• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 6
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 79
  • 79
  • 28
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Neutron Spectroscopy : Instrumentation and Methods for Fusion Plasmas

Sjöstrand, Henrik January 2008 (has links)
<p>When the heavy hydrogen isotopes deuterium (D) and tritium (T) undergo nuclear fusion large amounts of energy are released. At the Joint European Torus (JET) research is performed on how to harvest this energy. Two of the most important fusion reactions, d+d→<sup>3</sup>He+n (E<sub>n</sub> = 2.5 MeV) and d+t→<sup>4</sup>He+n (E<sub>n</sub> = 14 MeV), produce neutrons. This thesis investigates how measurements of these neutrons can provide information on the fusion performance.</p><p>The Magnetic Proton Recoil (MPR) neutron spectrometer has operated at JET since 1996. The spectrometer was designed to provide measurements on the 14 MeV neutron emission in DT operation, thereby conveying information on the state of the fuel ions. However, a majority of today’s fusion experiments are performed with pure D fuel. Under such conditions, the measurements with the MPR were severely hampered due to interfering background. This prompted an upgrade of the instrument. The upgrade, described in this thesis, included a new focal plane detector, a phoswich scintillator array, and new data acquisition electronics, based on transient recorder cards. This combination allows for pulse shape discrimination techniques to be applied and a signal to background of 5/1 has been achieved in measurements of the 2.5-MeV neutrons in D experiments. The upgrade also includes a new control and monitoring system, which enables the monitoring and correction of gain variations in the spectrometer’s photo multiplier tubes. Such corrections are vital for obtaining good data quality.</p><p>In addition, this thesis describes a new method for determining the total neutron yield and hence the fusion power by using a MPR spectrometer in combination with a neutron emission profile monitor. The system has been operated at JET both during DT and D experiments. It is found that the systematic uncertainties are considerably lower (≈6 %) than for traditional systems. For a dedicated system designed for the next generation fusion experiments, i.e, ITER, uncertainties of 4 % could be attained.</p><p>Neutron spectroscopy can also be an important tool for determining the neutron emission from residual tritium in D plasmas. This information is combined with other measurements at JET in order to determine the confinement of the 1 MeV tritons from the d+d→t+p reactions.</p>
42

Expansion of laser-produced plasmas into vacuum and ambient gases

Williamson, Thomas Patrick January 2001 (has links)
No description available.
43

Neural network assisted software engineered refractive fringe diagnostic of spherical shocks.

Kistan, Trevor. January 1996 (has links)
A shock is essentially a propagating variation in the pressure or density of a medium. If the medium is transparent, such as air, and the shock radially symmetric, the refractive fringe diagnostic can be used to examine its general features. A laser beam probes the shock, the central part of the beam, refracted to different degrees by the different density features within the shock, interferes with itself and with the outer unrefracted part creating a series of coarse and fine fringes. By examining this interference pattern one can gain insight into the density profile underlying the shock. A series of such experiments was conducted by the Plasma Physics Research Institute at the University of Natal in 1990. To model the situation computationally, they developed a ray-tracer which produced interference patterns for modified theoretical density profiles based on those predicted by Sedov. After numerous trials, an intensity pattern was produced which agreed approximately with experimental observations. Thus encouraged, the institute then sought to determine density profiles directly from the interference patterns, but a true mathematical deconvolution proved non-trivial and is still awaited. The work presented in this thesis reconstructs the ray-tracer using software engineering techniques and achieves the desired deconvolution by training a neural network of the back-propagation type to behave as an inverse ray-tracer. The ray-tracer is first used to generate numerous density profile - interference pattern pairs. The neural network is trained with this theoretical data to provide a density profile when presented with an interference pattern. The trained network is then tested with experimental interference patterns extracted from captured images. The density profiles predicted by the neural network are then fed back to the ray-tracer and the resultant theoretically determined interference patterns compared to those obtained experimentally. The shock is examined at various times after the initial explosion allowing its propagation to be tracked by its evolving density profile and interference pattern. The results obtained prove superior to those first published by the institute and confirm the neural network's promise as a research tool. Instead of lengthy trial and error sessions with the unaided ray-tracer, experimental interference patterns can be fed directly to an appropriately trained neural network to yield an initial density profile. The network, not the researcher, does the pattern association. / Thesis (M.Sc.)-University of Natal, 1996.
44

Neutron Spectrometry Techniques for Fusion Plasmas : Instrumentation and Performance

