• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 25
  • 23
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design of a small-scale wave energy converter

Farjana, Sumaya January 2022 (has links)
In this study, a small-scale point absorber wave energy converter has been designed contemplating a full-scaled point absorber in the Mediterranean Sea state. The scaling factor for the small-scaled version has been determined by the damping coefficient calculation of the power take-off in 1:10, 1:15, and 1:20 scaling factors. Here a rotational power take-off has been designed instead of the linear one. The rotational power take-off will follow a similar principle as the Eddy current brake. The effect of change in the radius of the translator and magnetic flux in the damping coefficient had been calculated as well. The calculation for the damping coefficient has been conducted in COMSOL Multiphysics. The design for the point absorber was assembled in SolidWorks. In this article, specific attention is given to a variety of aspects affecting the damping coefficient and the way it can aid to determining the scaling factor parameters for a small-scale wave energy converter.
12

Design, Analysis and Testing of a Self-reactive Wave Energy Point Absorber with Mechanical Power Take-off

Li, Xiaofan 06 November 2020 (has links)
Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although cannot all be adopted for generating electricity, the amount of the power can be absorbed still can occupy a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a self-reactive two-body wave energy point absorber that is embedded with a novel PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis and testing to improve the energy harvesting efficiency and the reliability of the PTO. The MMR mechanism can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. As a result, this mechanism brings in two advantages towards the PTO. The first advantage it possess is that the alternating stress of the PTO is changed into normal stress, hence the reliability of the components are expected to be improved significantly. The other advantage it brings in is a unique phenomenon of engagement and disengagement during the operation, which lead to a piecewise nonlinear dynamic property of the PTO. This nonlinearity of the PTO can contribute to an expanded frequency domain bandwidth and better efficiency, which are verified through both numerical simulation and in-lab experiment. During the in-lab test, the prototyped PTO achieved energy transfer efficiency as high as 81.2%, and over 40% of efficiency improvement compared with the traditional non-MMR PTO under low-speed condition, proving the previously proposed advantage. Through a more comprehensive study, the MMR PTO is further characterized and a refined dynamic model. The refined model can accurately predict the dynamic response of the PTO. The major factors that can influence the performance of the MMR PTO, which are the inertia of the PTO, the damping coefficient, and the excitation frequency, are explored through analysis and experiment comprehensively. The results show that the increase on the inertia of the PTO and excitation frequency, and decrease on the damping coefficient can lead to a longer disengagement of the PTO and can be expressed analytically. Besides the research on the PTO, the body structure of the point absorber is analyzed. Due to the low-frequency of the ocean wave excitation, usually a very large body dimension for the floating buoy of the point absorber is desired to match with that frequency. To solve this issue, a self-reactive two-body structure is designed where an additional frequency between the two interactive bodies are added to match the ocean wave frequency by adopting an additional reactive submerged body. The self-reactive two-body structure is tested in a wave to compare with the single body design. The results show that the two-body structure can successfully achieve the frequency matching function, and it can improve more than 50% of total power absorption compared with the single body design. / Doctor of Philosophy / Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although impossible to be all transferred into electricity, the amount of the power can be absorbed still can cover a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a novel two body wave energy converter with a PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis, and testing. To improve the energy harvesting efficiency and the reliability of the PTO, the dissertation induced a mechanical PTO that uses MMR mechanism which can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. This mechanism brings in a unique phenomenon of engagement and disengagement and a piecewise nonlinear dynamic property into the PTO. Through a comprehensive study, the MMR PTO is further characterized and a refined dynamic model that can accurately predict the dynamic response of the PTO is established. The major factors that can influence the performance of the MMR PTO are explored and discussed both analytically and experimentally. Moreover, as it has been theoretically hypothesis that using a two-body structure for designing the point absorbers can help it to achieve a frequency tuning effect for it to better match with the excitation frequency of the ocean wave, it lacks experimental verification. In this dissertation, a scaled two-body point absorber prototype is developed and put into a wave tank to compare with the single body structure. The test results show that through the use of two-body structure and by designing the mass ratio between the two bodies properly, the point absorber can successfully match the excitation frequency of the wave. The highest power capture width ratio (CWR) achieved during the test is 58.7%, which exceeds the results of similar prototypes, proving the advantage of the proposed design.
13

