• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 54
  • 52
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 37
  • 25
  • 23
  • 22
  • 22
  • 18
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Característica de Euler-Poincaré para estimar a conectividade da estrutura do osso trabecular

Arcaro, Katia January 2009 (has links)
A osteoporose é uma degradação óssea prevalente que é caracterizada pela perda de massa óssea e deteriorização da microarquitetura do osso trabecular. A perda da massa óssea é normalmente medida por meio da Densidade Mineral Óssea (DMO), porém é fato que esta medida não é suficiente para identificar completamente a fragilidade óssea e, consequentemente, o risco de fratura de um paciente. Portanto, o estudo da estrutura trabecular tornou-se de grande importância. Neste trabalho, é feita uma análise da conectividade trabecular, utilizando-se, para isso, ajustes lineares dos valores da Característica de Euler-Poincaré (CEP), calculada para pares de imagens tomográficas. Relacionando os achados com dados clínicos e medidas da DMO, percebeu-se que a CEP não está correlacionada aos mesmos, nem diretamente com a razão área trabecular/medula. São ainda abordados aqui conceitos de Estereologia, discutidos alguns de seus métodos, bem como algumas técnicas de processamento de imagens, que são ferramentas de estudo dos parâmetros histomorfométricos utilizados na investigação da microarquitetura trabecular. / Osteoporosis is a prevalent bone disorder tbat is cbaracterized by the loss af bone mass and the deterioration of the trabecnlar bone microarchitecture. The loss of bone mass is normally measured by the Bone Mineral Density (BMD), however i1.is known tbat tbis measure is not sufficient to fully identify the bone fragility and its consequent future risk for a patient. Therefore, the study af the bone strueture has become of great importance nowadays. ln this work, we investigate the applieabillty oHhe Euler. poinearé Charaeteristic (CE P) to estiroate the trabecular bone connectivity, using, for these, pairs af tomografic images. Thc resnlt will be comparcd to cUnic data and nieasure of BMD. Was noticied that the CEP values are not related with them, even in direet way, with the ratio between trabecnlar and no trabeeular areas. Besides, an introduct.ion to Stereology concepts are provided and some image processing techniques are discussed. These are important tools to the study of histomophometric paraIlleters that are UBedto investigate the trabeenlar microarchitecture.
12

Grupos Discretos no Plano Hiperbólico

Silva, Carlos Antonio Guimarães 23 August 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1316113 bytes, checksum: fa392778ab5ea3463805913d86fe571f (MD5) Previous issue date: 2013-08-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Set a generalization of Möbius transformation and build a theory of inductive that may be an n-dimensional hyperbolic space. This theory allows for the inductive starting with n = 1, together with the extension notion of the Poincaré build a chain groups GM(n) transformation Möbius and spaces hyperbolic H2 members. We will see explicit formulas for the Poincaré bisectors in size 2. And may on models of hiperbolic space ball these bisectors coincide with the isometric spheres of isometries. We will be using explicit formulas of bissectors, to ge youself an algorithm, the DAFC, to obtain generators for Fuchsianos groups, which will be our study group. / Definir uma generalização do conceito de transformação de Möbius e construir uma teoria indutiva do que venha a ser um espaço hiperbólico de dimensão n. Essa teoria indutiva nos permite que se iniciando com n = 1, juntamente com a noção de extensão de Poincaré, construir uma cadeia de grupos GM(n) de transformação de Möbius e os espaços hiperbólicos H2 associados. Veremos fórmulas explícitas para os bissetores de Poincaré em dimensão 2. E que nos modelos de bola do espaço hiperbólico, esses bissetores coincidem com as esferas isométricas das isometrias. Iremos usar fórmulas explícitas dos bissetores, para obter-se um algoritmo, o DAFC, para obtenção de geradores para grupos Fuchsianos, que será nosso grupo em estudo.
13

Característica de Euler-Poincaré para estimar a conectividade da estrutura do osso trabecular

