• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 10
  • 10
  • 9
  • 9
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 237
  • 237
  • 109
  • 46
  • 44
  • 37
  • 36
  • 34
  • 33
  • 32
  • 30
  • 21
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Perylene diimide-based materials for organic electronics and optical limiting applications

Huang, Chun 25 August 2010 (has links)
This thesis described the synthesis and characterization of new perylene diimide (PDI)-based photonic and electronic materials. In the first part of this thesis, PDI-based polynorbornenes, including PDI-grafted homopolymers and block-copolymers (BCPs) were synthesized and characterized as alternative acceptors for fullerenes for organic electronics. It was found that the PDIs on the polymer side-chains affect π-π stacking with the neighboring PDIs, which has implications for the use of these materials for organic field-effect transistors (OFETs) and organic photovoltaic devices (OPVs). It should be noted that the performance of solar cell based on these materials was poor, like other similar materials. The major reasons could be the challenge in controlling the molecular alignment of the PDI-based materials, which leads to lower electron mobilities in films compared to devices with fullerene-based acceptors. One PDI-grafted BCP showed better OPV performance compared to the other BCPs and respective homepolymer blends, presumably due to favorable morphology. In the second part of this thesis, photo-induced charge-separation in blends of poly-3-hexyl-thiophene (P3HT) and various PDI derivatives have been studied. Probing of long-lived photo-generated PDI radical anions provided insight on these photo-induced processes and their use for OPVs. In the third part of this thesis, the use of photo-generated PDI radical-anion absorption was shown to be effective for optical limiting of nanosecond laser pulses between 650 - 800 nm. In Chapter 5, an effective approach for two-photon absorption (2PA)-induced optical limiting using donor-PDI dyads through which donors and acceptors can be independently chosen to maximize optical suppression at particular wavelengths has been demonstrated. In Chapter 6, conjugated polymers with PDI pendants and poly(carbazole-alt-2,7-fluorene) main-chains were synthesized for optical limiting using the photo-generated PDI radical anion via PDI aggregate excitation and/or 2PA from the polymer backbones. It was also found that nitro-phenyl group or similar derivatives could be good candidates to incorporate into those donor-conjugated polymers, which have significant overlap between their 2PA band and respective polaron absorptions for 2PA-indced optical limiting. / Thesis advisor has approved the addition of errata to this item. Corrections were made to pages 95, 98 and 101.
182

Development of high-efficiency boron diffused silicon solar cells

Das, Arnab 04 May 2012 (has links)
The objective of the proposed research is to develop low-cost, screen-printed 20% efficient silicon solar cells. In the first part of this thesis, a ~19% efficient, screen-printed cell was fabricated using the commercially-dominant aluminum back surface field (Al-BSF) cell structure. Device modeling was then used to determine that increasing the efficiency to 20% required improvements in both back surface passivation and rear reflectance. In the second part of this thesis, a passivated, transparent boron BSF (B-BSF) structure was proposed as a high-throughput method for realizing these improvements. The first step in fabricating the proposed B-BSF cell involved the successful development of a water-based, spin-on solution of boric acid as a low-cost, non-toxic and non-pyrophoric alternative to common boron diffusion sources such as boron tribromide. A review of the literature shows that a common problem with boron diffusion is severe bulk lifetime degradation, with Fe contamination being commonly speculated as the cause. An experimental study was therefore devised in which the impact of boron diffusion and subsequent cell process steps on the bulk lifetime and bulk iron contamination was tracked. From this study, a model for boron diffusion-induced Fe contamination was developed along with methods for gettering Fe from the substrate. A key achievement of this thesis was the discovery of a novel, negatively charged, aluminum-doped spin-on glass (SOG) which can, in a short thermal step, simultaneously getter Fe and provide stable, high-quality passivation of planar, boron-diffused Si surfaces. Since past attempts at achieving low-cost, high-efficiency, boron-diffused cells have suffered from bulk lifetime degradation and difficulties with passivating a boron-diffused Si surface, the Al-doped SOG provides a solution to both challenges. Since a high rear reflectance is important for achieving high-efficiencies, an experimental study of various reflectors was undertaken and a silver colloid material was found which exhibits both high electrical conductivity and Lambertian reflectance >95%. The work on boric acid diffusion, iron gettering, surface passivation and rear reflectors was successfully integrated into a 20.2% efficient, screen-printed, B-BSF cell fabricated on 300 µm thick, p-type float-zone (FZ) Si wafers. Both device theory and modeling was used to show that, due to its well-passivated surfaces, this cell would suffer a large loss in efficiency due to light-induced degradation (LID) if it were fabricated on commercial p-type Czochralski (Cz) Si substrates. Since n-type Si substrates do not suffer from LID, the p-type process was slightly tweaked and applied to n-type FZ wafers, resulting in 20.3% efficient cells on 190 µm thick wafers. Computer modeling shows that both the p-type and n-type cells can maintain efficiencies of 20% for wafers as thin as 100 µm.
183

