Spelling suggestions: "subject:"poly A"" "subject:"holy A""
191 |
Block and Graft Copolymers Containing Carboxylate or Phosphonate AnionsHu, Nan 06 November 2014 (has links)
This dissertation focuses on synthesis and characterization of graft and block copolymers containing carboxylate or phosphonate anions that are potential candidates for biomedical applications such as drug delivery and dental adhesives.
Ammonium bisdiethylphosphonate (meth)acrylate and acrylamide phosphonate monomers were synthesized based on aza-Michael addition reactions. Free radical copolymerizations of these monomers with an acrylate-functional poly(ethylene oxide) (PEO) macromonomer produced graft copolymers. Quantitative deprotection of the alkylphosphonate groups afforded graft copolymers with zwitterionic ammonium bisphosphonate or anionic phosphonate backbones and PEO grafts. The zwitterionic copolymers spontaneously assembled into aggregates in aqueous media. The anionic copolymers formed aggregates in DMF and DMSO, while only small amounts of aggregates were present in copolymer/methanol or copolymer/water solutions. Binding capabilities of the acrylamide phosphonic acids were investigated through interactions with hydroxyapatite.
Previously our group has prepared poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA) copolymers and used these polymers as carriers for both MRI imaging agents and cationic drugs. To enhance the capabilities of those carriers in tracking and crosslinking, we have designed, synthesized and characterized amine functionalized PEO-b-PAA copolymers. First, heterobifunctional poly(ethylene oxide) (PEO) with three different molecular weights were synthesized. Modification on one of these afforded a PEO macroinitiator with a bromide on one end and a protected amine on the other end. ATRP polymerization of tert-butyl acrylate (tBuA) in the presence of this initiator and a copper (I) bromide (CuBr) catalyst yielded a diblock copolymer. The copolymer was deprotected by reaction with trifluoroacetic acid (TFA) and formed an amine terminated H2N-PEO-b-PAA.
Recently our group has utilized the novel ammonium bisdiethylphosphonate (meth)acrylate and acrylamide phosphonate copolymers to incorporate Carboplatin. The resulting complexes exhibited excellent anticancer activity against MCF-7 breast cancer cells which might be related to ligand exchange of the dicarboxylate group of Carboplatin with the phosphonic acid moieties in the copolymer. Hence, complexation of small-molecule phosphonic acids with Carboplatin was investigated. Three compounds, vinylphosphonic acid, 3-hydroxypropyl ammonium bisphosphonic acid and 2-hydroxyethyl ammonium phosphonic acid were complexed with Carboplatin under acidic and neutral conditions. Covalent bonding of these acids to carboplatin was only observed under acidic pH. The covalently bonded percentage was 17%, 37% and 34%, respectively. More in-depth investigation was of great importance to further understand this complexation behavior. / Ph. D.
|
192 |
Synthesis of Amphiphilic Block Copolymers for Use in Biomedical ApplicationsCarmichael-Baranauskas, Anita Yvonne 16 June 2010 (has links)
The research presented in this thesis focuses on the synthesis of three amphiphilic block copolymer systems containing poly(ethylene oxide) (PEO) blocks. The polymer systems were developed for use in biomedical applications. The first of these is a series of poly(ethylene oxide-b-oxazoline) (PEO-b-POX) diblock copolymers for use in the progress towards novel non-viral gene transfer vectors. Poly(ethylene oxide-b-2-ethyl-2-oxazoline) (PEO-b-PEOX) and poly(ethylene oxide-b-2-methyl-2-oxazoline) (PEO-b-PMOX) were investigated. The PEOX block was hydrolyzed with acid to form linear polyethylenimine (L-PEI). The polycation L-PEI is well known for its DNA binding efficiency but the water solubility of the resulting DNA/polymer complex is limited. Addition of a PEO block is directed towards the formation of a water dispersible DNA/copolymer complex. Dynamic light scattering of the PEO-b-PEOX and PEO-b-PEI block copolymers indicated that both systems existed as single chains in aqueous solution at pH 7.