Arcaro, Katia January 2009 (has links)
A osteoporose é uma degradação óssea prevalente que é caracterizada pela perda de massa óssea e deteriorização da microarquitetura do osso trabecular. A perda da massa óssea é normalmente medida por meio da Densidade Mineral Óssea (DMO), porém é fato que esta medida não é suficiente para identificar completamente a fragilidade óssea e, consequentemente, o risco de fratura de um paciente. Portanto, o estudo da estrutura trabecular tornou-se de grande importância. Neste trabalho, é feita uma análise da conectividade trabecular, utilizando-se, para isso, ajustes lineares dos valores da Característica de Euler-Poincaré (CEP), calculada para pares de imagens tomográficas. Relacionando os achados com dados clínicos e medidas da DMO, percebeu-se que a CEP não está correlacionada aos mesmos, nem diretamente com a razão área trabecular/medula. São ainda abordados aqui conceitos de Estereologia, discutidos alguns de seus métodos, bem como algumas técnicas de processamento de imagens, que são ferramentas de estudo dos parâmetros histomorfométricos utilizados na investigação da microarquitetura trabecular. / Osteoporosis is a prevalent bone disorder tbat is cbaracterized by the loss af bone mass and the deterioration of the trabecnlar bone microarchitecture. The loss of bone mass is normally measured by the Bone Mineral Density (BMD), however i1.is known tbat tbis measure is not sufficient to fully identify the bone fragility and its consequent future risk for a patient. Therefore, the study af the bone strueture has become of great importance nowadays. ln this work, we investigate the applieabillty oHhe Euler. poinearé Charaeteristic (CE P) to estiroate the trabecular bone connectivity, using, for these, pairs af tomografic images. Thc resnlt will be comparcd to cUnic data and nieasure of BMD. Was noticied that the CEP values are not related with them, even in direet way, with the ratio between trabecnlar and no trabeeular areas. Besides, an introduct.ion to Stereology concepts are provided and some image processing techniques are discussed. These are important tools to the study of histomophometric paraIlleters that are UBedto investigate the trabeenlar microarchitecture.
14

Analyse de quelques problèmes de conductivité avec changement de signe / Analysis of some conductivity problems with sign changing coefficients

Salesses, Lionel 19 December 2018 (has links)
Dans cette thèse on étudie le comportement des ondes électromagnétiques lorsqu'elles rencontrent un matériau négatif, c'est-à-dire un matériau dont la permittivité électrique et/ou la perméabilité magnétique est négative. On se focalise ici sur le cas où seulement la permittivité change de signe. En dimension deux, les équations de Maxwell en régime harmonique se réduisent à deux sous-problèmes scalaires plus aisés à traiter. L'un de ces sous-problèmes autorise la propagation d'ondes de surface, appelées plasmons de surface, à l'interface entre le matériau négatif et le diélectrique, ce qui le rend particulièrement intéressant pour les applications. On se concentre sur ce sous-problème et en particulier sur sa partie principale qui correspond à une équation de conductivité. Cependant, comme la permittivité change de signe les outils classiques comme le Théorème de Lax-Milgram sont mis en défaut. Dans le premier chapitre, on introduit des outils utiles à la compréhension du reste de la thèse. On décrit en particulier comment l'étude l'équation de conductivité fait naturellement intervenir l'opérateur de Poincaré-Neumann dont le spectre encode les rapports de permittivité qui permettent l'existence des plasmons de surface. On présente une formulation intégrale et une formulation variationnelle de l'opérateur de Poincaré-Neumann et le lien qui existe entre ces deux formulations. Le second chapitre de ce manuscrit s'intéresse au caractère bien posé de l'équation de conductivité lorsque la permittivité change de signe. En utilisant des méthodes d'équations intégrales on propose une condition suffisante pour que ce problème soit bien posé. Dans le troisième chapitre de cette thèse, on se concentre sur le calcul numérique du spectre de l'opérateur de Poincaré-Neumann à l'aide des méthodes d'éléments finis. On s'intéresse à la convergence des valeurs propres calculées numériquement vers les valeurs propres théoriques. Dans le dernier chapitre, on étudie le problème de transmission des ondes électromagnétiques dans une couche métallique de permittivité négative sous l'angle des fonctions de Green. En particulier on s'intéresse au comportement de la fonction de Green pour ce problème lorsque l'épaisseur de la couche métallique tend vers zéro. / In this thesis, we study the behaviour of electromagnetic waves when interacting with a negative material. Such a material has a negative electric permittivity and/or magnetic permeability. Here we only focus on negative permittivity materials. In dimension two, Maxwell's equations in harmonic regime reduce to a couple of scalar, easier to tackle, sub-problems. One of these sub-problems allows surface waves to propagate along the interface between a negative material and a dielectric, which makes it very interesting for the applications. Such surface waves are called surface plasmons. Here, we focus on this sub-problem and more specifically on its main part which is a conductivity equation. Yet, as the permittivity sign changes between the negative material and the dielectric, it is not allowed to use the classical Lax-Milgram framework. In the first chapter, we introduce tools which are useful to understand the rest of this thesis. In particular, we describe how studying conductivity equation leads us to deal with the Poincar{'e}-Neumann operator. The spectrum of this operator encodes permittivity ratios that allow surface plasmons to propagate. We propose both the integral formulation and the variational formulation of this operator, and we explain the link existing in-between. In the second chapter of this thesis, we focus on the well-posedness property of the conductivity equation when permittivity sign changes. Using integral equation methods, we propose a sufficient well-posedness condition for this problem. In the third chapter, we deal with the numerical computation of the Poincaré-Neumann operator spectrum using finite element methods. We are interested in the convergence of numerically computed eigenvalues to the theoretical ones. In the last chapter, we study the electromagnetic wave transmission problem in a metallic layer with a negative permittivity from the Green's function point of view. In particular, we investigate the Green's function behaviour when the metallic layer thickness goes to zero.
15

