélectroniques (OEO) pour la génération de signaux micro-ondes à faible bruit de phase et constituent une contribution à la future intégration complète des systèmes OEO en photonique silicium. L'orientation de l'application qui a été explorée a été d'évaluer la performance de ces systèmes pour la détection de variations d’indice optique en volume. Deux configurations différentes de résonateurs en anneau de silicium à base d'OEO ont été proposées et démontrées : des OEO à base de résonateurs en anneau silicium millimétriques et des OEO accordables à base d’anneaux plus compacts et d'un schéma spécifique de réinjection de porteuse optique.Dans la première approche, le signal optique est utilisé comme porteuse optique, qui est modulée par un modulateur d'intensité qui produit un ensemble de deux bandes latérales dans le domaine optique, tandis que le résonateur en anneau génère un peigne optique qui agit comme un filtre optique, transposant son intervalle spectral libre (ISL) dans le domaine micro-onde. Par le battement des deux raies optiques adjacentes dans un photodétecteur, l’information est ainsi traduite dans le domaine RF. La contribution de notre travail a été de démontrer que la réalisation de résonateurs millimétriques (environ 6mm) en photonique silicium était une approche viable et intéressante pour la réalisation directe d'OEO. Dans les configurations étudiées, les résonateurs en anneau SOI ont été optimisés pour satisfaire la cible requise d'un ISL d’environ 15 GHz et un facteur de qualité optique supérieur à 10^5. Les résultats expérimentaux obtenus ont démontré la viabilité et la stabilité de l'approche proposée, tandis qu’un niveau de bruit de phase de -100dBc/Hz à un décalage de 100 kHz par rapport à la porteuse et une capacité de détection du système d’environ 3,72 GHz/RIU ont été quantifiés pour une variation de l'indice de réfraction comprise entre 1,572 et 1,688, en bon accord avec les résultats des simulations.En complément de cette première étape, nous avons abordé la question très importante de l'accordabilité de la fréquence du signal hyperfréquence généré. À cette fin, nous avons proposé, conçu, puis développé et testé une configuration d’OEO originale, basée sur l'utilisation d'une seule bande de modulation et d'un mécanisme de réinjection de la porteuse optique du laser de la boucle. Dans ce schéma, le signal oscillant est créé par le battement entre le faisceau laser et une bande latérale unique du signal de modulation sélectionnée par un résonateur en anneau. Dans l'implémentation que nous avons réalisée, un résonateur photonique SOI avec un ISL de 77 GHz et un facteur de qualité optique à 8,1×10^4 a été utilisé. En modifiant la fréquence du laser tout en conservant une longueur d'onde de résonance du résonateur fixe, une accordabilité de 5,8 GHz à 18,2 GHz a été démontrée, qui est seulement limitée par le fonctionnement de l'amplificateur RF utilisé dans les expériences réalisées. Parallèlement, un niveau de bruit de phase de -115 dBc/Hz à une fréquence de décalage de 1 MHz a été obtenu pour tous les signaux générés, démontrant la possibilité de créer des fréquences d'oscillation élevées avec le même niveau de bruit de phase. Nous avons ensuite appliqué cette approche à la détection de l'indice de réfraction en volume et démontré une sensibilité de détection de 94350 GHz/RIU et une limite de détection d'indice de 10^-8 RIU. Au-delà de ces résultats expérimentaux, l'apport de cette seconde approche apporte une solution simple et flexible au problème de la génération de signaux hyperfréquences à fréquences variables à la demande, et ouvre des perspectives d'application très riches.Tous les résultats de la thèse contribuent à la question de l'intégration des OEO sur puces silicium et permettent d'anticiper diverses applications dans le domaine des communications et des capteurs. / This work focuses on the insertion of silicon ring resonators into the loops of optoelectronic oscillators (OEO) for the generation of low phase noise microwave signals and is a contribution to the future full integration of OEO systems on single silicon chips. The application orientation that was explored was to evaluate the performance of these systems for bulk optical index detection. Two different configurations of silicon ring resonators based OEO have been proposed and demonstrated: OEO based on millimeter-long silicon ring resonators and tunable OEO based on more compact silicon ring resonators and a specific optical carrier reinjection scheme.In the first approach, the optical signal is used as an optical carrier, which is modulated by an intensity modulator that produces a set of sidebands in the optical domain, while the ring resonator generates an optical comb that acts as an optical filter, translating its Free Spectral Range (FSR) into the microwave domain. By the beating of two adjacent optical comb lines in a photodetector, the optical spectral lines are then translated into the RF domain. The contribution of our work has been to demonstrate that the realization of millimeter resonators (about 6mm) in silicon photonics was a viable and interesting approach for the direct realization of OEO. In the investigated configurations, SOI ring resonators were optimized to satisfy the required target of a FSR of around 15GHz and an optical quality factor above 10^5. The demonstrated experimental results showed the viability and the stability of the proposed approach, while phase noise level of -100dBc/Hz at an offset of 100 kHz from carrier was obtained and sensing capability of the studied system was quantified to around 3.72 GHz/RIU for a refractive index variation in the range of 1.572 to 1.688, in good agreement with simulation results.In a complementary direction to this first step, we addressed the very important issue of the tunability of the frequency of the microwave signal generated. To this end, we proposed, designed, and then developed and tested an original OEO configuration based on the use of a single modulation band and a mechanism for reinjection of the optical carrier from the loop laser. In this scheme, the oscillation signal is created under the beating between the laser light beam and a single modulation signal sideband selected by an add-drop ring resonator working as an effective optical bandpass filter. In the implementation we have carried out, a SOI photonic resonator with a FSR of 77 GHz and an optical quality factor at 8.1×10^4 was used. By changing the laser frequency while keeping a fixed resonator resonance wavelength, a tunability from 5.8GHz to 18.2GHz was demonstrated, being only limited by the working operation of the RF amplifier used in the carried out experiments. Meanwhile, a phase noise level of -115 dBc/Hz at 1MHz offset frequency was obtained for all generated signals, showing the possibility of creating high oscillation frequencies with the same phase noise level. We then applied this approach for bulk refractive index sensing application and demonstrated a sensing sensitivity of 94350GHz/RIU and an index limit of detection of 10^-8 RIU by considering a signal resolution of 1MHz. Beyond these experimental results, the contribution of this second approach provides a simple and flexible solution to the problem of generating microwave signals with variable frequencies on demand, and opens up very rich application perspectives.All the results of the thesis contribute to the question of the integration of OEOs on silicon chips and make it possible to anticipate various applications in the field of communications and sensors.
47

