• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 61
  • 51
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 257
  • 257
  • 95
  • 66
  • 53
  • 47
  • 40
  • 39
  • 28
  • 28
  • 27
  • 25
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Utilização da eletrocoagulação no tratamento de efluente da indústria galvânica / Use of electrocoagulation in the treatment of wastewater from galvanizing industry

Theodoro, Paulo Sérgio 18 February 2010 (has links)
Made available in DSpace on 2017-07-10T18:08:14Z (GMT). No. of bitstreams: 1 Paulo Sergio Theodoro.pdf: 1744465 bytes, checksum: 132da5a46d9247da552f8a27ee087fed (MD5) Previous issue date: 2010-02-18 / The aim of this work is devoted to reduction of the environmental impact of galvanic industry effluents. An electro-coagulation (EC) laboratory scale system using iron plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from the treatment of galvanic process based-platining industry. An EC reactor consisting of a 1,5 L conical container and a set of seven firmly assembled iron electrode plates, which were parallelly arranged to each other and electrically operated in mono-polar mode, was built. A 1.0 cm gap between the anode and cathode plates using a non-conducting horizontal support was chosen in order to operate the EC reactor in a low electrical current range. A long, electrical rotating cilindrical rotor, with 2,7cm blades at the end of it, made in non-conducting material, was used to turn mechanically the effluent around the rotor axis during the EC treatment. In addition, a 225 cm2 active electrode surface area was kept during the whole EC experiments. In order to obtain optimal values of reaction time, electrical current, rotor angular velocity, and initial effluent pH, a central composite rotatable design (CCRD) was applied. A wide range of reaction time (10-60 min), electrical current (0.3-3.0 A), rotor angular velocity (50-300 rpm), and initial efluent pH (3-10) were used, performing a total of 28 runs with 24+2x4 axial points and 4 central points. Physico-chemical parameters such as chemical oxygen demand (COD), color, turbidity, total solids, and metals (Cr, Ni, Zn, and Cu) were used as response variables. The measurements of physico-chemical parameter and metal concentration values in non- and treated waste waters were carried out by applying the Standard Methodology and the Synchrotron Radiation X-Ray Fluorescence (SR-TXRF) technique, respectively. Using the Statistica software, a 95%-significance level (p<0.05) of the predicted models and interaction effects between reactor operating variables on response variables were evaluated using 3-D response surface curves and analysis of variance. With the factorial design was obtained the following optimum conditions of the reactor, 35 minutes for the time of electrolysis, 170 rpm for agitation, 2.2 A for the electric current and 6.5 for pH. Under these conditions the removal of color and turbidity reached 100%, another considerable value was the removal of around 90% of COD and total solids. Moreover, a removal of around 99% of Zn and Cu was obtained, whereas for Cr and Ni obtained a removal of 100%. Finally, the results of technical and economic analysis showed the cost obtained by the treatment, indicating clearly that the method of electro-coagulation is very promising for industrial application. / O presente trabalho tem como objetivo remover os poluentes de um efluente de galvanização, de modo a reduzir o impacto ambiental dos efluentes da indústria galvânica. Para a remoção dos poluentes, orgânicos e inorgânicos, gerado nos processos de galvanização foi aplicada a eletrocoagulação (EC) em escala de laboratório utilizando eletrodos de ferro. Foi construído um reator de EC, constituído por um recipiente cônico com capacidade de 1,5 L e um eletrodo de ferro montado firmemente com seis placas de ferro, que foram dispostas paralelamente com uma distância de 1(um) centímetro, operado em modo mono-polar. O sistema de agitação mecânico foi construído com duas pás de geometria cilíndrica de 2,7 cm e uma haste de 31,5 cm feito com material não condutor acoplado em um motor elétrico. Durante o experimento da EC foi utilizada uma área efetiva de 225 cm2 do eletrodo. A fim de obter valores ideais do tempo de eletrolise, corrente elétrica, agitação e pH inicial do efluente, foi aplicado o planejamento estatístico composto central (DCCR) com fatorial 24+2X4 pontos axiais + 4 ponto centrais, totalizando 28 ensaios experimentais. Os valores aplicados as variáveis independentes foram de 0,3 a 3 A para a corrente, de 10 a 60 min. para o tempo de eletrolise, de 3 a 10 para o pH inicial e agitação como valores entre 50 e 300 rpm. Foram utilizadas como variáveis resposta os parâmetros físico químico tais como, a demanda química de oxigênio (DQO), cor, turbidez, Sólidos totais e concentração dos metais Cr, Ni, Zn e Cu.Todos os parâmetros físico-químicos foram determinados através o Método Padrão para análise de água, enquanto que as concentrações dos metais foram determinadas através da técnica de Fluorescência de Raios X por Reflexão Total, (SR-TXRF). Utilizando o software Statistica, com nível de significância de 95% (p <0,05), os modelos preditos e os efeitos de interação entre as variáveis de operação do reator e as variáveis respostas foram avaliados, utilizando as curvas 3-D de superfície de resposta e a análise de variância. Com o planejamento fatorial foi obtido as seguintes condições ótimas de trabalho do reator, 35 minutos para o tempo de eletrolise, 170 rpm para a agitação, 2,2 A para a corrente elétrica e 6,5 para o pH. Nestas condições a remoção da cor e turbidez alcançaram 100%, outro valor considerável foi a remoção em torno de 90% da DQO e sólidos totais. Além disso, uma remoção em torno de 99% de Zn e Cu também foi obtida, enquanto que para o Cr e Ni obteve-se uma remoção de 100%. Finalmente, os resultados da análise técnico-econômica mostraram o baixo custo obtido pelo tratamento, evidenciando claramente que o método da eletrocoagulação é muito promissor para aplicação industrial.
242