Multisymplectic formalism for theories of super-fields and non-equivalent symplectic structures on the covariant phase space / Le formalisme multisymplectique pour les théories des super-champs et les structures symplectiques non-équivalentes sur l'espace des phases co-variant

Veglia, Luca 07 December 2016 (has links)
Le Calcul des Variations et son interprétation géométrique ont toujours joué un rôle crucial en Physique Mathématique, que ce soit par le formalisme lagrangien, ou à travers les équations hamiltoniennes.Le formalisme multisymplectique permet une description géométrique de dimension finie des théories de champ classiques (qui correspondent à des problèmes variationnels avec plusieurs variables spatio-temporelles) vues d’un point de vue hamiltonien. La géométrie multisymplectique joue un rôle similaire à celui de la géométrie symplectique dans la description de la mécanique hamiltonienne classique. De plus, l’approche multisymplectique fournit un outil pour construire une structure symplectique sur l’espace des solutions de la théorie des champs et pour l’étudier.Dans cette thèse, je m’intéresse principalement au formalisme multisymplectique pour construire des théories de champs de premier ordre et j’espère pouvoir donner deux principales contributions originales :– Je montre que, dans certaines situations, la structure symplectique de l’espace des phases covariant peut en effet dépendre du choix de la topologie du découpage de l’espace-temps en l’espace et en le temps;– Je construis une extension du formalisme multisymplectique aux théories de super-champs. En tant que «sous-produit», je présente une autre contribution que j’espère intéressante :– Je définie des formes fractionnaires sur des supervariétés avec leur calcul de Cartan. Ces formes fractionnaires se révèlent utiles pour construire le formalisme multisymplectique pour les théories de super-champs.Les ingrédients principaux du formalisme que j'utilise sont : l’espace des multimoments de dimension finie P et son extension aux théories de super-champs que je définie ; la superforme lagrangienne, le superhamiltonien et la superforme multisymplectique. Dans la thèse je montre aussi un théorème de comparaison qui permets de clarifier les relations existant entre les théories dites en composantes et les théories de superchamps. J’explique comment le formalisme supermultisymplectique peut être utilisé pour définir des super crochets de Poisson pour les superchamps. Je donne une version "super" du premier théorème de Noether valable pour l'action de supergroupes de symétrie et je propose une extension « super » de l'application multimoment. Enfin je présente quelques exemples montrant comment toute la théorie peut être mise en œuvre : en particulier j'étudie la superparticule libre et le modèle sigma 3-dimensionnel. / The Calculus of Variations and its geometric interpretation always played a key role in Mathematical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations.The multisymplectic formalism allows a finite dimensional geometric description of classical field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same role played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover the multisymplectic approach provides a tool for building a symplectic structure on the space of solutions of the field theory and for investigating it.In this thesis I use the multisymplectic formalism to build first order field theories and I hope to give two main original contributions:– I show that, in some situations, the symplectic structure on the covariant phase space may indeed depend from the choice of splitting of spacetime in space and time;– I extend the multisymplectic formalism to superfield theories.As a "byproduct", I present another contribution:– I define fractional forms on supermanifolds with their relative Cartan Calculus. These fractional forms are useful to build the multisymplectic formalism for superfield theories.The main ingredients of the formalism I use are: the finite dimensional multimomenta phase space P and its extension to super field theories, which I give; the Lagrangian superform; the super-Hamiltonian, the multisymplectic superform.In my thesis I also prove a Comparison Theorem which allows to clarify the relations existing between the so called components theories and the so called superfield theories. I explain how the supermultisymplectic formalism can be used to define super Poisson brackets for super fields. I give a "super" version of the first Noether theorem valid for the action of supergroups of symmetry and I propose a “super” extension of the multimomentum map.Finally I present some examples showing how all the theory can be implemented: I study the free superparticle and the 3-dimensional sigma-model.
16