Andersson Sundén, Erik January 2010 (has links)
Neutron are emitted from a deuterium plasma with energies around 2.5 MeV. The neutron spectrum is intimately related to the ion velocity distribution of the plasma. As a consequence, the analysis of neutron energy spectra can give information of the plasma rotation, the ion temperature, heating efficiency and fusion power. The upgraded magnetic proton recoil spectrometer (MPRu), based on the thin-foil technique, is installed at the tokamak JET. The upgrade of the spectrometer was done to allow for measurements of deuterium plasmas. This thesis describes the hardware, the data reduction scheme and the kind of fusion plasma parameters that can be estimated from the data of the MPRu. The MPRu data from 3rd harmonic ion cyclotron resonance and beam heating are studied. Other neutron spectrometer techniques are reviewed as well, in particular in the aspect of suitability for neutron emission spectrometry at ITER. Each spectrometer technique is evaluated using synthetic data which is obtained from standard scenarios of ITER. From this evaluation, we conclude that the thin-foil technique is the best technique to measure, e.g., the ion temperature in terms of time resolution.
45

Neutron Spectroscopy : Instrumentation and Methods for Fusion Plasmas

Sjöstrand, Henrik January 2008 (has links)
When the heavy hydrogen isotopes deuterium (D) and tritium (T) undergo nuclear fusion large amounts of energy are released. At the Joint European Torus (JET) research is performed on how to harvest this energy. Two of the most important fusion reactions, d+d→3He+n (En = 2.5 MeV) and d+t→4He+n (En = 14 MeV), produce neutrons. This thesis investigates how measurements of these neutrons can provide information on the fusion performance. The Magnetic Proton Recoil (MPR) neutron spectrometer has operated at JET since 1996. The spectrometer was designed to provide measurements on the 14 MeV neutron emission in DT operation, thereby conveying information on the state of the fuel ions. However, a majority of today’s fusion experiments are performed with pure D fuel. Under such conditions, the measurements with the MPR were severely hampered due to interfering background. This prompted an upgrade of the instrument. The upgrade, described in this thesis, included a new focal plane detector, a phoswich scintillator array, and new data acquisition electronics, based on transient recorder cards. This combination allows for pulse shape discrimination techniques to be applied and a signal to background of 5/1 has been achieved in measurements of the 2.5-MeV neutrons in D experiments. The upgrade also includes a new control and monitoring system, which enables the monitoring and correction of gain variations in the spectrometer’s photo multiplier tubes. Such corrections are vital for obtaining good data quality. In addition, this thesis describes a new method for determining the total neutron yield and hence the fusion power by using a MPR spectrometer in combination with a neutron emission profile monitor. The system has been operated at JET both during DT and D experiments. It is found that the systematic uncertainties are considerably lower (≈6 %) than for traditional systems. For a dedicated system designed for the next generation fusion experiments, i.e, ITER, uncertainties of 4 % could be attained. Neutron spectroscopy can also be an important tool for determining the neutron emission from residual tritium in D plasmas. This information is combined with other measurements at JET in order to determine the confinement of the 1 MeV tritons from the d+d→t+p reactions.
46

Plasma spectroscopic diagnostic tool using collisional-radiative models and its application to different plasma discharges for electron temperature and neutral density determination

Sciamma, Ella Marion, 1979- 29 August 2008 (has links)
A spectroscopic diagnostic tool has been developed to determine the electron temperature and the neutral density in helium, hydrogen and argon plasmas from absolutely calibrated spectroscopic measurements. For each gas, a method of analysis which uses models specific to each species present in the plasma (neutral atom or singly ionized atom) has been defined. The experimental electron density is used as an input parameter to the models, and the absolutely calibrated spectroscopic data are processed beforehand to obtain the populations of the upper excited levels corresponding to the observed spectral lines. For helium plasmas, the electron temperature is inferred from the experimental helium ion excited level p = 4 population using a corona model, and then the neutral density is determined from the experimental helium neutral excited level populations using a collisional-radiative model for helium neutrals. For hydrogen plasmas, combinations of the electron temperature and the neutral density are determined from the experimental hydrogen neutral excited level populations using a collisional-radiative model specific to hydrogen atoms. For argon plasmas, the electron temperature is inferred from the experimental argon ion excited level populations using a collisional-radiative model for argon ions, and then the neutral density is determined from the experimental argon neutral excited level populations using a collisional-radiative model for argon neutrals. This diagnostic tool was applied to three experiments with different geometries and plasma conditions to test the validity of each data analysis method. The helium and hydrogen data analysis methods were tested and validated on helium and hydrogen plasmas produced in the VASIMR experiment, a plasma propulsion system concept. They gave electron temperatures and neutral densities that were consistent with other diagnostics and theory. The argon diagnostic tool was tested on argon plasmas produced in the VASIMR experiment, the Helimak experiment and the Helicon experiment. The electron temperature and neutral density obtained on both the Helimak and the Helicon experiments were consistent with other diagnostics and with theory, and validated the method of analysis. An impurity problem on the VASIMR experiment made it difficult for the data analysis to be validated.
47

Refractive effects in phase objects and associated phenomena.

