• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stockage dans les systèmes pair à pair

Soyez, Olivier 29 November 2005 (has links) (PDF)
Cette thèse a pour objectif de définir un système de stockage pair à pair, nommé Us. Le but principal de Us est de garantir la pérennité des données. Pour cela, Us associe un mécanisme de redondance des données à un processus dynamique de reconstruction.<br /><br />Dans un premier temps, nous avons créé un prototype Us et conçu une interface utilisateur, nommée UsFS, de type système de fichiers. Un procédé de journalisation des données est inclus dans UsFS.<br /><br />Ensuite, nous nous sommes intéressés aux distributions de données au sein du réseau Us. Le but de ces distributions est de minimiser le dérangement occasionné par le processus de reconstruction pour chaque pair. Enfin, nous avons étendu notre schéma de distribution pour gérer le comportement dynamique des pairs et prendre en compte les corrélations de panne.
2

Trois problèmes géométriques d'hyperbolicité complexe et presque complexe.

Saleur, Benoit 22 November 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites.
3

Trois problèmes géométriques d'hyperbolicité complexe et presque complexe / Three geometric problems of complex and almost complex hyperbolicity

Saleur, Benoît 22 November 2011 (has links)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites. / This thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines.
4

Polynomes sur les corps finis pour la cryptographie / Polynomials over finite fields for cryptography

Caullery, Florian 28 May 2014 (has links)
Les fonctions de F_q dans lui-même sont des objets étudiés dans de divers domaines tels que la cryptographie, la théorie des codes correcteurs d'erreurs, la géométrie finie ainsi que la géométrie algébrique. Il est bien connu que ces fonctions sont en correspondance exacte avec les polynômes en une variable à coefficients dans F_q. Nous étudierons trois classes de polynômes particulières: les polynômes Presque Parfaitement Non linéaires (Almost Perfect Nonlinear (APN)), les polynômes planaires ou parfaitement non linéaire (PN) et les o-polynômes.Les fonctions APN sont principalement étudiées pour leurs applications en cryptographie. En effet, ces fonctions sont celles qui offre la meilleure résistance contre la cryptanalyse différentielle.Les polynômes PN et les o-polynômes sont eux liés à des problèmes célèbres de géométrie finie. Les premiers décrivent des plans projectifs et les seconds sont en correspondance directe avec les ovales et hyperovales de P^2(F_q). Néanmoins, leurs champ d'application a été récemment étendu à la cryptographie symétrique et à la théorie des codes correcteurs d'erreurs.L'un des moyens utilisé pour compléter la classification est de considérer les polynômes présentant l'une des propriétés recherchées sur une infinité d'extension de F_q. Ces fonctions sont appelées fonction APN (respectivement PN ou o-polynômes) exceptionnelles.Nous étendrons la classification des polynômes APN et PN exceptionnels et nous donneront une description complète des o-polynômes exceptionnels. Les techniques employées sont basées principalement sur la borne de Lang-Weil et sur des méthodes élémentaires. / Functions from F_q to itself are interesting objects arising in various domains such as cryptography, coding theory, finite geometry or algebraic geometry. It is well known that these functions admit a univariate polynomial representation. There exists many interesting classes of such polynomials with plenty of applications in pure or applied maths. We are interested in three of them: Almost Perfect Nonlinear (APN) polynomials, Planar (PN) polynomials and o-polynomials. APN polynomials are mostly used in cryptography to provide S-boxes with the best resistance to differential cryptanalysis and in coding theory to construct double error-correcting codes. PN polynomials and o-polynomials first appeared in finite geometry. They give rise respectively to projective planes and ovals in P^2(F_q). Also, their field of applications was recently extended to symmetric cryptography and error-correcting codes.A complete classification of APN, PN and o-polynomials is an interesting open problem that has been widely studied by many authors. A first approach toward the classification was to consider only power functions and the studies were recently extended to polynomial functions.One way to face the problem of the classification is to consider the polynomials that are APN, PN or o-polynomials over infinitely many extensions of F_q, namely, the exceptional APN, PN or o-polynomials.We improve the partial classification of exceptional APN and PN polynomials and give a full classification of exceptional o-polynomials. The proof technique is based on the Lang-Weil bound for the number of rational points in algebraic varieties together with elementary methods.
5

Invariants algébriques et topologiques des courbes et surfaces à singularités quotient / Algebraic and Topological Invariants of Curves and Surfaces with Quotient Singularities

Ortigas Galindo, Jorge 03 July 2013 (has links)
Le but principal de cette thèse de doctorat est l'étude de l'anneau de cohomologie du complément d'une courbe algébrique réduite dans le plan projectif pondéré complexe dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie. Pour atteindre notre objectif, il est nécessaire de développer une théorie algébrique des courbes sur des surfaces avec des singularités quotient et d'étudier des techniques pour calculer certains invariants particulièrement utiles à travers des Q-résolutions plongées. / The main goal of this PhD thesis is the study of the cohomology ring of the complement of a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes. In order to achieve our purpose one needs to develop an algebraic theory of curves on surfaces with quotient singularities and study techniques to compute some particularly useful invariants by means of embedded Q-resolutions.

Page generated in 0.0829 seconds