Spelling suggestions: "subject:"pollution effect"" "subject:"collution effect""
1 |
Approximation par éléments finis de problèmes d'Helmholtz pour la propagation d'ondes sismiques / Finite element approximation of Helmholtz problems with application to seismic wave propagationChaumont Frelet, Théophile 11 December 2015 (has links)
Dans cette thèse, on s'intéresse à la propagation d'ondes en milieu fortement hétérogène modélisée par l'équation d'Helmholtz. Les méthodes numériques permettant de résoudre ce problème souffrent de dispersion numérique, en particulier à haute fréquence. Ce phénomène, appelé "effet de pollution", est largement analysé dans la littérature quand le milieu de propagation est homogène et l'utilisation de "méthodes d'ordre élevé" est souvent proposée pour minimiser ce problème. Dans ce travail, on s'intéresse à un milieu de propagation hétérogène, cas pour lequel on dispose de moins de connaissances. On propose d'adapter des méthodes éléments finis d'ordre élevé pour résoudre l'équation d'Helmholtz en milieu hétérogène, afin de réduire l'effet de pollution. Les méthodes d'ordre élevé étant généralement basées sur des maillages "larges", une stratégie multi-échelle originale est développée afin de prendre en compte des hétérogénéités de petite échelle. La convergence de la méthode est démontrée. En particulier, on montre que la méthode est robuste vis-a-vis de l'effet de pollution. D'autre part, on applique la méthode a plusieurs cas-tests numériques. On s'intéresse d'abord à des problèmes académiques, qui permettent de valider la théorie de convergence développée. On considère ensuite des cas-tests "industriels" appliqués à la Géophysique. Ces derniers nous permettent de conclure que la méthode multi-échelle proposée est plus performante que les éléments finis "classiques" et que des problèmes 3D réalistes peuvent être considérés. / The main objective of this work is the design of an efficient numerical strategy to solve the Helmholtz equation in highly heterogeneous media. We propose a methodology based on coarse meshes and high order polynomials together with a special quadrature scheme to take into account fine scale heterogeneities. The idea behind this choice is that high order polynomials are known to be robust with respect to the pollution effect and therefore, efficient to solve wave problems in homogeneous media. In this work, we are able to extend so-called "asymptotic error-estimate" derived for problems homogeneous media to the case of heterogeneous media. These results are of particular interest because they show that high order polynomials bring more robustness with respect to the pollution effect even if the solution is not regular, because of the fine scale heterogeneities. We propose special quadrature schemes to take int account fine scale heterogeneities. These schemes can also be seen as an approximation of the medium parameters. If we denote by h the finite-element mesh step and by e the approximation level of the medium parameters, we are able to show a convergence theorem which is explicit in terms of h, e and f, where f is the frequency. The main theoretical results are further validated through numerical experiments. 2D and 3D geophysica benchmarks have been considered. First, these experiments confirm that high-order finite-elements are more efficient to approximate the solution if they are coupled with our multiscale strategy. This is in agreement with our results about the pollution effect. Furthermore, we have carried out benchmarks in terms of computational time and memory requirements for 3D problems. We conclude that our multiscale methodology is able to greatly reduce the computational burden compared to the standard finite-element method
|
2 |
Résolution numérique de quelques problèmes du type Helmholtz avec conditions au bord d'impédance ou des couches absorbantes (PML) / Numerical resolution of some Helmholtz-type problems with impedance boundary condition or PMLTomezyk, Jérôme 02 July 2019 (has links)
Dans cette thèse, nous étudions la convergence de méthode de type éléments finis pour les équations de Maxwell en régime harmonique avec condition au bord d'impédance et l'équation de Helmholtz avec une couche parfaitement absorbante(PML). On étudie en premier, la formulation régularisée de l'équation de Maxwell en régime harmonique avec condition au bord d'impédance (qui consiste à ajouter le term ∇ div à l'équation originale pour avoir un problème elliptique) et on garde la condition d'impédance comme une condition au bord essentielle. Pour des domaines à bord régulier, le caractère bien posé de cette formulation est bien connu mais cela n'est pas le cas pour des domaines polyédraux convexes. On commence alors le premier chapitre par la preuve du