Buccellato, Ricardo. January 1994 (has links)
The effect of the refraction of a laser beam propagating through three different phase objects, i.e. a laser produced plasma and two different gas media, is investigated in this thesis. It is shown that these effects have useful applications. As an introduction to the work performed, a basic discussion of the theory of light is given. In the first experimental study, the accuracy of using the Refractive Fringe Diagnostic, as a tool to determine the electron density profiles of laser produced plasmas, is investigated [Buccellato et al. (1992)]. A comparative study is performed between an established method of determining the electron density profiles of laser produced plasmas, i.e. Nomarski interferometry, and the Refractive Fringe Diagnostic, by comparing experimental data obtained from the same laser shot. For the electron density profiles investigated, it is shown that the Refractive Fringe Diagnostic over-estimates the electron density by an order of magnitude. It is suggested that the electron density errors are due to the inherent assumptions of the Refractive Fringe Diagnostic. To verify this, a numerical simulation into the accuracy of the RFD is performed on a mathematically modelled plasma. The discrepancy in the numerical results are consistent with those of the experimental results and these can be attributed to the assumptions made by the Refractive Fringe Diagnostic. Laser light refracted by a gas medium, with a specific density profile, may produce a near diffraction limited focal spot. The remaining two experimental investigations deal with two novel gas lenses: the Pulsed Gas Lens and the Colliding Shock Lens. A radially expanding cylinder of gas produces a suitable density structure to focus laser light. A design of a gas lens, the Pulsed Gas Lens, using this principle is proposed as a final focusing lens for a laser fusion power station [Buccellato et al. (1993a)]. To establish the feasibility of such a lens a proof-of- principle design for the lens is given. A numerical simulation of this lens is performed by modelling the gas flow from the lens and raytracing through the determined density profiles inside the lens. It is found that this lens can be used as a focusing element. To establish certain practical aspects of the proof-of- principle design, a beam deflection device was constructed and tested. This beam deflection device models the lensing principle of the proposed lens. The laser beam deflection observed did not match the computed deflection. The opening mechanism for the proof-of-principle design did not produce an instantaneous opening of the chamber as was assumed in the simulation. The opening mechanism must be modified to decrease the opening time. Diverging spherical shock waves, produced by pairs of opposing electrodes evenly spaced on a circumference, produce a converging cylindrically symmetric shock wave. After convergence a suitable density structure exists for near diffraction li.mited focusing to occur. It is found that the Colliding Shock Lens is a varifocal lens: the focal length and lens diameter increase with time [Buccellato et al. (1993b)]. A numerical simulation is performed to model the operation of the Colliding Shock Lens. The numerical results compare favourably with the experimental results. From the simulation it is established that the lens diameter can be scaled up by increasing the physical size of the lens and the input energy to the lens. Potential applications of the colliding shock lens are discussed. To conclude this thesis, the results of the separate investigations are summarised. / Thesis (Ph.D.)-University of Natal, 1994.
48

Deposition of functional thin films by plasma processes

SEZEMSKÝ, Petr January 2016 (has links)
An aim of this work is a research of a deposition process of indium tin oxide by plasma assisted methods. The thesis deals with plasma diagnostics, e.g. Langmuir probe diagnostics and optical emission spectroscopy, as well as describes experiments of film deposition including their diagnostics, e.g. absorption spectroscopy, X-ray diffractometry and atomic force microscopy.
49

Développement de procédés de gravure à base de plasmas réactifs pulsés Pulsed plasmas for etch applications / Pulsed Plasmas for Etch Applications

Haass, Moritz 06 November 2012 (has links)
Du fait de la réduction des dimensions en microélectronique, les procédés de gravure par plasmas ne peuvent plus satisfaire aux exigences de l'industrie. De nouvelles stratégies sont en cours de développement. Ce travail consiste en l'étude de plasmas pulsés de HBr/O2 comme une alternative pour la gravure du silicium. Divers diagnostics dans un réacteur industriel 300 mm sont utilisés pour caractériser le plasma tandis que la gravure du silicium est étudiée par XPS et par microscopie électronique. Lorsque le plasma est pulsé à faible rapport cyclique, sa température et sa dissociation sont fortement réduits. Le flux de Br radicalaire par rapport à la période ON du plasma augmente tandis que l'influence du radical O diminue, ce qui conduit à une amélioration de la sélectivité par rapport au SiO2 et à une gravure plus homogène. Les profils des structures gravées peuvent être contrôlés par la formation de la couche de passivation sur les flancs dépendant également du rapport cyclique. / The continuous downscaling in microelectronics imposes increasing demands on the plasma processes and traditional ways for process optimization reach their limits. New strategies are needed and innovations in the field of plasma processes are being developed: e.g. the use of pulsed plasmas. In this thesis, a pulsed HBr/O2 etch plasma is studied. Various in-situ diagnostics are used to characterize pulsed plasmas in an industrial 12” etch reactor. The silicon etching is investigated by XPS and electron microscopy. We show that the plasma dissociation and temperature are reduced if the plasma is pulsed at low duty cycles. The Br radical flux with respect to the on-time of the plasma is increased and the influence of the O radical is decreased, leading to enhanced time compensated silicon etch rates, a higher selectivity towards SiO2 and a more homogeneous etching. The pattern profiles can be controlled via the sidewall passivation layer formation that is closely linked to the duty cycle.
50