Επίδραση της εν σειρά αντίστασης στις βέλτιστες τιμές των χαρακτηριστικών παραμέτρων των φωτοβολταϊκών κυττάρων

Γιαννιού, Αικατερίνη 20 October 2009 (has links)
Η παρούσα διπλωματική εργασία εκπονήθηκε στο εργαστήριο Aσύρματης Τηλεπικοινωνίας του τμήματος των Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών του Πανεπιστημίου Πατρών, και έχει ως σκοπό τη μελέτη της επίδρασης της εν σειρά αντίστασης στις βέλτιστες τιμές των χαρακτηριστικών παραμέτρων των φωτοβολταϊκών κυττάρων τύπου CIS. Το θεωρητικό μέρος της εργασίας αποσκοπεί στην παράθεση των βασικών αρχών της φυσικής των ημιαγωγών με ιδιαίτερη έμφαση στις φωτοηλεκτρικές τους ιδιότητες και συγκεκριμένα στο λόγο ύπαρξης της εν σειρά αντίστασης ενός φωτοβολταϊκού κυττάρου. Παρουσιάζονται πρόσφατες μελέτες σχετικές με το θέμα, οι οποίες χρησιμοποιήθηκαν ως αναφορά για τη διεξαγωγή της πειραματικής διαδικασίας. Ακολουθώντας τη μελέτη των Priyanka, M. Lal, S.N. Singh, πήραμε μετρήσεις σε συνθήκες σκότους, και από τις I-V χαρακτηριστικές υπολογίσαμε την εσωτερική αντίσταση σειράς του κυττάρου. Στη συνέχεια πραγματοποιήσαμε μετρήσεις τάσεως και ρεύματος στα άκρα του κυττάρου, όταν αυτό φωτίζεται, για να δούμε την επίδραση της αντίστασης σειράς στα χαρακτηριστικά του μεγέθη. Αναλυτικότερα, η πειραματική διαδικασία έγινε αρχικά σε εργαστηριακό περιβάλλον, και στη συνέχεια σε πραγματικές συνθήκες, με χρήση εξωτερικών αντιστάσεων συνδεδεμένων σε σειρά με το κύτταρο CIS. Στην πρώτη περίπτωση η διέγερση του κυττάρου έγινε με λάμπα τόξου υδραργύρου, και η προσπίπτουσα στο κύτταρο ακτινοβολία διατηρείτο σταθερή κατά τη διάρκεια του πειράματος όπως επίσης και η θερμοκρασία περιβάλλοντος. Πραγματοποιήσαμε μετρήσεις για δύο διαφορετικές κλίσεις του κυττάρου ως προς το οριζόντιο επίπεδο, τις 350 και τις 900, ενώ η δέσμη ακτινοβολίας παρέμενε παράλληλη στο οριζόντιο επίπεδο και για τις δύο περιπτώσεις. Το ίδιο προσπαθούσαμε να πετύχουμε και στις πραγματικές συνθήκες, (όπου το κύτταρο ήταν εκτεθειμένο σε ηλιακή ακτινοβολία) δηλαδή για όσο ήταν δυνατόν σταθερή ακτινοβολία και θερμοκρασία περιβάλλοντος, ώστε οι μετρήσεις να επηρεάζονται μόνο από τη μεταβολή της εν σειρά αντίστασης. Στην περίπτωση αυτή πραγματοποιήσαμε μετρήσεις για τρείς διαφορετικές κλίσεις του κυττάρου ως προς τον ορίζοντα, τις 900, τις 580, και τις 00.Υπολογίσαμε τη μέση ημερήσια αλλά και τη μέση μηνιαία αποδιδόμενη ενέργεια σε kWh, τόσο για τις πειραματικές όσο και για τις θεωρητικές τιμές της ισχύος και της ηλιακής ακτινοβολίας. Η διαφορά τους είναι της τάξης του 28%, και δικαιολογείται λόγω των παραγόντων απωλειών. Στη συνέχεια, πήραμε μετρήσεις από ένα πλαίσιο των 75W με τη βοήθεια κατάλληλης συνδεσμολογίας με υπολογιστή, τον οποίο προγραμματίσαμε να παίρνει μετρήσεις ανά 10 λεπτά. Υπολογίσαμε την ημερήσια ποσότητα ενέργειας σε kWh που μας δίνει το πλαίσιο και επεκτείναμε τον υπολογισμό στη μέση μηνιαία αποδιδόμενη ενέργεια χρησιμοποιώντας αρχικά τις πειραματικές μετρήσεις και στη συνέχεια τις θεωρητικές τιμές της ισχύος του πλαισίου και της ηλιακής ακτινοβολίας. Η διαφορά που προκύπτει είναι της τάξης του 10%. Η μελέτη ολοκληρώθηκε με την επεξεργασία των πειραματικών δεδομένων και την εξαγωγή χαρακτηριστικών καμπυλών του κυττάρου, μέσα από τις οποίες γίνεται δυνατή η σύγκρισή τους με τα θεωρητικά δεδομένα από τη βιβλιογραφία. / -
184