Geometria hiperbólica : consistência do modelo de disco de Poincaré

SOUZA, Carlos Bino de 26 August 2015 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T14:00:56Z No. of bitstreams: 1 Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) / Made available in DSpace on 2017-03-28T14:00:56Z (GMT). No. of bitstreams: 1 Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) Previous issue date: 2015-08-26 / Euclid wrote a book in 13 volumes called Elements where systematized all the mathematical knowledge of his time. In this work, the 5 postulates of Euclidean geometry were presented. For several years, the 5th Postulate was frequently asked, this inquiries it was discovered that there are several other possible geometries, including hyperbolic geometry. Beltrimi proved that hyperbolic geometry is consistent if Euclidean geometry is consistent. Hilbert showed that Euclidean geometry is consistent if the arithmetic is consistent and presented an axiomatic system that capped the gaps in Euclid’s axiomatic system. Poincaré created a model, called the Poincaré disk, to represent the plan of hyperbolic geometry. The objective of this work is to show that the Poincaré disk model is consistent with reference Axioms Hilbert, replacing only the Axioms of Parallel to "On a point outside a line passes through the two parallel straight lines given", by constructions of Euclidean geometry. / Euclides escreveu uma obra em 13 volumes chamada de Elementos onde sistematizava todo o conhecimento matemático do seu tempo. Nesta obra, foram apresentados os 5 postulados da Geometria Euclidiana. Durante vários anos, o 5o Postulado foi muito questionado, desses questionamentos descobriu-se a existência de várias outras Geometrias possíveis, entre elas a Geometria Hiperbólica. Beltrimi provou que a Geometria Hiperbólica é consistente se a Geometria Euclidiana é consistente. Hilbert mostrou que a Geometria Euclidiana é consistente se a Aritmética é consistente e apresentou um sistema axiomático que preencheu as lacunas do sistema axiomático de Euclides. Poincaré criou um Modelo, chamado de Disco de Poincaré, para representar o plano da Geometria Hiperbólica. O objetivo deste trabalho é mostrar que o Modelo de Disco de poincaré é consistente, tomando como referência os Axiomas de Hilbert, substituindo apenas os Axiomas das Paralelas para "Por um ponto fora de uma reta passam duas retas paralelas à reta dada", através de construções da Geometria Euclidiana.
17

Homologie de morse et théorème de la signature

St-Pierre, Alexandre January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
18

Quasi-isometries between hyperbolic metric spaces, quantitative aspects / Quasi-isométries entre espaces métriques hyperboliques, aspects quantitatifs

Shchur, Vladimir 08 July 2013 (has links)
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous appelons Anti-Morse Lemma, et leurs applications.Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de $L^p$-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poincaré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes de la forme $dt^2+\sum_ie^{2\mu_it}dx_i^2$, et donnons une borne inférieure sur la croissance de distorsion quasi-isométrique entre ces espaces.Cela nous permet de donner des exemples présentant différents type de croissance de distorsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique). / In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ``quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincar\'e constants of balls are their quantitative incarnation. We study how Poincar\'e constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincar\'e constants for locally homogeneous metrics of the form $dt^2+\sum_ie^dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
19

A counterexample to a conjecture of Serre

Anick, David Jay January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 48-49. / by David Jay Anick. / Ph.D.
20

Poincaré recurrence, measure theoretic and topological entropy. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Consider a dynamical system which is positively expansive and satisfies the condition of specification. We further study the topological entropy of the level sets for local Poincare recurrence, i.e. the recurrence spectrum. It turns out that the spectrum is quite irrational as any level set has the same (topological) entropy as the whole system. The erratic recurrence behavior of the orbits brings chaos. For the system concerned, we show that it contains a Xiong chaotic set C which is large in the sense that the intersection of any non-empty open set with C has the same topological entropy as the whole system. The ergodic average can be regarded as a certain recurrence average. We give multifractal analysis of the generalized spectrum for ergodic average, which incorporates the information of the set of divergence points. Note that the set of divergence points for Poincare recurrence or ergodic average has measure zero with respect to any invariant measure. (A Xiong chaotic set may has measure zero with respect to some invariant measures with full support.) The above results support the point of view that small set unobservable in measure may account for the anomalous chaotic behavior of the whole system. / The thesis is on the recurrence and chaotic behavior of a dynamical system. Let the local Poincare recurrence rate at a point be defined as the exponential rate of the first return time of the orbit into its neighborhoods defined by the Bowen metric. Given any reference invariant probability measure mu, we show that the rate equals to the local entropy of mu a.e. Hence, the integration of the rate is exactly the (measure theoretic) entropy of the measure mu. / Shu, Lin. / "January 2007." / Adviser: Ka-Sing Lau. / Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5286. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 83-91). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Page generated in 0.0319 seconds