• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 261
  • 61
  • 60
  • 46
  • 46
  • 44
  • 29
  • 29
  • 29
  • 29
  • 28
  • 28
  • 24
  • 23
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Nano-objets photo-activés pour le ciblage cellulaire et l’hyperthermie / Photo-active nano-objects for cell targeting and hyperthermia

Hou, Xue 28 January 2019 (has links)
Les nanoparticules plasmoniquespossèdent des propriétés intéressantes grâce àla résonance de plasmon de surface localisé. Enplus de leur grande efficacité de conversionphotothermique due au plasmon, leconfinement de l’échauffement peut êtremodulé par le type de source lumineuseutilisée (impulsionnelle ou continue). Cespropriétés font des nanoparticulesplasmoniques une solution potentielle pour lathérapie contre le cancer par hyperthermie.Afin de développer une telle applicationbiomédicale, il est nécessaire d'optimiserl'absorption de l'énergie lumineuse et le ciblagedes nanoparticules sur la tumeur considérée.Dans cette thèse, l'influence des électronschauds photo-générés sur l'absorptiond’impulsions laser ultracourtes par lesnanoparticules est d'abord étudiée. Ensuite, untravail effectué avec des chimistes, biologisteset médecins pour l'application desnanoparticules d’or irradiées par impulsionslaser ultracourtes à la thérapie contre le cancerest présenté. Enfin, nous présentons une étudepréliminaire sur la photoluminescence denanoparticules plasmoniques, dont l'origine estencore controversée, en appliquant un modèleprenant en compte la nature non thermale dela distribution d’électrons chauds. / Plasmonic nanoparticles possessinteresting properties thanks to the localizedsurface plasmon resonance. In addition totheir high photothermal conversion efficiency,the heat release confinement can bemodulated by the type of light source used(pulsed or continuous laser). These propertiesmake the plasmonic nanoparticles a potentialsolution for cancer therapy by hyperthermia.In order to develop such a biomedicalapplication, it is necessary to optimize theabsorption of light energy and the targeting ofnanoparticles on the tumor considered.In this thesis, the influence of the photogeneratedhot electrons on the absorption ofultrashort laser pulses by nanoparticles is firststudied. Then, a work carried out withchemists, biologists and physicians for theapplication of gold nanoparticles irradiated byultrashort laser pulses to cancer therapy isdescribed. Finally, we present a preliminarystudy on the photoluminescence of plasmonicnanoparticles, the origin of which is stillcontroversial, by applying a model accountingfor the non-thermal nature of the hot electrondistribution.
52

Integrating Transition Metals into Nanomaterials: Strategies and Applications

Fhayli, Karim 14 April 2016 (has links)
Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.
53

Implementation of Low Cost, High-Throughput and High Sensitive Biomarker Detection Technique in Serum/Plasma Samples by Integrating Dielectrophoresis and Fluorescence Based Platform

Logeeshan, Velmanickam January 2019 (has links)
Low-cost, highly-sensitivity, and minimally invasive tests for the detection and monitoring of life-threatening cancers can reduce the worldwide disease burden. The disease diagnosis community is constantly working to improve the detection capabilities of the deadly cancers (e.g.: pancreatic and lung) at their early stages. Still there were many cancers cannot be detected at their early stages due to lack of early diagnosis techniques. One of the reason being, many cancers that occur in the body release minute amounts of biomarker molecules during the initial stages (e.g.: DNA, RNA, miRNA and antigens) in the body fluids such as blood and serum. Since the traditional bio-sensing techniques have reached their maximum capacity in terms of critical performance parameters (sensitivity, detection time, reproducibility and limit of detection) there is an urgent need for innovative approaches that can fill this gap. To address this unmet need, here we report on developing a novel bio-sensing technique for detecting and quantifying biomolecules from the patients’ plasma/serum samples at point-of-care settings. Here we have investigated the novel interactions between biomolecules and externally applied fields to effectively manipulate and specifically concentrate them at a certain detection spots near electrodes on the detection device. Then the near-field interactions between the fluorophores and the free electrons on metal surfaces were successfully integrated with the externally applied low frequency (<10MHz) electric field, to achieve maximum florescence enhancement, that produces the detection limit of target-biomolecules in the rage of femto molars (fM). Moreover, the externally applied electric potential produces dielectrophoretic and thermophoretic force on the biomolecules, together with these forces we were able to separate the fluorophore-labelled rare target-biomolecules from the others in a sample. The novel integrated technique is tested and proved to be superior to the current gold standards (qRT-PCR and ELISA) for target-biomolecules detection in critical performance parameters. Finally the technique was used to analyze healthy and pancreatic cancer patients’ samples and further it has been proved that we can differentiate the healthy individuals and cancer patients. In addition, this technique is being applied to the other diseases such as obesity, opioid addiction and other types of cancers.
54