PEO copolymers also play a significant role in the formation of magnetic magnetite nanoparticles, which are dispersible in water at biological pH (pH =7). There is significant interest in the design of magnetic nanoparticle fluids for biomedical applications including magnetic field-directed drug delivery, magnetic cell separations, and blood purification. For use in vivo, the magnetite nanoparticles must be coated with biocompatible materials. Such polymers render the nanoparticles dispersible in water. Harris1 et al. synthesized PEO based, polyurethane triblocks with pendant carboxylic acid groups for use in formation of stable aqueous magnetic fluids.
Building from this work, two polyurethane and polyurethaneurea systems were synthesized with 1300 g/mol PEOX and 2500 g/mol and PEOX2070 g/mol poly(ethylene oxide-co-propylene oxide) tailblocks, respectively. The PEO/PPO random copolymer contained about 25 weight percent PPO, and this disrupted the capacity of the PEO to crystallize. The PEOX based urethane triblocks were synthesized through reacting the tailblocks with the monomers for the center block whereas the PEO/PPO based polyurethaneurea was synthesized through forming the central urethane block with pendant acid groups first and then terminating the copolymer with the monofunctional copolymer. Terminal amine groups on the PEO/PPO tailblock afforded a triblock linked with two urea groups. The new polyurethanes with the PEOX tailblocks and the new polyurethaneurea with the PEO/PPO tailblocks could be utilized to efficiently stabilize magnetite nanoparticles in water. / Master of Science
|
193 |
Probing the molecular recognition of a DNA-RNA hybrid duplexWheelhouse, Richard T., Garbett, N.C., Buurma, N.J., Chaires, J.B. 2010 March 1929 (has links)
Yes / Curiouser and curiouser! A biarylpyrimidine ligand (see picture: N blue, H cyan, S yellow) shows a marked structure and sequence selectivity for the poly(dA)⋅poly(rU) hybrid duplex. An intercalative binding site was discovered where the ligand occupies a surprising ten base pairs. A strong correlation between hybrid duplex and DNA triplex binding indicates new directions for ligand design.
|
194 |
Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazoleMugheirbi, N.A., Paluch, Krzysztof J., Tajber, L. 29 May 2014 (has links)
Yes / Itraconazole (ITR) is an antifungal drug with a limited bioavailability due to its poor aqueous
solubility. In this study, ITR was used to investigate the impact of nanonisation and solid state
change on drug’s apparent solubility and dissolution. A bottom up approach to the production
of amorphous ITR nanoparticles (NPs), composed of 100% drug, with a particle diameter below
250 nm, using heat induced evaporative antisolvent nanoprecipitation (HIEAN) from acetone
was developed. The NPs demonstrated improved solubility and dissolution in simulated gastrointestinal
conditions when compared to amorphous ITR microparticles. NPs produced with
polyethylene glycol (PEG) or its methoxylated derivative (MPEG) as a stabiliser enabled the
production of smaller NPs with narrower particle size distribution and enhanced apparent
solubility. MPEG stabilised NPs gave the greatest ITR supersaturation levels (up to 11.6 ± 0.5
μg/ml) in simulated gastric fluids. The stabilising polymer was in an amorphous state. Dynamic
vapour sorption data indicated no solid state changes in NP samples with water vapour at 25 °C,
while crystallisation was apparent at 50 °C. HIEAN proved to be an efficient method of
production of amorphous ITR NPs, with or without addition of a polymeric stabiliser, with
enhanced pharmaceutical properties. / Libyan Ministry of Higher Education and Scientific Research through the Libyan Embassy, London and supported by the Science Foundation Ireland under Grant No. 12/RC/2275 (Synthesis and Solid State Pharmaceuticals Centre).
|
195 |
Design, Modeling And Control Of Shape Memory Alloy Based Poly Phase MotorSharma, S Venkateswara 01 November 2008 (has links)
In this thesis, a new Poly Phase Motor (rotary actuator) based on the Shape Memory Alloy (SMA) is presented. Details of Design, Modeling, Characterization, Realization and Control of Poly Phase SMA Motor are presented. Motor with 3 and 6 Phases, with appropriate Control circuit have been realized in laboratory and simulated results have been verified experimentally.