Optical emission from electric arc furnaces

Aula, M. (Matti) 19 January 2016 (has links)
Abstract The main cause of temperature and composition fluctuations in the electric arc furnace (EAF) process is the scrap used as a raw material. Process conditions in EAF can vary significantly from heat to heat because there is no accurate information of scrap composition. Due to harsh process conditions, there are currently few sensors available for direct on-line measurement of the EAF process. In this work new information about stainless steelmaking EAF process conditions is sought with optical emission spectrum measurement. The measurement system relies on transportation of the light emitted from the measured furnace to a remotely situated spectrometer. Analysing the slag composition from the arc emission spectrum was tested in the laboratory and on a pilot scale. The laboratory measurements indicate that changes in the amount of CrOx and MnO in the slag have the highest impact on optical emission spectra. The pilot scale measurements show that the Cr2O3 content of the slag can be measured from the arc emission spectrum using suitable reference lines with an average absolute error of 0.62 %-points and a standard deviation of 0.49 %-points. The results from measurements at Outokumpu Stainless Oy, Tornio Works, indicate that measurement of the optical emission spectrum from industrial EAF is feasible in a practical sense, and can be used in analysing of EAF atmosphere, scrap melting and slag surface. Furthermore, the results of industrial measurements indicate that the atoms in the arc plasma mainly originate from the slag. The measurement of scrap melting could be potentially used in EAF control in optimization of arc voltages and second scrap bucket charging. The potential use of slag CrOx measurements is in optimization of reductant additions as well as defining the further processing of EAF slag. / Tiivistelmä Valokaariuunien ohjaus on perinteisesti ollut uunioperaattorin käsissä. Valokaaariuuniprosessin on-line mittaukseen on olevassa vähän menetelmiä johtuen uunin hyvin haastavaista olosuhteista. Tässä työssä on tutkittu optiseen emissiospektroskopiaan perustuvaa menetelmää uuden jatkuva-aikaisen tiedon tuottamisessa valokaariuuniprosessista. Mittausjärjestelmä perustuu valon keräämiseen mitattavasta uunista valokuidun avulla, joka johtaa valon analysoitavaksi etäälle prosessista sijoitettuun spektrometriin. Mittauksia suoritettiin laboratorio-, pilot- ja tehdas-mittakaavassa. Valokaariuunin kuonan koostumuksen analysointia testattiin laboratorio- ja pilot-mittakaavan uuneilla. Laboratoriomittaukset osoittivat että kuonan komponenteista CrOx ja MnO ja vaikuttavat eniten mitattuun emissiospektriin. Pilot-mittakaavan kokeissa havaittiin, että kuonan Cr2O3-pitoisuutta voidaan mitata valokaaren emissiospektristä 0,62 %-yksikön keskimääräisellä absoluuttisella virheellä ja 0,49 %-yksikkön hajonnalla. Teollisella valokaariuunilla suoritetuista mittauksista havaittiin että optisen emissiospektrin mittaus voidaan suorittaa ilman ylitsepääsemättömiä teknisiä esteitä. Mittauksen tuloksia voidaan puolestaan käyttää kaasufaasin reaktioiden, romun sulamisen ja kuonapinnan ominaisuuksien arvioinnissa. Valokaaren emissiospektrin analyysi osoitti, että valokaaren plasman komponentit ovat pääosin peräisin kuonasta, joka mahdollistaa kuonan koostumuksen arvioinnin valokaaren emissiospektrin perusteella. Romun sulamisen mittausta voidaan prosessinohjauksessa käyttää jänniteportaiden ja toisen korin panostuksen optimointiin. Kuonan kromipitoisuuden mittaamista voidaan puolestaan käyttää pelkistinaineiden lisäyksen optimointiin ja kuonan jatkokäsittelyn valintaan.

Page generated in 0.0946 seconds