Hydrodynamic Design Optimization and Wave Tank Testing of Self-Reacting Two-Body Wave Energy Converter

Martin, Dillon Minkoff 09 November 2017 (has links)
As worldwide energy consumption continues to increase, so does the demand for renewable energy sources. The total available wave energy resource for the United States alone is 2,640 TWh/yr; nearly two thirds of the 4,000 TWh of electricity used in the United States each year. It is estimated that nearly half of that available energy is recoverable through wave energy conversion techniques. In this thesis, a two-body 'point absorber' type wave energy converter with a mechanical power-takeoff is investigated. The two-body wave energy converter extracts energy through the relative motion of a floating buoy and a neutrally buoyant submerged body. Using a linear frequency-domain model, analytical solutions of the optimal power and the corresponding power-takeoff components are derived for the two-body wave energy converter. Using these solutions, a case study is conducted to investigate the influence of the submerged body size on the absorbed power of the device in regular and irregular waves. Here it is found that an optimal mass ratio between the submerged body and floating buoy exists where the device will achieve resonance. Furthermore, a case study to investigate the influence of the submerged body shape on the absorbed power is conducted using a time-domain numerical model. Here it is found that the submerged body should be designed to reduce the effects of drag, but to maintain relatively large hydrodynamic added mass and excitation force. To validate the analytical and numerical models, a 1/30th scale model of a two-body wave energy converter is tested in a wave tank. The results of the wave tank tests show that the two-body wave energy converter can absorb nearly twice the energy of a single-body 'point absorber' type wave energy converter. / Master of Science
14

Buoy Geometry, Size and Hydrodynamics for Power Take Off Device for Point Absorber Linear Wave Energy Converter

Gravråkmo, Halvar January 2014 (has links)
Wave energy converters of point absorber type have been developed and constructed. Full scale experiments have been carried out at sea and electricity has been successfully delivered. Linear permanent magnet generators together with a subsea substation and buoys of various geometric shapes have been investigated theoretically and experimentally. The design has in large extent an electronic approach, keeping the mechanical part of it as simple as possible, due to the long life span and reliability of electric components. Because of the nature of a linear generator, the internal translator with permanent magnets has a limited stroke length which will be reached when the buoy is exposed to large wave heights. Internal springs at the top and bottom of the generator prevent the translator from hitting the generator hull. Inertial forces due to the mass and velocity of the translator and the buoy and its heave added mass compresses the spring. The added mass is a rather large part of the total moving mass. Simulations of a converter with a vertical cylindrical buoy and with a toroidal buoy were conducted, as well as real sea experiments with converters with cylindrical buoys of two different sizes and a toroidal buoy. The overloads are likely to affect the design and service life of the generator, the buoy and the wire which interconnects them. Buoy shapes with as much excitation force as possible and as little heave added mass as possible were sought. A toroidal buoy caused less overloads on the generator at sea states with short wave periods and relatively large wave height, but for sea states with very long wave periods or extremely high waves, the magnitude of the overloads was mainly determined by the maximum displacement of the buoy. Snap loads on the interconnecting wire, as the slack wire tensed up after a very deep wave trough, were found to be greater but of the same order of magnitude as forces during the rest of the wave cycle. During a 4 day period at various wave conditions, two converters with cylindrical buoys proved efficiency between 11.1 % and 24.4 %. The larger buoy had 78 % larger water plane area than the other buoy which resulted in 11 % more power production. Short wave period was beneficial for the power production. Infinite frequency heave added mass was measured for a cylindrical buoy at real sea and found to be greater than the linearly calculated theoretical added mass.
15

