• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 641
  • 314
  • 43
  • 23
  • 10
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 1159
  • 1159
  • 1159
  • 611
  • 609
  • 608
  • 600
  • 178
  • 158
  • 148
  • 141
  • 137
  • 134
  • 104
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Detection of pathogenic Aeromonas spp. from a simulated water distribution system using PCR

Choi, Dong-Won January 2000 (has links)
Recently the EPA placed Aeromonas hydrophila on the Candidate Contaminant List (CCL). It has long been known to be a pathogen of cold blooded animals and now is a suspected human opportunistic pathogen as well. Among the various virulence factors produced by A. hydrophila, the cytolytic enterotoxin (AHCYTOEN) is by far one of the most important contributors to the pathogenicity of the organism. This factor is also produced by other pathogenic Aeromonas spp. In this study, PCR technology was used to detect AHCYTOEN gene from a simulated water distribution system. A set of primers was selected to amplify the unique sequence of a pathogenic island, AHCYTOEN gene. To examine the sensitivity of the PCR, serial dilutions of pure A. hydrophila culture were tested. The PCR technique used was sensitive enough to detect samples containing less than 10.0 cells/ml. Source water, bulk water, and simulated distribution biofilm samples were examined for the gene. Biofilm and bulk water samples exposed to raw source water were collected on 4 occasions during a 24-day period. PCR technology detected the AHCYTOEN gene from 100 % of the bulk water samples and 85% of tightly bound biofilm (TB) samples from a simulated water distribution system while no positive results were observed in loosely bound biofilm samples (LB). After the inlet line of the system was changed to normally treated distribution water, 11 biofilm samples were collected on 3 occasions during 15 day sampling period along with bulk water samples. No positive results were observed from the bulk water and LB samples while 91% of TB samples tested for the presence of the gene. No significant difference was observed in detection by PCR from biofilm samples before and after the switch to chloraminated water. / Department of Biology
272

Real-time RNA-based amplification allows for sensitive forensic blood evidence analysis / Real time ribonucleic acid based amplification allows for sensitive forensic blood evidence analysis

Counsil, Tyler I. January 2008 (has links)
The purpose of this experiment was to determine if nucleic acid sequence based amplification (NASBA) is a suitable application for the differentiation of body fluids that might comprise a forensic evidence sample. NASBA is a sensitive RNA transcription based amplification system. NASBA could theorhetically be used for bodily fluid identification based upon amplification of tissue-specific mRNA transcripts present in a given forensic sample.Amplification of both Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Matrix Metalloproteinase 1 1 (MMPmRNA transcripts were used to determine that NASBA could amplify body fluid transcripts and whether it could distinguish between menstrual and non-menstrual blood, respectively. GAPDH is a housekeeping gene that is constituently expressed and its mRNA transcripts could therefore be used to determine whether non-menstrual blood could be amplified using the NASBA procedure. MMP 11 is a menstrual cycle-specific gene associated with endometrial breakdown. Using the mRNA transcripts from MMP 11, NASBA could be utilized for menstrual blood identification. In this study, non-menstrual and menstrual blood samples were analyzed with NASBA both in the presence and absence of chemical contamination. Contaminants utilized ranged from commercial automotive wax, transmission fluid, brake fluid, artificial tears, hand soap, 10% bleach, and the luminol blood detecting reagent. Non-menstrual blood was aliquoted onto a 1 cm x 1 cm cotton cloth for contamination, while menstrual blood was provided on a 1 cm x 1 cm area of sterile menstrual pad. All samples underwent Tri reagent extraction to obtain RNA samples for NASBA amplification.With respect to NASBA amplification data, non-menstrual blood data (from extracted RNA and unextracted blood samples) revealed the highest levels of amplification as shown in relative fluorescence units (RFU). Uncontaminated menstrual blood revealed the second highest amplification data. In the presence of chemical contamination, high levels of amplification were observed when samples were contaminated with brake fluid and commercial hand soap. Moderately low amplification was observed with samples contaminated with transmission fluid, 10% bleach, and artificial tears. NASBA amplification was completely inhibited in the presence of automotive wax and luminol. Cycle threshold (CO values for each amplification result were also obtained from each reaction. Smaller Ct values correspond to a higher NASBAreaction efficiency and therefore larger amplification values. The Ct values obtained for each amplified sample correlate strongly with the amount of amplification observed from reaction. Based upon the results of this experiment, NASBA should be considered as a novel tool for forensic evidence analysis. / Department of Biology
273

Correlation of frequencies of apolipoprotein E mutations with heritage in midwest individuals