Design, experiment, and analysis of a photovoltaic absorbing medium with intermediate levels

Levy, Michael Yehuda 05 May 2008 (has links)
The absorption of the sun's radiation and its efficient conversion to useful work by a photovoltaic solar cell is of interest to the community at large. Scientists and engineers are particularly interested in approaches that exceed the Shockley-Queisser limit of photovoltaic solar-energy conversion. The abstract notion of increasing the efficiency of photovoltaic solar cells by constructing a three-transition solar cell via an absorber with intermediate levels is well-established. Until now, proposed approaches to realize the three-transition solar cell do not render the efficiency gains that are theorized; therefore, researchers are experimenting to ascertain where the faults lie. In my opinion, it is unclear if the abstract efficiency gains are obtainable. Furthermore, it is difficult to determine whether three-transition absorbers are even incorporated in the existing three-transition solar cell prototypes. I assert that there are material systems derived from the technologically important compound semiconductors and their ternary alloys that more clearly determine the suitability of employing nanostructured absorbers to realize a three-transition solar cell. The author reports on a nanostructured absorber composed of InAs quantum dots completely enveloped in a GaAsSb matrix that is grown by molecular beam epitaxy. The material system, InAs/GaAs$_{0.88}$Sb$_{0.12}$, is identified as an absorber for a three transition solar cell. This material system will more easily determine the suitability of employing nanostructured absorbers because its quantum-dot heterojunctions have negligible valence-band discontinuities, which abate the difficulty of interpreting optical experimental results. A key tool used to identify the GaAs$_{1-x}$Sb$_{x}$ ($xapprox 0.12$) is a maximum-power iso-efficiency contour plot. This contour plot is only obtainable by first having analyzed the impact of both finite intermediate-band width and spectral selectivity on the optimized detailed-balance conversion efficiencies of the three-transition solar cell. Obtaining the contour plot is facilitated by employing a rapid and precise method to calculate particle flux (Appendix~ ef{ch:Rapid-Precise}). The author largely determines the electronic structure of the InAs/GaAs$_{1-x}$Sb$_{x}$ ($xapprox 0.12$) absorber that is grown by molecular beam epitaxy from optical experimental methods and in particular, from photoluminescent spectroscopy. The interpretation of the experimental photoluminescent spectrum is facilitated by having first studied the theoretical photoluminescent spectra of idealized three-transition absorbers.
185

Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics

Jani, Omkar Kujadkumar 05 May 2008 (has links)
Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4 - 2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. In the present work, various challenges in the novel III-nitride technology are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. Due to the unavailability of a suitable modeling program for InGaN solar cells, PC1D is modified up to a source-code level to incorporate spontaneous and piezoelectric polarization in order to accurately model III-nitride solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1e18 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively lowered. Subsequent generations of solar cell designs involve an evolutionary approach to enhance the open-circuit voltage and internal quantum efficiency of the solar cell. The suitability of p-type InGaN with band gaps as low as 2.5 eV is established by incorporating in a solar cell and measuring an open-circuit voltage of 2.1 V. Second generation InGaN solar cell design involving a 2.9 eV InGaN p-n junction sandwiched between p- and n-GaN layers yields internal quantum efficiencies as high as 50%; while sixth generation devices utilizing the novel n-GaN strained window-layer enhance the open circuit voltage of a 2.9 eV InGaN solar cell to 2 V. Finally, key aspects to further InGaN solar cell research, including integration of various designs, are recommended to improve the efficiency of InGaN solar cells. These results establish the potential of III-nitrides in ultra-high efficiency photovoltaics.
186