caractère bien posé dans le cas du polyèdre convexe, qui est basé sur le fait que l'espace variationnel est inclus dans H¹. Dans le but d'avoir des estimations explicites en le nombre d'onde k de ce problème, il est obligatoire d'avoir des résultats de stabilité explicites en ce nombre d'onde. C'est aussi proposé, pour quelques situations particulières, dans ce chapitre. Dans le second chapitre on décrit les singularités d'arêtes et de coins pour notre problème. On peut alors déduire la régularité de la solution du problème original, ainsi que de son adjoint. On a tous les ingrédients pour proposer une analyse de convergence explicite en k pour une méthode d'éléments finis avec éléments de Lagrange. Dans le troisième chapitre, on considère une méthode d'éléments finis hp non conforme pour un domaine à bord régulier. Pour obtenir des estimations explicites en k, on introduit un résultat de décomposition, qui sépare la solution du problème original (ou de son adjoint) en une partie régulière mais fortement oscillante et une partie moins régulière mais peu oscillante. Ce résultat permet de montrer des estimations explicites en k. Le dernier chapitre est dédié à l'équation de Helmholtz avec une PML. L'équation de Helmholtz dans l'espace entier est souvent utilisée pour modéliser la diffraction d'onde acoustique (en régime harmonique), avec la condition de radiation à l'infini de Sommerfeld. L'ajout d'une PML est une façon pour passer d'un domaine infini à un domaine fini, elle correspond à l'ajout d'une couche autour du domaine de calcul qui absorbe très vite toutes les ondes sortantes. On propose en premier un résultat de stabilité explicite en k. On propose alors deux schémas numériques, une méthode d'éléments finis hp et une méthode multi- échelle basée sur un sous-espace local de correction. Le résultat de stabilité est utilisé pour mettre en relation de choix des paramètres des méthodes numériques considérées avec k. Nous montrons aussi des estimations d'erreur a priori. A la fin de ces chapitres, des tests numériques sont proposés pour confirmer nos résultats théoriques. / In this thesis, we propose wavenumber explicit convergence analyses of some finite element methods for time-harmonic Maxwell's equations with impedance boundary condition and for the Helmholtz equation with Perfectly Matched Layer (PML). We first study the regularized formulation of time-harmonic Maxwell's equations with impedance boundary conditions (where we add a ∇ div-term to the original equation to have an elliptic problem) and keep the impedance boundary condition as an essential boundary condition. For a smooth domain, the wellposedness of this formulation is well-known. But the well-posedness for convex polyhedral domain has been not yet investigated. Hence, we start the first chapter with the proof of the well-posedness in this case, which is based on the fact that the variational space is embedded in H¹. In order to perform a wavenumber explicit error analysis of our problem, a wavenumber explicit stability estimate is mandatory. We then prove such an estimate for some particular configurations. In the second chapter, we describe the corner and edge singularities for such problem. Then we deduce the regularity of the solution of the original and the adjoint problem, thus we have all ingredients to propose a explicit wavenumber convergence analysis for h-FEM with Lagrange element. In the third chapter, we consider a non conforming hp-finite element approximation for domains with a smooth boundary. To perform a wavenumber explicit error analysis, we split the solution of the original problem (or its adjoint) into a regular but oscillating part and a rough component that behaves nicely for large frequencies. This result allows to prove convergence analysis for our FEM, again explicit in the wavenumber. The last chapter is dedicated to the Helmholtz equation with PML. The Helmholtz equation in full space is often used to model time harmonic acoustic scattering problems, with Sommerfeld radiation condition at infinity. Adding a PML is a way to reduce the infinite domain to a finite one. It corresponds to add an artificial absorbing layer surrounding a computational domain, in which scattered wave will decrease very quickly. We first propose a wavenumber explicit stability result for such problem. Then, we propose two numerical discretizations: an hp-FEM and a multiscale method based on local subspace correction. The stability result is used to relate the choice of the parameters in the numerical methods to the wavenumber. A priori error estimates are shown. At the end of each chapter, we perform numerical tests to confirm our theoritical results.
|
3 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
Page generated in 0.0812 seconds