Design and characterization of Silicon Photonic structures for third order nonlinear effects / Conception et caractérisation de structures photoniques sur silicium pour les effets non linéaires du troisième ordre

Serna Otálvaro, Samuel Felipe 28 November 2016 (has links)
Le présent travail a été consacré à l'étude des non linéarités de troisième ordre dans des structures intégrées à base de silicium exploitant des configurations de cavités à miroir de Bragg (nanobeam) et guides à cristaux photoniques à modes lents. Tout d'abord, nous avons développé une méthode non destructive à faisceau unique pour caractériser les effets de troisième ordre instantanés, c’est-à-dire la quantification de la susceptibilité complexe effective dans les guides d'ondes. La méthode a été dénommée "Top-hat D-Scan bi-directionnelle" et constitue un analogue temporel de la méthode Top-hat Z-Scan développée précédemment. Nous avons établi un modèle analytique et numérique et nous rendons compte de la première mesure d'un guide d'ondes en silicium utilisant une impulsion mis en forme dans un étireur et complétée par une procédure d’injection bi-directionnelle. L’ensemble instrumental développé constitue une expérience de métrologie des effets non-linéaires dans des guides d’ondes silicium au meilleur niveau de l’état de l’art. La méthode proposée a été validée dans des guides SiGe, chalcogénures et nitrure du silicium. Forts de cet outil métrologique, nos travaux d’exploration des interactions non linéaires lumière-matière ont été consacrés à deux grandes familles de nanostructures photoniques : des microcavités optiques et guides d'ondes en régime de lumière lente. Dans la première des deux situations, les variations d'indice provoquées par les non linéarités sont responsables d’un décalage des fréquences de résonance excluant sa coïncidence avec la fréquence du signal d'excitation et diminuant ainsi l'efficacité de l'injection optique de manière drastique. Afin de maintenir le bénéfice de localisation de la lumière tout au long de l'excitation pulsée, nous avons expérimentalement et numériquement étudié le comportement d'une cavité en silicium conçue, fabriquée, et enfin excitée par une impulsion présentant une puissance crête élevée. En contrôlant temporellement la phase des composantes spectrales injectée, la relation de phase spectrale compensant la dérive de fréquence non linéaire de la résonance de la cavité, nous avons effectué la première démonstration expérimentale de l'excitation cohérente d'une micro-cavité silicium non linéaire. Enfin, nous avons consacré des efforts importants pour concevoir, fabriquer et caractériser des guides d'ondes à cristaux photoniques (SPhCW) en silicium à fente, matrice d’une intégration hybride de matériaux optiques non-linéaires sur silicium. Les résultats rapportés fournissent la première preuve expérimentale d’un contrôle précis des propriétés de dispersion de guides à cristaux photoniques à fente propres à être remplis par des matériaux souples comme des polymères ou des couches minces dopées. La dispersion de groupe des modes lents guidés est contrôlable en signe et en amplitude et correspond à des bandes passantes optiques exploitables (~10nm). Ces résultats démontrent l’intérêt direct pour le traitement des données tout-optique sur puce des guides à modes lents à cœur creux utilisant des effets optiques non linéaires d’ordre trois pour le traitement tout-optique des données sur puce. / All-optical signal processing implemented in silicon photonics is considered as a promising route to solve several bottlenecks for the realization of future dense and mixed integrated electronic and photonic chips including ultrahigh data bit rate issues and power consumption constraints. In the context of the planar silicon photonics technology, a dramatic reduction of the needed power to reach optical nonlinear effects is obtained due to the sub-micrometer size of silicon wires (~450nmX260nm) in the telecommunication wavelength window, although silicon does not exhibit second-order response (χ^((2))) due