Resposta espectral de células fotovoltaicas em condições reais de operação / Spectral response of silicon photovoltaic cells under real-use conditions

Gouvêa, Evaldo Chagas [UNESP] 22 April 2017 (has links)
Submitted by Evaldo Chagas Gouvêa null (gouvea.evaldo@gmail.com) on 2017-06-24T18:23:39Z No. of bitstreams: 1 Dissertação (versão FINAL 24-06-17).pdf: 2860581 bytes, checksum: 291ca83eac21bea9374f8dc5c9b080ed (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-06-28T16:53:32Z (GMT) No. of bitstreams: 1 gouvea_ec_me_guara.pdf: 2860581 bytes, checksum: 291ca83eac21bea9374f8dc5c9b080ed (MD5) / Made available in DSpace on 2017-06-28T16:53:32Z (GMT). No. of bitstreams: 1 gouvea_ec_me_guara.pdf: 2860581 bytes, checksum: 291ca83eac21bea9374f8dc5c9b080ed (MD5) Previous issue date: 2017-04-22 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Uma das alternativas à utilização de combustíveis fósseis é a energia solar, obtida pelo uso de painéis fotovoltaicos. A existência de diferenças diárias, sazonais e regionais na distribuição espectral da luz do sol pode produzir variações na capacidade de produção de energia dos painéis. O objetivo deste trabalho é verificar como a geração de energia de células fotovoltaicas varia em função dos diferentes comprimentos de onda do espectro da luz solar, quando as células estão submetidas a condições reais de operação. Este trabalho possui caráter experimental. Dois painéis fotovoltaicos policristalinos idênticos foram montados lado a lado. Oito diferentes filtros de cor, com curvas conhecidas de distribuição espectral, foram instalados sobre um dos painéis e foi registrada a quantidade de energia gerada por cada painel ao longo do dia. Cada filtro permite apenas a passagem de uma determinada faixa de comprimentos de onda da luz solar. Foi calculada a eficiência relativa de cada filtro, dada pela relação entre a quantidade de energia gerada pelo painel com filtro e a gerada pelo painel sem filtro, de referência. Os resultados indicam que os painéis produzem mais energia na faixa do vermelho, com eficiência relativa de 23,83%, sendo, portanto, mais sensíveis à radiação nesta faixa de comprimentos de onda. Por outro lado, ocorre uma redução da resposta do painel na faixa do verde e azul, apresentando eficiências de 19,15% e 21,58% respectivamente. Isso mostra que painéis fotovoltaicos não respondem de maneira uniforme à luz solar. A radiação infravermelha, além de produzir um aumento de temperatura, exerce um importante papel na produção total de energia, com eficiência de 13,56%. Conclui-se que painéis de silício cristalino não respondem de maneira uniforme à luz solar. Os painéis produzem energia nas faixas não-visíveis do espectro; sendo o infravermelho um importante componente do espectro. As respostas espectrais em condições reais de operação apresentam diferenças significativas em relação àquelas obtidas nas condições padrão de ensaio. / Solar energy is an alternative to fossil fuels. It can be obtained through the use of photovoltaic panels. There are daily, seasonal and regional differences in the spectral energy distribution of sunlight that can result in variations in the energy production capacity of the panels. The objective of this study is the verification of the photovoltaic cell’s response to different wavelengths of the sunlight’s spectrum, under real operating conditions. This is an experimental study. Two identical polycrystalline photovoltaic modules were mounted side-by-side. Eight different color filters, each one with a specific spectral distribution curve, were installed above one of the panels and the daily generated energy of each panel was registered. Each color filter allows just a specific wavelength range of solar spectrum to pass through it. The relative efficiency of each filter was calculated; it is given by the relation between the energy generated by the solar panel with filter and the solar panel without filter. The results indicate that the panels produce more power in the red range (with a relative efficiency of 23.83%) and therefore they are more sensitive to radiation at this wavelength range. Also, the panel’s response is reduced in the color ranges of green and blue, with efficiency of 19.15% and 21.58%, respectively. This shows that photovoltaic panels do not respond uniformly to sunlight. Infrared radiation, which leads to an increased temperature, plays an important role in the total energy production. The relative efficiency of infrared filter is 13.56%. It can be concluded that crystalline silicon photovoltaic modules do not respond uniformly to sunlight. Photovoltaic panels are able to produce energy not only with visible light but also with non-visible wavelengths, being infrared an important component of solar spectrum. The spectral responses under real operating conditions are significantly different from the responses obtained at the standard test conditions. / CNPq: 134367/2015-4
187

