• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 84
  • 25
  • 23
  • 18
  • 18
  • 18
  • 18
  • 18
  • 12
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 295
  • 114
  • 100
  • 52
  • 42
  • 38
  • 35
  • 32
  • 30
  • 29
  • 21
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A Multi-scale Model for Copper Dishing in Chemical-Mechanical Polishing

Noh, Kyungyoon, Saka, Nannaji, Chun, Jung-Hoon 01 1900 (has links)
The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested. / Singapore-MIT Alliance (SMA)
52

Optimization of the polishing procedure using a robot assisted polishing equipment

Gagnolet, Marielle January 2009 (has links)
Today, manual polishing is the most common method to improve the surface finish of mould and dies for e.g. plastic injection moulding, although it is a cumbersome and time-consuming process. Therefore, automated robots are being developed in order to speed up and secure the final result of this important final process. The purpose of this thesis is to find out some clues about the influence of different parameters for the polishing of a steel grade called Mirrax ESR (Uddeholm Tooling AB) using a Design of Experiment. The report starts with a brief description of mechanical polishing (the techniques and polishing mechanisms) and ends up with the optimization of the polishing procedure with a polishing machine, the Strecon RAP-200 made by Strecon A/S. Even if all the runs of the Design of Experiments couldn’t be carried out, the surfaces studied revealed some information about the importance of the previous process (turning marks not removed) and about the link between the aspect of the surfaces and the roughness parameters.
53

A control system for integrating precision polishing system and CNC machine tool

Gu, Wen-yi 06 February 2010 (has links)
The main goal of this thesis is to propose a strategy which can integrate the precision hydrodynamic polishing system with an ordinary CNC machine tool. This integrated CNC machine tool is capable of applying the hydrodynamic polishing process, which is a high-precision machining method, to compensate the form error on a work surface to improve its form precision. With such a compensation capability, a low-cost CNC machine tool may play the function of precision machining as well as an expensive CNC machine tool does. It is hoped that with this function equipped in a CNC machine tool the international competition of the domestic machining industry can be enhanced. The complete integrating scheme is composed of three parts. The first part is the hardware of polishing system, which is required to attach to the CNC machine tool. The second one is the software developed in this thesis. It includes the codes to generate the commands to control the CNC machine tool and the attached polishing system. The final one is coordinating system that is to synchronize the actions of the CNC machine tool and polishing system. It is done by requiring the polishing system to match the actions of machine tool through measuring the configuration of machine tool consistently. Because of the first and third parts, no modification to the machine tool is needed and the requirement to read the internal information of CNC controller is waved. This will significantly reduce the complexity in implementing the integrating job. When properly integrated with the required sensors, the software developed in this thesis can harmonize the actions of the polishing system and machine tool to execute the form error compensation task. The software will automatically generate the commands for the polishing system and machine tool based on the geometric and material data of work. It does not require the user to fully comprehend the function of the CAM software and the details of polishing process. This will obviously reduce the skill requirement of operator and facilitate the use of the integrated system. Since the CNC machine tool only plays the function of offering the three translational motions (in X, Y, and Z directions), the application of this strategy to an ordinary CNC machine tool is straightforward.
54

Analysis of aggregate imaging system (AIMS) measurements and their relationship to asphalt pavement skid resistance

Luce, Anthony David 15 May 2009 (has links)
This thesis consists of two parts. The first part includes analyses of the correlation between the results of two Aggregate Imaging System (AIMS) units. These analyses have led to refinements of the AIMS analysis methods of angularity and texture, which resulted in reduced variability in the results and better correlation between the two AIMS units. The refined analysis methods were used to establish a database of the shape characteristics of about 100 aggregate samples from the state of Texas and to propose a new method for the classification of aggregates based on their shape characteristics. This new method of classification is for use in the Texas Department of Transportation (TxDOT) wet weather accident reduction program (WWARP). The use of AIMS texture index and variability in texture within an aggregate source is proposed instead of the British Polish Value (BPV) for classifying aggregates used in pavement surfaces. The second part of the thesis investigates the relationship between shape characteristics and asphalt pavement skid resistance. Many states have implemented wet weather accident reduction programs aimed at maintaining acceptable levels of pavement skid resistance. Proper aggregate selection before construction aids in maintaining acceptable levels of skid resistance throughout the life of the pavement. Several predictive models of pavement skid resistance have been developed over the years. Some of these models account for the influence of aggregate characteristics on pavement skid resistance, primarily through incorporating the results of the BPV test in the model. However, the BPV test is known to have high variability and dependence on experimental factors that are not related to the actual aggregate resistance to polishing. AIMS offers a method to measure aggregate shape characteristics directly in a relatively short period of time. The new method for relating aggregate shape characteristics to pavement skid resistance was verified by relating skid resistance measurements from field test sections to measured aggregate properties from the laboratory. This methodology is expected to be the basis for further study to form a more comprehensive and verified model for the prediction of pavement skid resistance that incorporates measured aggregate properties from the AIMS system.
55