Hydrodynamic Modelling for a Point Absorbing Wave Energy Converter

Engström, Jens January 2011 (has links)
Surface gravity waves in the world’s oceans contain a renewable source of free power on the order of terawatts that has to this date not been commercially utilized. The division of Electricity at Uppsala University is developing a technology to harvest this energy. The technology is a point absorber type wave energy converter based on a direct-driven linear generator placed on the sea bed connected via a line to a buoy on the surface. The work in this thesis is focused mainly on the energy transport of ocean waves and on increasing the transfer of energy from the waves to the generator and load. Potential linear wave theory is used to describe the ocean waves and to derive the hydrodynamic forces that are exerted on the buoy. Expressions for the energy transport in polychromatic waves travelling over waters of finite depth are derived and extracted from measured time series of wave elevation collected at the Lysekil test site. The results are compared to existing solutions that uses the simpler deep water approximation. A Two-Body system wave energy converter model tuned to resonance in Swedish west coast sea states is developed based on the Lysekil project concept. The first indicative results are derived by using a linear resistive load. The concept is further extended by a coupled hydrodynamic and electromagnetic model with two more realistic non-linear load conditions. Results show that the use of the deep water approximation gives a too low energy transport in the time averaged as well as in the total instantaneous energy transport. Around the resonance frequency, a Two-Body System gives a power capture ratio of up to 80 percent. For more energetic sea states the power capture ratio decreases rapidly, indicating a smoother power output. The currents in the generator when using the Two-Body system is shown to be more evenly distributed compared to the conventional system, indicating a better utilization of the electrical equipment. Although the resonant nature of the system makes it sensitive to the shape of the wave spectrum, results indicate a threefold increase in annual power production compared to the conventional system.
16

Dynamics of Pitching Wave Energy Converter with Resonant U-Tank Power Extraction Device

Afonja, Adetoso J. 05 1900 (has links)
This research revolves around the concept design and theoretical validation of a new type of wave energy converter (WEC), comprising a pitching floater integrated with a resonant U-tank (RUT) and a Wells turbine as power take-off (PTO). Theoretical formulation of a fully coupled multi-body dynamic system, incorporating the thermodynamic processes of the RUT air chamber, its interaction with the PTO dynamics and their coupling with the floater is presented. Inaccuracies of the dynamic modeling of RUT based on Lloyd's low order model, which assumes constant hydrodynamic parameters irrespective of the frequency, are demonstrated by a series of high fidelity CFD simulations. These simulations are a systematic series of fully viscous turbulent simulations, using unsteady RANSE solvers, of the water sloshing at different frequencies of oscillation. Calibration of Lloyd’s model with CFD results evidenced that the RUT hydrodynamic parameters are not invariant to frequency. A numerical model was developed based on Simulink WEC-Sim libraries to solve the non-linear thermo-hydrodynamic equations of the device in time domain. For power assessment, parametric investigations are conducted by varying the main dimensions of the RUT and power RAOs were computed for each iteration. Performance in irregular sea state are assessed using a statistical approach with the assumption of linear wave theory. By superimposing spectrum energy density from two resource sites with RAO, mean annual energy production (MEAP) are computed. The predicted MEAP favorably compares with other existing devices, confirming the superior efficiency of the new proposed device over a larger range of incident wave frequency. / M.S. / This study present results of an investigation into a new type of wave energy converter which can be deployed in ocean and by its pitch response motion, it can harvest wave energy and convert it to electrical energy. This device consist of a floater, a U-tank (resonant U-tank) with sloshing water free to oscillate in response to the floater motion and a pneumatic turbine which produces power as air is forced to travel across it. The pneumatic turbine is used as the power take-off (PTO) device. A medium fidelity approach was taken to carry out this study by applying Lloyd’s model which describes the motion of the sloshing water in a resonant U-tank. Computational fluid dynamics (CFD) studies were carried out to calibrate the hydrodynamic parameters of the resonant U-tank as described by Lloyd and it was discovered that these parameters are frequency dependent, therefore Lloyd’s model was modelled to be frequency dependent. The mathematical formulation coupling the thermodynamic evolution of air in the resonant U-tank chamber, modified Lloyd’s sloshing water equation, floater dynamics and PTO were presented for the integrated system. These set of thermo-hydrodynamic equations were solved with a numerical model developed using MATLAB/Simulink WEC-Sim Libraries in time domain in other to capture the non-linearity arising from the coupled dynamics. To assess the annual energy productivity of the device, wave statistical data from two resource sites, Western Hawaii and Eel River were selected and used to carrying out computations on different iterations of the device by varying the tank’s main dimensions. This results were promising with the most performing device iteration yielding mean annual energy production of 579 MWh for Western Hawaii.
17