In literature, broadly two types of Shape Memory Alloy based motors namely limited rotation motor and unlimited rotation motor are found. In the unlimited rotation type SMA based motor the SMA element is in the spring form. Hence, an attempt has been made in this research to develop an Unlimited Rotating type Balanced Poly Phase Motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action a constant force by the SMA wire through out its range of operation is achieved. While designing the motor, similarity in function between Poly Phase SMA Motor and Stepper Motor was found. Hence, the Poly Phase Motor is characterized similar to that of a Stepper Motor. Functionally, the Poly Phase Motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. Various parameters of the motor have been defined. The motor can be actuated in either direction with different Phase sequencing methods, which are presented in this work. While explaining sequencing methods, effect of the thermal time constants has also been presented. The lumped thermal model is used for dynamic simulation of motor. The motor has been modeled with a new approach to the SMA wire Hysteresis model. This model is simple and useful for real time control applications. Model is implemented using Simulink and used for the simulation of the motor. Generalization of the motor concept is done and motor up to 16 Phases are studied and the simulation results done using MATLAB are discussed. It could be observed that the torque generated by the motor increases with increased number of phases while the torque ripple reduces. The motor torque ripple is better for motor with odd number of phases due to its construction.
Two methods of achieving servo motion are presented. The first method is Micro Stepping, consisting of controlling single phase temperature with a position feedback. The second method is Antagonistic Control of temperatures of phases with position feedback. Both the above methods use PID Controller with optical encoder feedback for position sensing. Performance of the actuator with step, ramp and triangle inputs has been simulated using Simulink and verified experimentally for various loads and disturbances. Positional accuracy of 0.07% for the Step input and for the full rotation of 3600 is achieved.
Vector Control of SMA Motor is presented. By this method Speed and the torque of the motor will be effectively controlled. Since the temperatures of the wires are controlled in this research, this method is named as Thermal Space Phasor or Vector Based Control. This method of rotation of motor is simulated using Simulink and verified experimentally. Here the current through the SMA is controlled so as to get near sinusoidal variation in temperature. This leads to a near Sinusoidal variation of force. It is shown that by controlling the temperature of phases Sinusoidally with a phase shift of 1200, the Resultant Force will be a constant over the Spatial angle of 3600 and its Velocity of rotation will be Constant. Open loop and closed loop control of the speed and torque is presented. While the motor rotates at fixed Speed and Torque in Open Loop Control, motor adopts to change in torque and velocity in Closed Loop control with reduced ripple. PID Controller is used for closed loop control.
The presented rotary actuator and their experimental results set a new standard for SMA based new generation rotary actuators and control.