Tribo-electrochemical Characterization of Tantalum during Electrochemical-Mechanical Polishing (ECMP)

Gao, Feng 2010 December 1900 (has links)
Electrochemical Mechanical Polishing (ECMP) has become increasingly important due to the continuous decrease of the device size in integrated circuit (IC) fabrication. Tantalum (Ta) is a promising material as a substitute for copper in ICs. This dissertation studies the tribology and electrochemistry of Ta ECMP. The present research uses experimental combined analysis approaches. A specially designed experimental setup assembling a tribometer and a potentiostat was used to carry out Ta ECMP. The friction force and electrochemical reactions were measured simultaneously. Using this setup, we found the factors which affected the frictional behaviors of Ta during ECMP. The technique of single frequency electrochemical impedance spectroscopy (EIS) was employed to investigate the material removal mechanisms in Ta ECMP. The results presented the competing mechanisms of removal and formation of a surface oxide layer of Ta. In order to further the investigation in a nanoscale, the atomic force microscope (AFM) was used to measure the material removal rate. The Preston equation for the Ta ECMP was established. A new methodology was developed to study the oxidation state and process of Ta during ECMP. Through comparing the material removal rate measured by using the AFM and the calculated one via the Faraday’s law, the distribution of the Ta suboxides and pentoxide, as well as the oxidation process, was revealed. The oxidation process was strongly dependent of the applied anodic potential, thickness of the oxide layer, mechanical forces, and surface orientation. A polymer environmental cell was designed and produced. Using this cell and AFM, it was found that the material removal in the nanometer scale was a function of the surface orientations. This research is beneficial for optimization of the Ta ECMP process. This dissertation includes six chapters. After Introduction and Motivation and Objectives, the material, setup, and testing conditions are discussed in Chapter III. Chapter IV discusses the tribology and material removal mechanisms in Ta ECMP, while Chapter V the oxidation of Ta during ECMP, followed by Conclusions and Future Work.
56

A study on phenemona induced by nano-particle motion upon work surface¡Geffects of particle rigidity and geometry

Cheng, Chih-jen 19 July 2005 (has links)
The surface phenemona in polishing process induced by nano-particle was studied in this thesis. The properties of particle, rigidity and geometry, are forced. A perfect polished surface includes lower roughness and thinner damage layer. Besides a perfect surface, how we get higher rate of remove is also an important thing. The goal is to get the relation between induced surface phenomena and properities of nano-particle. The M.D. (Molecular Dynamic) simulation is uesed in this thesis. The specicaly lowered integral timestep is second for simulating the rigidity of nano-particle with saving simulation time and geting accurate in simulation results. In order to simuate the nano-particle rigidity and adhesive effects between nanoparticle and work surface, the modified potential function is used. Considering the types of nano-particle motion which are pure rolling and sliding, the different geometric shapes are used . In the results of simulation about the rigidity of particles, the phenomena induced by rolling particles and rigidity don¡¦t have apparent correlation. For sliding particles, the lower rigidity and lower thick damage layer was. However, if the rigidity is too weak to hold the particle geometric shape, the damage layer thickness is larger. In the results of simulation about particle shapes, the sliding particle with larger front angle will indcue deeper damager layer. It¡¦s because the more workpiece atoms could move to the bottom or rear of the particles to make more damaged atoms. If the length of particle bottom be increased, the interactive behavior between particle and work surface would become more violently to make deeper damaged layer. The rolling particle with scraggy surface can cohere more atoms than the ball particle even in the lower adhesive coefficient, but induced roughness will be higher .
57

A study on suppression of wear effect for polishing tool: a rock-and-roll motion planning

Hsu, Sheng-po 03 August 2006 (has links)
A strategy was proposed to suppress the wear effect of tool in a polishing process. So, machining rate of work pieces in polishing process would keep constant. With this strategy applied to HDP, stable machining rate will bring more advantaged for precision engineering. This study mainly discussed by two parts. First, the planning of the rock-and-roll motion and a wear analysis for tools is talked about. Second is discussing about experiment further. In first part, in order to increase tool¡¦s lifetime, expanding tool wear region by rock-and-roll motion is adopted. Meanwhile, simulate the wear behavior to develop a method of removing tool¡¦s materials in expectant form. In second part, there are two targets to compare with first part, one is the effect of planning of tool¡¦s materials removing and the other is the improvement of suppressive wear effect for polishing tool and stabilizing removal rate of work pieces in rock-and-roll motion. The result of experiments shown that planning of tool¡¦s materials removing is working, the radius of curvature and roughness of tool is nearly stable, and there are some effects in removal rate on work pieces. The result of experiment of rock-and-roll motion verified that the wear theorem for tools and prove improvement of wear is working. So, the goal of suppression of wear effect for polishing tool by expanding tool wear region by rock-and-roll motion is feasible.
58