Síntese de grafenos quimicamente modificados e aplicação em células fotovoltaicas orgânicas / Synthesis of chemically modified graphenes and application in organic photovoltaic cells

Saker Neto, Nicolau, 1989- 26 August 2018 (has links)
Orientador: Ana Flávia Nogueira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T15:49:22Z (GMT). No. of bitstreams: 1 SakerNeto_Nicolau_M.pdf: 15094468 bytes, checksum: d3c20b6e7dbd840a984fe7d8b1b365a8 (MD5) Previous issue date: 2014 / Resumo: Entre as alternativas promissoras para a produção de energia elétrica de modo econômico e ambientalmente sustentável está o aproveitamento da energia luminosa do Sol pelo efeito fotovoltaico. Células fotovoltaicas orgânicas fazem parte da mais nova geração de células solares, e prometem ser produzidas em larga escala a custo reduzido. Entretanto, células orgânicas atualmente estão limitadas por eficiências comparativamente baixas. O objetivo deste trabalho é introduzir derivados de grafeno em células solares orgânicas poliméricas como aceitador de elétrons e transportadores de cargas na camada absorvedora de luz, em substituição parcial ou total aos atuais materiais mais empregados, derivados de fulerenos C60 e C70. Óxido de grafeno (GO) foi obtido a partir da oxidação de grafite mineral utilizando-se o método de Hummers com modificações. Amostras de grafenos quimicamente modificados (CMGs) foram sintetizadas pela reação direta de dispersões de óxido de grafeno com ácido 2-tiofenoacético (TAA) por uma esterificação de Steglich, ou após um tratamento de óxido de grafeno em meio básico com hidróxido de tetrabutilamônio (TBAH). Os CMGs apresentaram funcionalização bastante limitada, tendo ocorrido principalmente uma desoxigenação dos derivados de grafeno. Ainda assim, os CMGs puderam ser dispersos no solvente usado para a preparação da camada absorvedora de luz, 1,2-diclorobenzeno. Os materiais sintetizados foram aplicados em células poliméricas baseadas no polímero poli(3-hexiltiofeno) (P3HT) e no derivado de fulereno [6,6]-fenil-C71-butanoato de metila (PC71BM), e os parâmetros fotovoltaicos resultantes foram obtidos. As eficiências de conversão fotovoltaicas em células contendo CMGs foram potencialmente limitadas pelo processo de desoxigenação / Abstract: Among the promising alternatives for the economically and environmentally sustainable production of electrical energy is the harnessing of the Sun's luminous energy by the photovoltaic effect. Organic photovoltaic cells are part of the newest generation of solar cells, promising large-scale production at reduced costs. However, organic cells are currently limited by comparatively low efficiencies. The objective of this work is to introduce graphene derivatives in polymer organic solar cells as electron acceptors and charge transporters in the light-absorbing layer, partially or fully replacing the currently most used materials, derivatives of C60 and C70 fullerenes. Graphene oxide (GO) was obtained by the oxidation of mineral graphite using a modified Hummers' method. Samples of chemically modified graphenes (CMGs) were synthesized by the direct reaction of graphene oxide dispersions with 2-thiopheneacetic acid (TAA) via Steglich esterification, or after treatment of graphene oxide in basic medium with tetrabutylammonium hydroxide (TBAH). The CMGs showed very limited functionalization and the main occurrence was a deoxygenation of the graphene derivatives. Still, the CMGs were dispersible in the solvent used for the preparation of the light-absorbing layer, 1,2-dichlorobenzene. The synthesized materials were applied in polymer cells based on the polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C71-butyl methyl ester (PC71BM) and the resulting photovoltaic parameters were obtained. The photovoltaic conversion efficiencies for cells containing CMGs were potentially limited by the deoxygenation process / Mestrado / Quimica Organica / Mestre em Química
188

Modelování parametrů solární elektrárny v GIS / Modeling of solar power station parameters in GIS