|
196 |
Mise au point de micelles polymères pour la formulation d'agents anticancéreux hydrophobesLe Garrec, Dorothée January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
197 |
Evolutions moléculaires au cours de la dégradation biotique et abiotique de polymères bio-sourcés (PLA et PBS) et fossiles à l’aide de la viscoélasticité à l’état fondu / Molecular evolutions during biotic and abiotic degradation of bio-based polymers (PLA and PBS) and fossil polymers thanks to melt viscoelasticityRamoné, Audrey 11 December 2015 (has links)
Pour limiter la production de déchets, la voie de polymères biodégradables est largement explorée. La biodégradation en compost est un phénomène complexe qui dépend de la température, de l’humidité, du soleil et du polymère lui-même. Dans un premier temps, les effets de ces différents paramètres sur la biodégradation de l’acide polylactique (PLA) sont étudiés à l’aide de la viscoélasticité à l’état fondu. Il en résulte que l’échantillon lui-même n’a que peu d’influence sur sa dégradation, mais les conditions de dégradation influencent d’avantage les phénomènes mis en jeu. Dans un deuxième temps, le PLA est associé au poly(butylène succinate) (PBS), un polymère plus favorable à la biodégradation afin d’améliorer la dégradation du PLA. Après s’être intéressée à la biodégradation de polymères « compostables », cette étude se tourne vers la biodégradation d’un polymère non-biodégradable : le polypropylène (PP). Afin d’initier un processus de bio assimilation, des charges sont ajoutées au PP pour dégrader préalablement le polymère et ainsi favoriser l’action des micro-organismes sur les chaines plus courtes. Les hydroxydes doubles lamellaires induisent bien une dégradation mais ce n’est pas assez pour permettre l’assimilation du polymère. Finalement, ce travail aborde la biodégradation de différents polymères dans le but de comprendre ce phénomène et d’améliorer la biodégradation des polymères étudiés. / Nowadays, to minimize our waste production, many studies are focused on environmentally friendly polymers. Degradation in compost is a complex phenomenon with unclear mechanism depending on temperature, micro-organism population, humidity and polymer it-self. In a first hand, these different parameter effects on poly(lactic acid)(PLA) biodegradation are studied with melt viscoelasticity to assess the molecular evolution of the materials during biodegradation. In a second hand, PLA is mixed with a polymer more biodegradable, poly(butylene succinate), to improve PLA biodegradation. After the biodegradation of a compostable polymer, a non biodegradable polymer is studied: polypropylene(PP). To achieve the initiation of its bio-assimilation, fillers are added to promote its degradation and therefore improve its assimilation by micro-organisms. Layered double hydroxides induce degradation but not enough to observe polymer biodegradation.
|
198 |
Thermal Characterization Of Homopolymers, Copolymers And Metal Functional Copolymers Of VinylpyridinesElmaci, Aysegul 01 September 2008 (has links) (PDF)
Although, the use of vinyl pyridine polymers, especially as matrices for
nanoparticle synthesis, is growing considerably, the knowledge of thermal
degradation behavior is still missing in the literature. In this study, thermal
degradation characteristics of the homopolymers / poly(4-vinylpyridine), P4VP,
and poly(2-vinylpyridine), P2VP, the diblock copolymers / polystyrene-blockpoly(
2-vinylpyridine), (PS-b-P2VP) and polystyrene-block-poly(4-vinylpyridine),
(PS-b-P4VP), and the metal functional vinyl polymers / cobalt-polystyrene-blockpoly(
2-vinylpyridine) and cobalt-polystyrene-block-poly(4-vinylpyridine) were
investigated by direct pyrolysis mass spectrometry. The effects of the position of
the nitrogen in the pyridine ring, composition and molecular weight of diblock
copolymer and coordination of the metal to the pyridine ring of the copolymer on
thermal behavior were also investigated. The results showed that unlike most of
the vinyl polymers that decompose via depolymerization, P2VP degrades
through opposing reaction pathways / depolymerization, proton transfer to N
atom in the pyridine ring yielding unsaturated linkages on the polymer backbone
that decompose slightly at higher temperatures and loss of pyridine units. On the
other hand the thermally less stable P4VP decomposition follows
v
depolymerization in accordance to general expectations. Another finding was the
independent decomposition of both components of the diblock polymers, (PS-b-
P2VP) and (PS-b-P4VP). Thermal degradation occurs in two main steps, the
thermally less stable P2VP or P4VP chains degrade in the first step and in the
second step decomposition of PS takes place.