Automatic Adjustment of the Floatation Level for a Tight-moored Buoy

Healy Strömgren, William January 2005 (has links)
<p>Denna rapport ger förslag på olika metoder att automatiskt justera flytläget på en statiskt förankrad boj, en överblick över de processer som styr ändringen av vattennivån och en statisktisk analys på vattennivåförändringarna vid Stockholm, Kungsholmsfort och Kungsvik.</p><p>Beroende på vattenivåns variation finns olika metoder för justering. Områden med små variationer av vattennivå lämpar det sig bäst utan någon som helst justering av flytläget. Områden med inte för stora tidvattensförändringar bör justeras med ett system bestående av vinsch, växellåda med en utväxling på 10 000:1, en 12 V DC motor, ett skötselfritt 12 V batteri, en luftlindad linjärgenerator och en trådtöjningsgivare. Områden med stora variationer i tidvatten behöver en avlastning för motorn i form av en fjäder och dämpare. De monteras horizontellt inuti bojen för att skyddas från den yttre miljön.</p><p>Den statistiska analysen påvisade de största vattennivåändringarna vid både Kungsviks och Kungsholmsforts mätstationer, båda uppvisade ett intervall på 1,6 m mellan minimum och maximum. Kungsvik var den station med de största dagliga variationerna, detta på grund av tidvattnets påverkan i området.</p> / <p>This thesis gives examples of different methods of automated adjustment of floatation level for a static moored buoy, an overview of the theories behind water level change and a statistical analysis of the water level changes for Stockholm, Kungsholmsfort and Kungsvik.</p><p>Depending on the range and frequency of the water level change different methods of adjustment are recommended. For areas with small changes in sea level the best choice would be no adjustment of the floatation level. Areas that are influenced by moderate tidal ranges should incorporate a system of regulation consisting of a winch, gearbox with a gear ratio of around 10,000:1, 12 V DC motor, 12 V maintenance free battery, air coiled linear generator and a strain gauge. For areas with large tidal ranges the previous system should be complimented with a horizontally mounted spring, inside the buoy, to lessen the loads on the motor.</p><p>The statistical analysis found the largest extremes in water level of the three sites to be at Kungsvik and Kungsholmsfort, both exhibiting a range of almost 1.6 m. Kungsvik was the station with the largest daily variations, this is because this is the only station influenced by tidal variations.</p>
18

Sea Level Compensation System for Wave Energy Converters

Castellucci, Valeria January 2016 (has links)
The wave energy converter developed at Uppsala University consists of a linear generator at the seabed driven by the motion of a buoy on the water surface. The energy absorbed by the generator is negatively affected by variations of the mean sea level caused by tides, changes in barometric pressure, strong winds, and storm surges. The work presented in this doctoral thesis aims to investigate the losses in energy absorption for the present generation wave energy converter due to the effect of sea level variations, mainly caused by tides. This goal is achieved through the modeling of the interaction between the waves and the point absorber. An estimation of the economic cost that these losses imply is also made. Moreover, solutions on how to reduce the negative effect of sea level variations are discussed. To this end, two compensation systems which adjust the length of the connection line between the floater and the generator are designed, and the first prototype is built and tested near the Lysekil research site. The theoretical study assesses the energy loss at about 400 coastal points all over the world and for one generator design. The results highlight critical locations where the need for a compensation system appears compelling. The same hydro-mechanic model is applied to a specific site, the Wave Hub on the west coast of Cornwall, United Kingdom, where the energy loss is calculated to be about 53 %. The experimental work led to the construction of a buoy equipped with a screw jack together with its control, measurement and communication systems. The prototype, suitable for sea level variations of small range, is tested and its performance evaluated. A second prototype, suitable for high range variations, is also designed and is currently under construction. One main conclusion is that including the compensation systems in the design of the wave energy converter will increase the competitiveness of the technology from an economic point of view by decreasing its cost per kWh. The need for a cost-effective wave energy converter with increased survivability emphasizes the importance of the presented research and its future development.
19

Contribution à la modélisation multi-physique et au contrôle optimal d'un générateur houlomoteur : application à un système "deux corps" / On multiphysics modeling and optimal control of wave energy converter : application to a self-reacting point absorber