Avaliação das características do fango de Araxá-MG com finalidade de uso cosmético / Evaluation the characteristics of Fango from Araxá-MG with cosmetic purposes

Fernanda Fialho Pereira 17 September 2008 (has links)
O tratamento cosmético facial e corporal que emprega o Fango vem sendo muito utilizado em clínicas de estética, com o intuito de melhorar a aparência da pele. A literatura científica carece de informações sobre alguns aspectos desta matéria-prima, como: as condições adequadas para sua coleta, preservando suas características químicas e microbiológicas; as especificações de qualidade da matéria-prima (física, química, microbiológica e toxicológica); e as metodologias analíticas de avaliação. A qualificação do Fango é primordial para o mesmo ser utilizado como matéria-prima de uso cosmético \"tal qual\" na pele ou veiculado em formulações cosméticas, a fim de alcançar a eficácia cosmética e garantir sua segurança de uso. Este trabalho visou a padronização do método de coleta do Fango na fonte e a das seguintes análises: física, físico-química, microbiológica, parasitológica, toxicológica do Fango provindo de Araxá-MG in natura e da lama negra (processada), com intuito de assegurar seu uso qualificado como matéria-prima em formulações cosméticas, uma vez que a literatura científica carece de estudos com este tipo de material. Os resultados obtidos quanto à segurança de uso foram satisfatórios, não ocorrendo a presença de microrganismos patogênicos tais como: Escherichia coli, coliformes fecais e totais, Staphylococcus aureus, Pseudomonas aeruginosa e Candida albicans (antes e depois da maturação), larva migrans e metais pesados. Os demais ensaios realizados para a caracterização do Fango como matéria-prima justificam sua aplicação em produtos cosméticos, como por exemplo, a presença do enxofre com potencial uso em formulações antissépticas e a argila tipo \"caulinita\" em preparações para diminuir a oleosidade da pele. / The facial and body cosmetic treatments applying the \"Fango\" can be seen nowadays on esthetic clinics\' catalogues. The scientific literature up nowadays does not have sufficient informations concerning this product, the correct procedures to collect it from the soil preserving its chemical and microbiological characteristics; the specifications on its physical, chemical, microbiological e toxicological qualities and the analytical methodologies involving on the it evaluation. The Fango\'s qualification is very important because it can be used alone (raw material) or incorporated in cosmetic formulations, in order to evaluate the safety and efficacy of final product. This is the only way it may be applied on cosmetics formulations designed to be applied on human skin. The aim of this research is to standard the collect conditions in thermal springs and standard such analysis: physical aspects, physic-chemical, microbiology, parasitological and toxicological of Thermal mud and Fango from Araxá-MG. The results obtained of this study showed that the Fango from Araxá-MG is safe to be applied in cosmetic formulations or direct on the human skin. The pathogenic microorganism such as: Escherichia coli, Staphylococcus aureus, Pseudomonas aeuruginosa and Candida Albicans were absent on the samples, and the same to Larva migrans and heavy metais. The physic-chemical analysis of Fango from Araxá-MG demonstrated its application in cosmetic products, as its capacity to improvement the skin\'s conditions, e.g. the presence of sulphur with antiseptic proprieties and organic compounds in order to use on the oily skin.
243