to the centrosymmetry of its lattice. Moreover, third-order effects (χ^((3))) are partially spoiled in this material due to the strength of the two-photon-absorption (TPA) effect, which in turn generates free-carriers inducing additional absorption and refractive index changes. One way to overcome this limitation is the hybrid integration on silicon of low index soft materials with luminescence or nonlinear optical properties lacking to silicon. In this context, the present work is devoted to the study of third order nonlinearities in silicon-based integrated structures exploiting enhanced electromagnetic field effects (e.g. in Si resonators and slow light waveguides). First, we have developed a dedicated single beam non-destructive method to characterize the instantaneous third order effects though the quantification of complex effective waveguide susceptibility. The method is named “Bi-directional top-hat D-Scan” and consists on a temporal analogous of the top-hat Z-Scan. We have established an analytical and numerical model and we report the first measurement of a silicon waveguide by using a pulse shaping set-up and a bi-directional procedure. The originality of our methods stands in the capability to measure in two steps : the 3rd order nonlinear Figure-Of-Merit (FOM) independently of the injection losses, and the effective nonlinear waveguide parameters (Kerr and TPA) taking into account measured coupling losses at each facet. Furthermore, we apply the method to other integrated novel materials including Ge-rich GeSi alloys, carbon nanotube doped thin films, and chalcogenide waveguides. Additionally, two further enhancements of light-matter nonlinear interactions have been explored within this work: optical microcavities and slow light waveguides. In the first picture, index variations caused by non-linearities shift the resonance frequencies precluding the coincidence with the excitation signal frequency, thereby decreasing the injection efficiency. In order to maintain the benefit of light localization throughout the pulsed excitation, we have experimentally and numerically studied the behavior of a designed and fabricated silicon nanobeam cavity excited by a high power tailored chirped pulse whose spectral phase relation compensates for the nonlinear frequency drift of the cavity resonance. We report a numerical study of this first experimental demonstration of the coherent excitation of a nonlinear micro-cavity, leading to an enhanced intra-cavity nonlinear interaction. Finally, we have dedicated efforts to engineer, fabricate and characterize silicon slot photonic crystal waveguides (SPhCW) in order to compensate their strong dispersion present in the slow light regime while taking benefit from large group index light propagation. We showed that their frequency dispersion properties can be engineered from anomalous to normal dispersion, along with zero group velocity dispersion (ZGVD) crossing points exhibiting a Normalized Delay Bandwidth Product (NDBP) as high as 0.156. The reported results provide the first experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies.
48

Contribution à l'étude des fibres optiques microstructurées : méthodes numériques et résultats physiques

Renversez, G. 09 December 2008 (has links) (PDF)
I Première partie : Contribution à l'étude des fibres optiques microstructurées 1 Introduction à l'étude des fibres optiques microstructurées 2 Two numerical methods to study microstructured optical fibres 3 Main properties of microstructured optical fibres Conclusion II Deuxième partie : sélection d'articles III Troisième partie : annexes, bibliographie et index A Some details of the Multipole Method derivation B Computing band diagram using the Finite Element Method Bibliographie Index
49

Dispositifs photoniques innovants pour le piégeage optique : Cavité étendue à double période et structure hybride cristal photonique-nano antenne / Original photonic devices for optical trapping : Double period extended cavity and photonic crystal – nano antenna hybrid device