Nanostructured metals for enhanced light-matter interaction with nanoscale materials: design, sensing and single photon emitters

Sharifi, Zohreh 16 May 2022 (has links)
Plasmonics have been used to enhance the interaction of light with metallic nanostructures and lanthanide-doped upconversion nanocrystals. This enhancement can be achieved by using specific structures, materials, and plasmonic resonators at the emission and absorption wavelengths of the particles. This dissertation is based on four projects, which are mainly about the interaction of light and matter in metallic nanostructures and the up-conversion of nanocrystals using plasmonic resonators. In metal-insulator-metal systems, the cavity's resonant length is determined by the plasmon wavevector and the phase of reflection from the end faces. In general, the resonance length is not a simple multiple of the half-wavelength due to the significant reflection phase. As a result, in order to have a better understanding of MIM cavity resonances, the reflection phase must be calculated correctly. In the first project, the reflection phase obtained by SPPs upon reflection off the slit end-faces is calculated analytically using a simple mode matching model for real metals showing both dispersion and loss. The technique is similar to previous works, with the exception that we use the unconjugated version of the orthogonality relation. The results show good agreement with the experimental data. By having a strong grasp of the SPP dispersion, this technique aids in the design of plasmonic devices for operation at a specific wavelength. Single-photon sources are optical sources capable of emitting a single photon. A single lanthanide ion within a plasmonic nano structure with a large emission enhancement is one technique to generate a single-photon source at 1550 nm, which is a low-loss band used in fibre optics. In the second project, plasmonic double nanohole resonators are fabricated using colloidal lithography. These structures have been used to enhance the emission from low-concentration erbium emitters. The results indicate that different levels of emissions exist based on the amount of Er contained inside the nanocrystals. These findings would be an excellent starting point for developing a single-photon source operating at a 1550 nm wavelength employing erbium. Because not only can it increase the emission rate from erbium emitters, but it also helps to find and isolate a single emitter, which gives a stable single photon source. Because the surface plasmon resonance is exponentially coupled to the surface, it exhibits excellent sensitivity to changes in the refractive index near the surface. This is the underlying principle of commercially available surface plasmon resonance biosensors. Due to the wide range of applications in water quality testing and biosensing, it is critical to developing highly sensitive sensors that are compatible with commercial sensors. In the third project, we develop a design for SRSP sensing using a rectangular stripe grating and a 10 nm thick gold film. The 10 nm gold layer is sufficiently thick to enable continuous films to be formed using standard deposition procedures. We demonstrate that by employing rigorous coupled-wave analysis, the surface sensitivity of these films to an adlayer is increased by 3.3 times in angle units and the resolution is increased by fourfold while working at the commercial SPR system wavelength of 760 nm. Before trapping a particle in double nanohole apertures, we must first locate the double nanohole on the sample (gold on glass with apertures) and compare the scanning electron microscopy images with the image on the camera in the optical setup using certain markers. In the fourth project, to make DNH aperture trapping easier, we provide a polarization and transmission dependency approach for localizing and orienting DNHs on a substrate. This method provides a time and cost-effective way to ease the experimental process. This technique may also be used to localize different aperture clusters and single holes. / Graduate
55