An experimental study on removing efficiency of surface roughness for hydrodynamic polishing process

Lui, Song-He 25 July 2000 (has links)
Abstract The removing efficiency of surface roughness for the hydrodynamic polishing process under semi-contact lubricating condition was investigated in this thesis. The experimental relationships between surface roughness and polishing were first examined. From the relationships, the potential influential factors of the removing efficiency and the magnitude of surface roughness were identified. Finally, a mathematical model that was related to the removing efficiency and the magnitude of surface roughness was proposed. Based on the experimental study, it was shown that the surface roughness would be rapidly reduced at the beginning by polishing process and then hardly improved afterward. This trend implied that surface roughness would not be completely removed during the polishing process. It was proposed that the amplitude and wavelength of surface roughness would affect the removing efficiency of surface roughness. Further, the removing efficiency was not sensitive to the tool velocity. From the mathematical model, several points were concluded. First, the removing efficiency was positively proportional to the amplitude of surface roughness. Second, the removing efficiency was inversely to the amplitude of surface roughness. Third, the removing efficiency was inverse proportional to a waviness of tool surface. Fourth, the removing efficiency was not sensitive to tool velocity. Finally, there existed an achievable minimum surface roughness for a surface with specific wavelength. The magnitude of a minimum surface roughness was shown to be proportional to the wavelength of work surface.
59

Research and Development of Ultraprecision Polisher with Continuous Composite Electroplated Polishing Disc and Polishing Characteristics of Silicon Wafer

Yao, Chang-Li 08 July 2002 (has links)
ABSTRACT The polishing stocks used in various ultra-precision polishing machines consist of abrasives, polishing disk (pad), and polishing fluids. They are expendable goods. To ensure the machining ability and the repeat accuracy of machining characteristics, the polishing disc (pad) must use the dressing mechanism to produce sharp new grains. As a result, the grinding surface on the abrasive wheel becomes thinner gradually, then losses it¡¦s machining ability, and finally must be changed. Hence, in this project, an idea of an ultra-precision abrasive machining is proposed by using the continuous composite electroplating on the polishing disc. In this idea, the machining ability of Cu polishing disc can be ensured due to the use of the continuous Sn-Al2O3 composite electroplating. Hence, it can save the cost of the ultra-precision machining using in the semiconductor wafer. In this study, after 60 minutes continuous composite electroplated polishing, the thickness of the composite coating on the surface of Cu polishing disc can increase 6.13£gm. It means the surface of disc can be grew and renewed at every moment. The removal amount of the wafer is 10.8£gm. The surface of wafer was Ra=0.5453£gm and Rmax=5.464£gm at the start ,but came to Ra=0.0019£gm and Planess=2.649£gm/36mm after 60 minutes polishing.
60

Study on the Polishing Characteristics of Silicon Wafer for New Type Ultraprecision Polisher

Huang, Wei-Hang 25 July 2003 (has links)
In conventional abrasive machining , it must using dresser to dress the surface of polishing disc periodically , in order for polishing disc to maintain its ability of machining , and then ensuring the quality of work piece. It will make polishing disk thin , finally it must losing it ability of machining , and then be replaced by a new disc. For this reason , in the study , an idea of a new type ultraprecision polisher is proposed . Using Sn-Al2O3 composite coating to reach the mirror surface grinding of silicon wafer in the tin bath , and grinding with electroplating continuously . It will ensure the ability of machining of polishing disc . In the study , first , analyzing the effect of rotational speed rate of wafer and polishing disc on the grinding trajectories type of machining surface . From the result of analysis , find that , when the rotational speed rate is more irregular or it could not divided , the arrangement of grinding trajectories is more complex . And then , investigating the effect of cathode current density , rotational speed of polishing disc and time of plating on the characteristics of composite coating . In the experiment of composite electroplating , when cathode current density is higher , the size of crystal is smaller , the thickness of coating is thicker , and the quantity of Al2O3 within coating decrease lightly . The increase of the rotational speed of polishing disk could increase the size of crystal , the thickness of coating and the quantity of Al2O3 lightly . The time of plating is longer , the shape of crystal is more obvious , the thickness of coating is thicker and it also increase the quantity of Al2O3 . Finally , investigating the effect of cathode current density and cationic surfactant PEI on the characteristics of coating and wafer . In practical abrasive machining , the removal rate of wafer increases with cathode current density , and the addition of PEI could increase the quantity of Al2O3 indeed . Besides , under the same machining condition , in the tin bath with PEI , the removal rate is higher than the one in the tin bath without PEI .

Page generated in 0.0602 seconds