It was also concluded that upon coordination of metal, thermal stability of both
P2VP and P4VP increases significantly. For metal functional diblock copolymers
thermal degradation of chains coordinated to Co metal through N in the pyridine
ring occurred in three steps / cleavage of pyridine coordinated to Co, coupling and
H-transfer reactions yielding unsaturated and/or crosslinked structure and
decomposition of these thermally more stable unsaturated and/or crosslinked
blocks. TEM imaging of the metal functional block copolymers along with the
results of the pyrolysis mass spectrometry pointed out that PS-b-P2VP polymer is
a better and more effective matrix for nanoparticle synthesis.
|
199 |
Studies of the metal binding properties and DNA recognition mode of the unusual zinc fingers in poly(ADP-ribose) Polymerase-1 and the investigation of its interaction with apoptosis inducing factor (AIF)Zhou, Ying, 1977- 04 November 2013 (has links)
Poly(ADP-ribosyl)ation, a covalent modification of proteins catalyzed by poly(ADP-ribose) polymerases (PARPs), plays a crucial role in regulating DNA repair, DNA replication, and cell death. Poly(ADP-ribose) Polymerase-1 (PARP-1) is a nuclear zinc-finger DNA-binding protein that is the most extensively studied member of the PARP family. The activation of PARP-1 depends on the N-terminal DNA-binding domain, which consists of two unusually long zinc finger-like motifs (termed FI and FII) of the form CX₂CX₂₈/₃₀HX₂C and a newly discovered zinc-ribbon motif (FIII). Though zinc is indispensible for PARP-1 activity, the metal binding affinities of the unusual zinc fingers of PARP-1 is not yet known. In this dissertation, the second zinc finger of PARP-1 was used as a model peptide to study the binding properties of several divalent metal ions (Co²⁺, Cd²⁺, Zn²⁺, and Pb²⁺). Metal-induced protein folding was investigated by circular dichroism, and the effects of the metal ions on PARP-1 activity were investigated by poly(ADP-ribosyl)ation activity assays. This study represents the first detailed biochemical characterization of the PARP zinc fingers. The functional role of each zinc finger in DNA damage recognition is critical for understanding how PARP-1 is involved in DNA repair. Thus, we constructed a series of PARP-1 zinc finger variant proteins and investigated their DNA binding properties and their effects on PARP activity. Using a combination of southwestern blotting and activity assays, we demonstrated that FII is more important for DNA binding, while FI and FIII seem to facilitate PARP activity. The DNA sequence-independent binding properties of PARP-1 were further characterized using DNA probes bearing defined secondary structures. Together, our results indicate that the zinc fingers help position the enzyme at specific DNA damage sites, and also help to activate the catalytic domain upon DNA binding. PARP-1 is involved in caspase-independent apoptosis, and the translocation of apoptosis inducing factor (AIF) out of the mitochondrial matrix has been shown to require PARP-1 activity. However, it is not readily apparent how the catalytic activity of PARP-1 (a nuclear protein) triggers the release of AIF from the mitochondrial matrix. In an attempt to understand the relationship between PARP-1 activity and caspase-independent apoptosis, we demonstrate here that AIF is an in vitro protein substrate for PARP-1. The possible implications of this finding will be discussed. / text
|
200 |
Fonctionnalisation de polymères et applications en cosmétiqueDelattre, Émilie 29 October 2013 (has links) (PDF)
L'alcool polyvinylique a été fonctionnalisé avec des aldéhydes et des acides boroniques dans le but d'obtenir des polymères pouvant apporter de la brillance tout en étant solubles dans les formulations de rouges à lèvres ou de vernis à ongles. De bons taux de fonctionnalisation ont été obtenus permettant d'avoir une bibliothèque de poly(vinyl acétals) et de poly(vinyl esters boroniques) d'une cinquantaine de polymères. Une multi-fonctionnalisation du PVA a été effectuée pour obtenir des polymères alliant ces deux propriétés. Cinq poly(vinyl acétals) ont ainsi permis d'apporter une forte brillance à des rouges à lèvres. La E-poly-L-lysine a également été fonctionnalisée avec diverses cétones afin d'obtenir de nouvelles poly-4-imidazolidinones. Ces polymères sont prometteurs pour des applications dans des produits cosmétiques tels que des soins. Ils ont également été utilisés en catalyse organique asymétrique.
|
Page generated in 0.0492 seconds