Olaya, Sébastien 13 September 2016 (has links)
Cette thèse s’inscrit dans le cadre du 12ème appel à projet du Fonds Unique Interministériel (FUI) lancé par l’Etat au premier semestre 2011. Le projet « EM BILBOQUET » a été colabellisé par les pôles de compétitivité Mer Bretagne, Mer PACA et Tenerrdis. Il consiste en la réalisation d’un nouveau système de génération d’électricité issue du mouvement relatif entre deux corps flottants, mus par la houle. Dans cette thèse, nous nous sommes intéressés au contrôle optimal à appliquer sur la génératrice via les convertisseurs statiques, afin d’extraire le maximum d’énergie de la houle incidente. Dans un premier temps, nous avons établi les équations dynamiques régissant le comportement de la structure dans la houle en adoptant les hypothèses de la théorie potentielle. Pour ce faire, nous avons développé un code de calcul spécifique, basé sur une résolution du problème linéaire de tenue à la mer, par des méthodes dites semi-analytiques. Ce code de calcul permet de déterminer les coefficients hydrodynamiques nécessaires à l’écriture de l’équation dynamique dans le domaine fréquentiel, mais aussi dans le domaine temporel via une modification de la formulation de Cummins. Cette dernière nous permet ainsi, dans un second temps, de formuler le problème de maximisation de l’énergie récupérée comme un problème d’optimisation où la variable à optimiser est le couple résistant de la génératrice. Le problème est résolu en temps réel en adoptant une résolution par algorithme dit à horizon fuyant. / In this thesis, we perform a study on a self-reacting point absorber, project FUI 12 “EM BILBOQUET”, in order to optimise energy extraction from incoming waves. Main researches use seabed for providing reference to a floating body, called buoy. However, as it is well-known that ocean energy is greater far away from the shore, sea-depth becomes a constraint. In this thesis a damping plate attached to a spar keel is proposed to allow the floating body to react against it. Energy resulting from the relative motion between the two concentric bodies i.e. the buoy and the spar is harnessed by a rack-and-pinion, which drive a permanent magnet synchronous generator through a gearbox. In the first part of the thesis we have developed a wave-to-wire model i.e. a model of the whole electro-mechanical chain from sea to grid. To this purpose we have developed our own hydrodynamic code, based on linear potential theory and on a semianalytical approach, solving the seakeeping problem. The hydrodynamic coefficients obtained such as added mass, radiation damping, and wave excitation forces are required for solving the dynamic equation based on Cummins formulation. The second part of the thesis focuses on the self-reacting point-absorber optimal control strategy and the Model Predictive Control (MPC) formulation is proposed. Objective function attempting to optimise the power generation is directly formulated as an absorbed power maximisation problem and thus no optimal references, such as buoy and/or spar velocity, are required. However, rather than using the full-order WEC model in the optimisation problem, that can be time-consuming due to its high order, and also because of the linear assumptions, we propose the use of a “phenomenologically" one-body equivalent model derived from the Thévenin’s theorem.
20

Wave Energy Conversion : Linear Synchronous Permanent Magnet Generator

Danielsson, Oskar January 2006 (has links)
<p>This thesis studies the electric aspects of a linear synchronous permanent magnet generator. The generator is designed for use in a wave energy converter, which determines the fundamental requirements of the generator. The electromagnetic properties of the generator are investigated with a finite element based simulation tool. These simulations formed the base of the design and construction of a laboratory prototype. Several experiments where conducted on the prototype generator. The results verify at large the simulation tool. However, a difference between the measured and simulated air gap flux was discovered. This was attributed to the longitudinal ends of the generator, which are ignored in the simulation tool. Experiences from the construction, and further finite element studies, led to a significant change in the support structure of the first offshore prototype generator. A complete wave energy converter was constructed and launched, the 13th of March, on the west coast of Sweden. A study of the load resistance impact on the power absorption has been carried out. An optimal load interval, with regard to power absorption, has been identified. Furthermore, the generator has proofed to withstand short term overload several times larger than the nominal load. Finally, the longitudinal ends’ influence on the flux distribution was investigated with an analytical model, as well as finite element simulations. A possible problem with large induction of eddy currents in the actuator back steel was identified.</p><p>This work is a part of a larger project, which aims do develop a viable wave energy conversion system.</p>

Page generated in 0.4405 seconds