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
244

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
245

Caractérisation biochimique d’exopolymères d’origine algale du bassin de Marennes-Oléron et étude des propriétés physico-chimiques de surface de micro-organismes impliquées dans leur adhésion / Biochemical characterization of algal exopolymers from Marennes-Oléron and study of the physico-chemical surface properties of microorganisms involved in their adhesion

Pierre, Guillaume 06 December 2010 (has links)
Le principal objectif de cette thèse était de mieux comprendre l’importance des Substances Polymériques Extracellulaires (SPE) dans la structuration et la formation des biofilms benthiques ; tout en s’inscrivant dans une étude plus globale des mécanismes écologiques impliqués dans le fonctionnement des vasières intertidales. La mise au point des dosages biochimiques a été effectuée sur le mucilage de l’algue Chaetomorpha aerea et a permis en parallèle de purifier un polysaccharide sulfaté riche en galactose, présentant une activité bactéricide sélective contre la souche Staphylococcus aureus (ATCC 25923). Les études biochimiques et écologiques menées sur les SPE extraits de la vasière charentaise ont ensuite permis de quantifier leur dynamique de production et leur composition, en fonction des conditions environnementales. La présence de désoxy-sucres et d’acides uroniques au sein des SPE capsulaires a laissé supposer que ces fractions jouaient un rôle important dans la formation et le devenir du biofilm microphytobenthique. La dernière partie des travaux a permis de caractériser les propriétés acide/base de Lewis et hydrophile/hydrophobe de la surface de la micro-algue Navicula jeffreyi, impliquée dans la formation de biofilms benthiques, par des méthodes classiques d’analyse. L’utilisation d’une nouvelle méthode, la Chromatographie Gazeuse Inverse (CGI), a permis d’obtenir des résultats intéressants et relativement similaires, confirmant le caractère prometteur de la CGI pour l’étude des propriétés de surface des micro-organismes. / The main goal of this thesis was to better understand the importance of Extracellular Polymeric Substances (EPS) in the structuring and formation of benthic biofilms; while considering a global conception of the ecological mechanisms involved in the functioning of intertidal mudflats. The development of the biochemical assays was done on the mucilage of the macroalgae Chaetomorpha aerea and allowed purifying a polysaccharide rich in galactose, showing a selective bactericidal activity against Staphylococcus aureus (ATCC 25923). Then, the biochemical and ecological studies concerning the EPS extracted from the local mudflat allowed studying their dynamic of production and composition in relation to environmental conditions. The presence of deoxy sugars and uronic acids in the bound EPS highlighted their important roles during the formation and the life of microphytobenthic biofilms. The last part of the work was used to characterize the acid/base of Lewis and hydrophilic/hydrophobic surface properties of the microalgae Navicula jeffreyi, involved in the formation of benthic biofilms, by using classical analysis methods. The use of a new method, named Inverse Gas Chromatography (IGC), allowed getting interesting and relatively similar results, confirming the potential of the method to study the surface properties of microorganisms.
246