Synthèse, études optiques et fonctionnalisation de nanoparticules plasmoniques pour des applications biologiques / Synthesis, optical studies and functionalization of plasmonic nanoparticles for biological applications / Synteza, badania optyczne i funkcjonalizacja nanocząstek plazmonicznych dla zastosowań biologicznych

Gordel, Marta 04 December 2015 (has links)
Les recherches décrites dans ce travail appartiennent à une branche de la science relativement jeune et interdisciplinaire, la nanophotonique. Les projets réalisés avaient pour objectif de décrire les phénomènes qui apparaissent lors de l’irradiation par un faisceau lumineux d’un matériau restreint à la dimension de quelques nanomètres à quelques centaines de nanomètres. Les phénomènes qui ont été examinés sont la génération d’absorption, de dispersion et d’émission fluorescente ainsi que le renforcement d’émission fluorescente et le renforcement du champ électromagnétique à une échelle plus petite que la limite de diffraction restreignant l’optique classique. Dans cette thèse, j’ai profité de nouvelles propriétés de la matière générées quand les dimensions sont réduites à l’échelle nanométrique (10-9 m). Elles se distinguent significativement des propriétés classiques qui caractérisent un matériau de plus grandes dimensions. Le changement de propriétés résulte de la limitation spatiale de la structure du nuage d'électrons et de l’augmentation du rapport entre la surface du matériau et son épaisseur. 23 Les particules plasmoniques, largement décrites dans ce travail, en sont un excellent exemple puisque leurs colloïdes possèdent une section efficace d'absorption très importante dans le domaine visible. Un colloïde peut présenter des couleurs différentes en fonction des formes, des dimensions et de la composition des particules qui le constituent, contrairement à une surface métallique qui ne doit son aspect qu'à la réflexion presque totale de la lumière visible et au lustre métallique. À l’échelle nanométrique, nous avons affaire à la résonance plasmonique de surface, un phénomène qui ouvre la porte à la manipulation, à la modification et au renforcement du champ électromagnétique autour de la nanostructure métallique. La possibilité de concentrer la lumière autour d’une nanoparticule au-dessous de la limite de diffraction a trouvé un bon nombre d’applications, dont la microscopie en champ proche, la spectroscopie Raman exaltée de surface (ang. Surface-enhanced Raman spectroscopy, SERS), la théranostique , la production de lecteurs de carte mémoire ou de cellules photovoltaïques. Les recherches décrites dans ce travail ont un caractère interdisciplinaire, elles améliorent nos connaissances dans le domaine de la synthèse de nanostructures plasmoniques, et des méthodes de séparation permettant d'obtenir des colloïdes qui contiennent des nanoparticules presque monodispersives. La méthode de synthèse d'un nouveau métamatériau, produit lors du transfert des nanobâtonnets d’or de l’eau à l’isopropanol, a aussi été présentée dans cette thèse. Par ailleurs, ces recherches ont montré une forte exaltation du champ électromagnétique parmi les nanoparticules. J’ai aussi dénoté une application potentielle de ce matériau en tant que substrat pour la détection de biomolécules. En outre, j’ai préparé des nanocoques d’or largement stables et dont l’épaisseur de dorure est contrôlée. À l’aide de la technique Z-scan, j’ai fait la mesure des propriétés non-linéaires des nanocoques d’or et je les ai comparées avec celles des nanobâtonnets d’or et de colorants organiques en indiquant une application possible. J’ai discuté aussi d'une nouvelle méthode de biofonctionnalisation des nanobâtonnets d’or qui m’a permis de créer un marqueur afin de visualiser des cellules vivantes. Il est aussi possible de convertir l’énergie lumineuse en énergie thermique par le biais des nanostructures plasmoniques, ce qui pourrait trouver d’autres applications intéressantes