Kučera, Josef January 2013 (has links)
The work deals with the modeling of the parameters of solar power plants and the issue of solar energy with its use in the photovoltaic power plants. It uses the geographic information system named ArcGIS. In the beginning of the work, there is the theory. This theory is necessary to understanding the function of the photovoltaic cells, from the beginning to the photovoltaic panels construction. There were analyzed the conditions of the location of the photovoltaic panels in the Czech Republic. Furthermore, the work approaches the ArcGIS and its 3D modeling possibilities. The part of the work deals with the proposal for the selection process of the most suitable location to the photovoltaic panels installing. The main part of the work is the visualization of the 3D models of the locations of interest.
189

Electrochemistry and photophysics of carbon nanodots-decorated nigs(Ni(In, Ga)Se2) quantum dots

Rolihlahla, Bangile Noel January 2020 (has links)
>Magister Scientiae - MSc / Currently, non-renewable sources are mostly used to meet the ever-growing demand for energy. However, these sources are not sustainable. In addition to these energy sources being not sustainable, they are bad for the environment although the energy supply sectors highly depend on them. To address such issues the use of renewable energy sources has been proven to be beneficial for the supply of energy for the global population and its energy needs. Advantageous over non-renewable sources, renewable energy plays a crucial role in minimizing the use of fossil fuel and reduces greenhouse gases. Minimizing use of fossil fuels and greenhouse gases is important, because it helps in the fight against climate change. The use of renewable energy sources can also lead to less air pollution and improved air quality. Although solar energy is the most abundant source of renewable energy that can be converted into electrical energy using various techniques, there are some limitations. Among these techniques are photovoltaic cells which are challenged by low efficiencies and high costs of material fabrication. Hence, current research and innovations are sought towards the reduction of costs and increasing the efficiency of the renewable energy conversion devices.
190

Photovoltaic Source Simulators for Solar Power Conditioning Systems: Design Optimization, Modeling, and Control

Koran, Ahmed Mohammed 28 June 2013 (has links)
This dissertation presents various systematic design techniques for photovoltaic (PV) source simulators to serve as a convenient tool for the dynamic performance evaluation of solar power conditioning systems and their maximum power point tracking algorithms. A well-designed PV source simulator should accurately emulate the static and the dynamic characteristic of actual PV generator. Four major design features should be adopted in any PV source simulator: (i) high power-stage efficiency, (ii) fast transient response-time, (iii) output impedance matching with actual PV generator, and (iv) precise reference generation technique. Throughout this research, two different PV source simulator systems are designed, modeled, and experimentally verified. The design of the first system focuses mainly on creating new reference generation techniques where the PV equivalent circuit is used to precisely generate the current-voltage reference curves. A novel technique is proposed and implemented with analog components to simplify the reference signal generator and to avoid computation time delays in digital controllers. A two-stage LC output filter is implemented with the switching power-stage to push the resonant frequency higher and thus allowing a higher control-loop bandwidth design while keeping the same switching ripple attenuation as in the conventional one-stage LC output filter. With typical control techniques, the output impedance of the proposed simulator did not  match the closed-loop output impedance of actual PV generator due to the double resonant peaks of the two-stage LC output filter. Design procedures for both control and power-stage circuits are explained. Experimental results verify the steady-state and transient performance of the proposed PV source simulator at around 2.7 kW output. The design concept of the first simulator system is enhanced with a new type of PV source simulator that incorporates the advantages of both analog and digital based simulators. This simulator is characterized with high power-stage efficiency and fast transient response-time. The proposed system includes a novel three-phase ac-dc dual boost rectifier cascaded with a three-phase dc-dc interleaved buck converter. The selected power-stage topology is highly reliable and efficient. Moreover, the multi-phase dc-dc converter helps improve system transient response-time though producing low output ripple, which makes it adequate for PV source simulators. The simulator circuitry emulates precisely the static and the dynamic characteristic of actual PV generator under different environmental conditions including different irradiance and temperature levels. Additionally, the system allows for the creation of the partial shading effect on PV characteristic. This dissertation investigates the dynamic performance of commercial and non-commercial solar power conditioning systems using the proposed simulator in steady-state and transient conditions. Closed-loop output impedance of the proposed simulator is verified at different operating conditions. The impedance profile --magnitude and phase- matches the output impedance of actual PV generator closely. Mathematical modeling and experimental validation of the proposed system is thoroughly presented based on a 2.0 kW hardware prototype. The proposed simulator efficiency including the active-front-end rectifier and the converter stages at the maximum power point is 96.4%. / Ph. D.

Page generated in 0.0785 seconds