Contribution à l'étude des propriétés physico-chimiques des surfaces modifiées par traitement laser : application à l'amélioration de la résistance à la corrosion localisée des aciers inoxydables / Contribution to the study of physico-chemical properties of surfaces modified by last treatment : application to the enhancement of localized corrosion resistance of stainless stells

Pacquentin, Wilfried 25 November 2011 (has links)
Les matériaux métalliques sont utilisés dans des conditions de plus en plus sévères et doivent présenter une parfaite intégrité sur des périodes de plus en plus longues. L’objectif de ce travail de thèse est d’évaluer le potentiel d'un traitement de refusion laser pour améliorer la résistance à la corrosion d'un acier inoxydable de type 304L ; l’utilisation du laser dans le domaine des traitements de surface constituant un procédé en pleine évolution à cause des changements récents dans la technologie des lasers. Dans le cadre de ce travail, le choix du laser s’est porté sur un laser nano-impulsionnel à fibre dopée ytterbium dont les caractéristiques permettent la fusion quasi-instantanée sur quelques microns de la surface traitée, immédiatement suivie d'une solidification ultra-rapide avec des vitesses de refroidissement pouvant atteindre 1011 K/s. La combinaison de ces processus favorise l'élimination des défauts surfaciques, la formation de phases hors équilibre, la ségrégation d’éléments chimiques et la formation d’une nouvelle couche d’oxyde dont les propriétés sont gouvernées par les paramètres laser. Afin de les corréler avec la réactivité électrochimique de la surface, l’influence de deux paramètres laser sur les propriétés physico-chimiques de la surface a été étudiée : la puissance du laser et le taux de recouvrement des impacts laser. Pour clarifier ces relations, la résistance à la corrosion par piqûration des surfaces traitées a été déterminée par des tests électrochimiques. Pour des paramètres laser spécifiques, le potentiel de piqûration d'un acier inoxydable de type 304L augmente de plus de 500 mV traduisant ainsi une meilleure tenue à la corrosion localisée en milieu chloruré. L’interdépendance des différents phénomènes résultant du traitement laser a rendu complexe la hiérarchisation de leur effet sur la sensibilité de l’alliage testé. Cependant, il a été montré que la nature de l’oxyde thermique formé au cours de la refusion laser et ses défauts sont du premier ordre pour l’amorçage des piqûres. / Metallic materials are more and more used in severe conditions with particularly strong request for improving their behavior in aggressive environment and especially over long periods. The objective of this PhD work is to estimate the potentiality of a laser surface melting treatment on the improvement of the stainless steel 304L corrosion resistance, surface treatments by laser can be revisited on the basis of a recent change in the laser technology. In the frame of this work, a nano-pulsed laser fiber was chosen : it allows the treated surface to be melted for few microns in depth, followed by an ultra-fast solidification occuring with cooling rates up to 1011 K/s. The combination of these processes leads to the elimination of the surface defects, the formation (trapping) of metastable phases, the segregation of chemical elements and the growth of a new oxide layer which properties are governed by the laser parameters. To correlate these latter to the electrochemical reactivity of the surface, the influence of two laser parameters on the physico-chemical properties of the surface was studied : the laser power and the overlap of the laser impacts. To support this approach, the pitting corrosion resistance of the samples was determined by standard electrochemical tests. For specific laser parameters, the pitting potential of a 304L stainless steel was increased by more than 500 mV corresponding to an important enhancement in localized corrosion resistance in chloride environment. The interdependence of the different phenomena resulting from the laser treatment lead to a quite complex prioritization of their role on the sensibility of the 304L. However, it was demonstrated that the nature of the thermal oxide formed during the laser surface melting and the induced defects are first-order parameters for the initiation of pits.
247