dans les recherches en théranostique. / This dissertation shows the experimental results, which I strongly believe prove the possibility of application the proposed bioprobe in theranostics treatment. The advantages and disadvantages of the probe were discussed on the basis of imaging of cancer cells, toxicity and fluorescent efficiency. It is important to mention that the process of synthesis of the biomarker was controlled on each step, starting from the selection of appropriate size and shape of the core, through optical characterization, effective way of biofunctionalization and finally application in cell visualization.At first, I presented an improved method of separation of distinct shapes of gold nanoparticles from a heterogeneous mixture. The method of centrifugation in a glucose density gradient was applied in order to get homogenous fractions. The procedure of sample preparation, centrifugation and collection of the separated nanoparticles is described. Moreover, I discussed the synthesis with and without Ag+ ions added to the growth solution.Then, I had a closer look on transferring procedure of the NRs from water into IPA solvent, which induce self-organization of the nanoparticles. Optical characterization as well as recorded ATR spectra gave the foundations to understanding of the assembly process taking place. Additionally the work is enriched with the theoretical calculations indicating that individual self-assembled nanostructures show strong light polarization dependent properties. The electric field localized in the gap between NRs is estimated to be enhanced over 350 fold.In the next part of my thesis I have performed a systematic and quantitative description of the interactions of NRs with light (femtosecond laser pulses, 130 fs, 800 nm) in order to characterize the optical properties and design NRs with specific functionalities. In this work I focused on the investigation of structural changes of the NRs and the parameters influencing the reshaping, like surface modification using sodium sulfide, laser power and the position of the longitudinal surface plasmon resonance band (l-SPR) with respect to the laser wavelength.In the next part of the thesis I have quantified the probability of simultaneous absorption of two photons by plasmonic nanoparticles: gold nanorods and gold nanoshells, and by several dye molecules, by using the open-aperture Z-scan technique available in the laboratory at WUT in Poland. At first, I started from fabrication of stable and highly monodisperse NSs suspensions in water, with a varying degree of gold coverage. Then, the NLO properties of the nanoshells were quantified in terms of the two-photon absorption coefficient (α2), the nonlinear refractive index (n2), and the saturation intensity for one-photon absorption (Isat), which are extensive quantities. Then I calculated the two-photon absorption cross-section (σ2) taken per nanoparticle, which was also interpreted in terms of the merit factor σ2/M (where M is the molar mass of the nanoparticle), the quantity suitable for comparisons with other types of nonlinear absorbers.Finally, in the last chapter I have combined the results and knowledge from all previously described experiments in order to propose a new bioprobe. The probe is based on NR functionalized by DNA strand with attached fluorophore. The distance between gold surface and dye is selected in a such way as to maximize the fluorescent emission. The viability tests show low toxicity for cells and high compatibility. I showed that biofunctionalized NRs can provide fluorescent labeling of cancer cells and enable effective photothermal therapy. This is one of the first demonstrations of coupling a bioimaging application to a cancer therapy application using NRs targeted against a clinical relevant biomarker. I hope that the future studies will extend the in vitro concept demonstrated here to in vivo animal experiments.
56