Milord, Laurent 30 March 2016 (has links)
Depuis les premiers travaux d’Ashkin sur les pinces optiques classiques, beaucoup d’efforts ont été fait pour piéger des nano particules. Néanmoins, elles peuvent difficilement piéger des particules inférieures à 200 nm à cause des limites imposées par la diffraction. Cette limite peut être dépassée grâce aux forces optiques de gradient provenant du champ évanescent généré et amplifié par des nano cavités photoniques. Cependant, cette approche est confrontée à deux verrous importants pour les applications : La surface de piégeage est très faible ce qui rend peu probable la capture d’une nanoparticule animée d’un mouvement brownien et pour les pinces « ultimes » de type nanoantenne où le mode est confiné dans des régions nanométriques, leur excitation en espace libre n’est pas très efficace. L’objectif de ce travail vise à lever ces deux verrous. Pour augmenter la surface de piégeage, nous présenterons d’abord une approche utilisant le mode de Bloch d’une cavité étendue à double période dans un cristal photonique fabriqué sur SOI. Nous montrerons que cette approche permet le piégeage de particules de 200, 100 et 75 nm sur une surface étendue de 5x5 µm² en utilisant un faisceau laser d’excitation en espace libre. Dans un deuxième temps, nous nous intéresserons à l’excitation optique en espace libre de structures nanométriques. Nous présenterons une structure hybride nano antenne – cristal photonique, où le cristal photonique joue le rôle de réservoir à photons pour la nano antenne. Cela permet ainsi un effet « entonnoir à photon» où la lumière issu d’un faisceau large (5µm) est concentrée dans la nanoantenne. Nous démontrerons la pertinence de cette approche par le piégeage particules de 100 nm. / Since the first work on optical tweezers by Ashkin, a lot of efforts have been made to trap nanoparticles. However, optical tweezers are diffraction limited and can hardly trap particles below 200 nm. This limit can be overstepped using the optical gradient forces of an evanescent field generated and amplified by a photonic nano cavity. Nonetheless, this approach faces two major issues for applications: the trapping section is very small, making the capture of a Brownian motion animated particle very unlikely, and for the “ultimate” nano antennas with nanometric optical modes, their excitation from free space is not effective. The goal of this work is to overcome these two difficulties. To increase the trapping surface, we will first present a device using slow Bloch modes within a double period extended cavity designed in a photonic crystal made out of SOI. We will show that this approach allow for the trapping of 200, 100 and 75 nm particles on an extended surface of 5x5 µm² using a free space laser beam excitation. Secondly, we will investigate the free space excitation of nanometric structures. A photonic crystal – nano antenna mixed structure will be presented, where the photonic crystal is used as a photon pool for the nano antenna. This lead to a funnel effect where the light coming from a large free space laser beam (5µm wide) is focused into the nano antenna. The trapping of 100 nm particles will demonstrate the relevance of this approach.
50

Propriétés optiques de matériaux diélectriques nanostructurés: des cristaux photoniques aux métamatériaux

Vynck, Kevin 12 November 2008 (has links) (PDF)
L'étude des propriétés optiques des matériaux nanostructurés a récemment connu un engouement croissant dû à leur capacité à manipuler la lumière. Les cristaux photoniques sont des matériaux dont l'indice de réfraction est modulé périodiquement à l'échelle de la longueur d'onde. Ils peuvent interdire la propagation de la lumière dans certaines gammes de fréquences et présenter de fortes dispersions spatiales qui conduisent à des phénomènes de réfraction anormaux. Les métamatériaux quant à eux sont des assemblages d'éléments microscopiques, métalliques ou diélectriques, qui se comportent à l'échelle macroscopique tels des milieux homogènes aux propriétés optiques hors du commun.<br /><br />Cette thèse est consacrée à l'étude théorique et numérique de ces structures, avec pour objectif d'apporter de nouvelles solutions pour un contrôle accru de la lumière. Nous commençons par étudier le confinement de la lumière par des défauts structurels dans des cristaux photoniques à base d'opales, qui sont des empilements de sphères diélectriques, et proposons divers motifs de cavités résonantes et de guides d'ondes monomodes. Dans un second temps, nous considérons la propagation de faisceaux dans des cristaux photoniques planaires sans défaut. Nous démontrons la grande flexibilité offerte par les cristaux photoniques à gradient pour courber la trajectoire de la lumière et proposons une approche pratique pour la coupler efficacement à des guides d'ondes externes. Finalement, nous étudions les propriétés optiques des métamatériaux à base de tiges diélectriques et montrons rigoureusement que leurs résonances microscopiques induisent une permittivité et perméabilité toutes deux dispersives en fréquence qui peuvent être placées dans le domaine optique. Ces travaux ouvrent de nombreuses opportunités pour le contrôle de l'émission et de la propagation de la lumière et peuvent être exploités dans de nombreux domaines tels que les télécommunications, les Sciences de la Vie et l'énergie solaire.

Page generated in 0.0934 seconds