Composição e qualidade de méis de abelhas (Apis mellifera) e méis de abelha Jataí (Tetragonisca angustula) / Composition and quality of honeys from bees (Apis mellifera) and stingless bees honeys (Jataí bee or Tetragonisca angustula)

Graziela Leal Sousa 06 November 2008 (has links)
O mel é um alimento de uso milenar, açucarado de fácil digestão, que constitui uma importante fonte de energia, contribuindo para o equilíbrio do processo biológico do corpo humano, sendo elaborado a partir da desidratação e transformação do néctar das flores nativas pelas abelhas produtoras. Para que o mel seja comercializado para o consumo humano, ele precisa atender aos requisitos mínimos de identidade e qualidade exigidos pela Legislação Brasileira. No Brasil a criação de abelhas é dividida em duas práticas distintas, a Apicultura tradicional, que utiliza as abelhas Apis mellifera e a Meliponicultura que utiliza as abelhas sem ferrão como a Jataí (Tetragonisca angustula). Os méis de abelhas sem ferrão tem maior valor comercial comparado ao mel tradicional, entretanto são comercializados sem uma legislação própria. Na literatura existem poucos trabalhos que tratam da composição destes tipos de méis que são popularmente conhecidos por suas propriedades benéficas à saúde. Em vista do exposto acima, o objetivo deste presente trabalho foi o de comparar a composição e a qualidade de méis de Apis mellifera com os de abelhas sem ferrão da espécie Tetragonisca angustula, popularmente conhecida como Jataí. Para tanto as amostras de méis foram obtidas de colméias de Apis mellifera e de Tetragonisca angustula de uma mesma região botânica, o que foi possível constatar que os méis de abelha Jataí apresentaram maior diversidade botânica em relação aos méis de Apis. Neste trabalho foram utilizados os métodos de avaliação estabelecidos pela Legislação Brasileira para qualidade de mel de Apis mellifera e os valores sugeridos para méis de mellponíneos do Brasil pe10s pesquisadores VILLAS - BOAS e MALASPINA (2005). A maioria das amostras de Apis apresentaram-se dentro da legislação vigente, enquanto méis Jataí apresentaram os parâmetros: umidade (23,40 -25,60%), acidez (21,65 - 63,85 mE/Kg) e açúcares redutores (44,78 - 67,54%) e sacarose aparente (0,43 - 1,60%) fora dos padrões estabelecido pela legislação vigente para os méis de Apis mellifera. No entanto, encontram-se dentro dos valores sugeridos para méís de meliponíneos brasileiros, pelos pesquisadores acima mencionados. Além das análises físico-químicas tradicionais e a análise polínica também foi determinada a composição nutricional, sendo que o mel de Apis apresentou maior de valor energético (43,58- 66,32 Kcal) em relação aos méis de Jataí (36,83 - 60,52 Kcal) (p<0,05). Também foram determinados os açúcares por CLAE, condutividade elétrica (uS/cm-1) e a análise de cor (mmPfund). As amostras de Apis mellifera apresentaram maior o teor glicose (%), frutose (%) e condutividade elétrica (uS/cm-1) em relação aos méis de Jataí Em relação as análises de cor notou-se maior predominância da coloração âmbar-claro, mas amostras analisadas. / Honey is considered as a food that provides energy, being elaborated from the dehydration and transformation of the nectar of the flowers by the bees. For the human consumption, honey needs to attend the minimum requirements of identity and quality demanded by the regulation. In Brazil beekeepers can be divided in two practical distinct ones: the traditional ones, which use Apis mellifera bees and the Meliponiculture which uses stingless bees such as Jataí bee (Tetragonisca angustula). There are no identity and quality parameters or regulation for this type of honey. Honey from of stingless bees are more expensive compared with the traditional honey, however their are commercialized without a proper regulation. In literature few works were found regarding the composition of these types of honey which are popularly known by its beneficiaI properties to human health. The objective of the present work is to compare the composition and quality of honey from Apis mellifera and from stingless bees (Tetragonisca angustula), popularly known as Jataí bee. Samples of honey were obtained from Apis mellifera and Tetragonisca angustula bees in the same botanical region. In this work the methods used were based on the Brazilian Regulation for quality control of honey from Apis mellifera and the values suggested for honeys of meliponíneos of Brazil for researchers VILLAS-BOAS and MALASPINA (2005). The majority of the samples of Apis had presented in accordance with the regulation while the Jataí honeys had presented: humidity (23,40 - 25.60%), acidity (21,65 - 63,85 mE/Kg) and reducing sugars (44,78 - 67.54%) are out of the standards for honeys of Apis mellifera. However, they are in accordance with the values suggested for honeys of Brazilian meliponíneos. The physicochemical, polinic and nutritional analysis were determined, and the honey of Apis bee presented greater amount of energy value (43,58 - 66,32 Kcal) in relation to the honeys of Jataí bee (36,83 - 60,52 Kcal) (p<O,05). The sugars for HPLC, electric conductivity (uS/cm-1) and analysis of color (mmPfund) were determined. Samples of Apis mellifera had presented greater values for glucose (%), frutose (%) and electric conductivity (uS/cm-1) in relation to the honeys from Jataí (p<0,05). Regarding the color analyses, it was predominance of the coloration clear -amber.
248