Nonlinear Processes in Plasmonic Catalysis

Nelson, Darby 02 October 2019 (has links)
No description available.
57

Finite-Difference Time-Domain (FDTD) Modeling of Nanoscale Plasmonic Substrates for Surface-Enhanced Raman Spectroscopy (SERS)

Gorunmez, Zohre 19 November 2019 (has links)
No description available.
58

Cascaded plasmon resonances for enhanced nonlinear optical response

Toroghi, Seyfollah 01 January 2014 (has links)
The continued development of integrated photonic devices requires low-power, small volume all-optical modulators. The weak nonlinear optical response of conventional optical materials requires the use of high intensities and large interaction volumes in order to achieve significant light modulation, hindering the miniaturization of all-optical switches and the development of lightweight transmission optics with nonlinear optical response. These challenges may be addressed using plasmonic nanostructures due to their unique ability to confine and enhance electric fields in sub-wavelength volumes. The ultrafast nonlinear response of free electrons in such plasmonic structures and the fast thermal nonlinear optical response of metal nanoparticles, as well as the plasmon enhanced nonlinear Kerr-type response of the host material surrounding the nanostructures could allow ultrafast all-optical modulation with low modulation energy. In this thesis, we investigate the linear and nonlinear optical response of engineered effective media containing coupled metallic nanoparticles. The fundamental interactions in systems containing coupled nanoparticles with size, shape, and composition dissimilarity, are evaluated analytically and numerically, and it is demonstrated that under certain conditions the achieved field enhancement factors can exceed the single-particle result by orders of magnitude in a process called cascaded plasmon resonance. It is demonstrated that these conditions can be met in systems containing coupled nanospheres, and in systems containing non-spherical metal nanoparticles that are compatible with common top-down nanofabrication methods such as electron beam lithography and nano-imprint lithography. We show that metamaterials based on such cascaded plasmon resonance structures can produce enhanced nonlinear optical refraction and absorption compared to that of conventional plasmonic nanostructures. Finally, it is demonstrated that the thermal nonlinear optical response of metal nanoparticles can be enhanced in carefully engineered heterogeneous nanoparticle clusters, potentially enabling strong and fast thermal nonlinear optical response in system that can be produced in bulk through chemical synthesis.
59

In vitro Biomedical Application and Photothermal Therapy Evaluation of Gold Complexes and Gold Nanoparticles

Shennara, Khaled A 05 1900 (has links)
Plasmonic photothermal therapy (PPTT) has a rising promise for treating different cancer cells such as lymphoma or stomach cancer. Technique development of PPTT using metallic nanoparticles is developed upon a modification of the irradiation therapy using two major changes: using a less harmful visible amber light (excluding blue light) and using gold-loaded biocompatible nanoparticles. Acrylate nanoparticles were loaded with desired types of gold nanoparticles at different sizes. The gold-loaded gold nanoparticles were conjugated to cancer cells. By selectively delivering the gold nanoparticles into cancer cells, irradiating a harmless amber visible light will achieve thermal ablation of the cancer cells. Based on imaging spectroscopy, flow cytometry, and cell viability assays, results showed reduction of gold-loaded viable cancer cells upon irradiating with amber visible light, no change in the number of cancer cells with irradiating with light only. On the other hand, DNA intercalation of a trinuclear gold(I), [Au(3-CH3,5-COOH)Pz]3 (Au3) is contrasted with the standard organic intercalators ethidium and ellipticine, as investigated computationally. Frontier molecular orbital energies of intercalators and DNA base pairs were determined and found that all intercalators are good electron acceptors with Au3 being the best electron acceptor having the lowest LUMO. DNA base pairs are better electron donors having the lowest HOMO values, and from the intercalators and base pairs' HOMO/LUMO energies, it is evident the intercalators will overlap with the HOMO of DNA stabilizing the intercalators. Interaction energies (kcal/mol) were obtained as a function of distance, r (angstroms). Results show that the theoretical treatment SDD-WB97XD outperforms SDD-LSDA in both adenine-thymine (AT) systems with ethidium and Au3 intercalators. In both guanine-cytosine (GC) and AT pairs, the Au3 has the lowest interaction energies among these common intercalators, suggesting a potential intercalating drug. Experimental DNA intercalation studies were attempted and methods of finding intercalation binding constants were established, showing gold complexes have better binding constants to DNA than common intercalators to support the computational results.
60

Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry

Baral, Susil 14 September 2017 (has links)
No description available.

Page generated in 0.0782 seconds