Elemental and S Isotope Geochemistry of Arsenian Pyrite from the Round Mountain Gold Deposit: Implications for S Sources and Hydrothermal Fluid Evolution

Ruley, Alexander Andrew 21 December 2021 (has links)
No description available.
249

Detection of Correlated Mutations / Detection of Correlated Mutations

Ižák, Tomáš January 2013 (has links)
Tato práce zkoumá existující možnosti a metody detekce korelovaných mutací v proteinech. Práce začíná teoretickým úvodem do zkoumané problematiky. Využití informací o korelovaných mutacích je především při predikci terciální struktury proteinu či hledání oblastí s významnou funkcí. Dále následuje přehled v současnosti používaných metod detekce a jejich výhody a nevýhody. V této práci jsou zkoumány zejména metody založené na statistice (například Pearsonově korelačním koeficientu nebo Pearsonově chi^2 testu), informační teorii (Mutual information - MI) a pravděpodobnosti (ELSC nebo Spidermonkey). Dále jsou popsány nejdůležitější nástroje s informací o tom, které metody používají a jakým způsobem. Také je diskutována možnost návrhu optimálního algoritmu. Jako optimální z hlediska úspěšnosti detekce je doporučeno využít více zmíněných metod. Také je doporučeno při detekci využít fyzikálně-chemických vlastností aminokyselin. V praktické části byla vyvinuta metoda využívající fyzikálně-chemických vlastností aminokyselin a fylogenetických stromů. Výsledky detekce byly porovnány s nástroji CAPS, CRASP a CMAT.
250

Posouzení kvality půdy zpracované klasickým způsobem ve vybrané lokalitě v Olomouckém kraji / Assessment of soil quality processed with conventional tillage in the selected site in the Olomouc region

Drlíková, Barbora January 2017 (has links)
Diploma thesis documents the problems of soil quality, which is assessed on the basis of physical, chemical or biological indicators of soil quality. The paper describes the various indicators, its methodology and evaluation. In the practical part evaluates the quality of soil cultivated with the traditional way - using plowing. The experimental area, where the samples were taken from the soil, lies in the Olomouc region in the municipality Šumvald. Evaluated were selected physical, chemical and physico-chemical properties of soil, e.g. particle size distribution, bulk density, porosity, air capacity, hydrolimits, pH, carbonates, humus content and salinity of the soil.

Page generated in 0.0655 seconds