Dang, Minhtam 15 December 2012 (has links)
Apolipoprotein E (ApoE) is a plasma protein that plays a prominent role in lipid metabolism and cholesterol transport. The gene is polymorphic: three alleles, ε2, ε3, and ε4 code for three different protein isoforms, E2, E3, and E4 respectively, each of which has different genetic implications. Carriers of ε2 and ε4 alleles have shown greater susceptibility to diseases such as lipid metabolism problems, cardiovascular disease, and Alzheimer’s disease. Although ε4 is the ancestral form of the gene, the most common allele in the human population currently is the ε3 allele. The three isoforms of ApoE generally occur in all populations at different frequencies. However, the frequencies of the various alleles have not been examined in the Midwest. The purpose of this project was to determine if a correlation existed between frequencies of ApoE mutation and heritage in Midwest individuals by using real-time PCR. It was hypothesized that this method could be an alternative and cost effective method to sequence an individual’s genome for personalized healthcare purposes. In 2000, Dr. Vann and her research assistants collected saliva samples from approximately 300 anonymous volunteers participating in the UniverCity fair hosted by Ball State University. The samples were catalogued in an Excel database with their corresponding information (gender, self- reported lineage). From this database, 50 samples were randomly selected for this study and the DNA was screened by real-time PCR for isoforms of ApoE. A handful of individuals with altered alleles were identified. The specific number of each isoform and the genotype of each individual were determined. Only one of the 50 individuals resulted in a non-wild type haplotype. A confirmatory melt curve analysis of this major heritage group A individual resulted in a homozygous E4 genotype. Unfortunately, a correlation between frequencies of ApoE mutation and heritage in Midwest individuals could not be inferred based on one differing individual. Thus, we did not have sufficient non-wild type haplotypes to permit us to amplify the variable regions of maternally inherited mitochondrial DNA for sequencing. Those sequences could have been aligned with the Cambridge Reference Sequence (Mitomap 2006) to determine maternal lineage or haplotype, which could then be correlated with self-reported lineage, and the presence of specific isoforms of ApoE. / Department of Biology
274

Microbial forensics and the use of RT-PCR and NASBA for human saliva evidence analysis

Counsil, Tyler I. 05 August 2011 (has links)
Access to abstract permanently restricted to Ball State community only / Access to thesis permanently restricted to Ball State community only / Department of Biology
275

Molecular-Based Methods to Detect Viable Bacterial Pathogens in Source Waters

Banihashemi Jahromi, Avid January 2013 (has links)
Humans can be exposed to waterborne bacterial pathogens and numerous outbreaks have been reported involving these microorganisms around the world. Many different enteric pathogens can be found in source waters used for drinking water. Assessing these pathogens and their possible threat to public health has always been important. Waterborne pathogens can be difficult to detect, and despite a large variety of recognized microbial detection techniques, the cause of many outbreaks has not been unidentified. Effective and rapid pathogen detection techniques are required to achieve reliable data for microbial source water quality, outbreak investigations, and for drinking water treatment efficacy monitoring. Bacteria have long been detected using classical culture-based methods, with the rationale that living cells are able to grow/replicate. However, many pathogenic bacteria in source waters may turn into viable but not culturable (VBNC) cells and are thus undetectable by growth-based methodologies. Alternatively, PCR-based techniques have been developed to detect both non-culturable and culturable bacteria. Yet with these techniques, post-death DNA persistency can inaccurately overestimate the number of viable cells. This problem may be circumvented by an alteration to the PCR procedure that is reported to be able to block PCR amplification of DNA that originates from dead cells. This alteration involves a chemical pre-treatment step prior to PCR using a photoreactive intercalating dye, propidium monoazide (PMA). In this research, a successful modification was made to the PMA-PCR method that can result in substantial suppression of the PCR signal from dead cells, and provide results that can more accurately measure bacterial pathogen viability. PMA-PCR was applied to high concentrations (1 × 107 cells mL-1) of heat-killed cells of Salmonella enterica and Campylobacter jejuni. Using PMA-PCR in combination with primers that amplified a relatively short fragment of the S. enterica invA gene (119 bp), only a 3-log reduction of the dead cell PCR signal was obtained. Similarly, for C. jejuni using PCR primers that amplified a relatively short fragment of DNA (174 bp of cpn60 gene), only a 1-log reduction of the PCR signal was observed for dead cells. Therefore, PMA treatment followed by PCR amplification of short DNA fragments resulted in incomplete signal inhibition of heat killed Salmonella and Campylobacter. To further investigate how PCR conditions can affect the ability of PMA to inhibit PCR amplification, primers were then used that could amplify a larger fragment of DNA. PCR amplification of a longer DNA fragment (1614 bp of invA gene for S. enterica and 1512 bp of cpn60 gene for C. jejuni) strongly suppressed the signal (7 log reduction) for both heat-killed Salmonella and Campylobacter. For UV-treated S. enterica and C. jejuni, short amplicon PMA-PCR showed no or very low PCR signal reduction, in part due to intact membranes directly after UV irradiation. Long amplicon qPCR, however, resulted in dead cell signal removal and PMA pretreatment had no effect on PCR signal suppression. This study used quantitative PCR and the PMA-PCR viability assays to evaluate the levels and occurrences of four groups of pathogenic bacteria in surface water samples from two locations on the Grand River, Ontario, Canada, to demonstrate the reliability of the PMA-PCR technique for the enumeration of viable cells. The bacterial groups investigated included S. enterica, thermophilic Campylobacter, Escherichia coli O157:H7, and Arcobacter butzleri. Small numbers of dead cells (not more than 0.5 log 100 mL-1) were present, detected as the difference between PMA-PCR and PCR without PMA treatment. In this particular river, pathogen enumeration by PCR was only slightly influenced by false positive signal detection due to the presence of dead cells or extracellular DNA and reliable bacterial pathogen detection could be attained by PCR without PMA pretreatment. Viable A. butzleri were detected at elevated concentrations (up to 4.8 log cells per 100 mL) in the Grand River. Arcobacter has not been previously studied in the Grand River and this is one of the few studies that have quantitatively assessed Arcobacter in the environment. This suggests that additional research is required on the pathogenicity of this organism and its occurrence in water. In the next stage of this research, both the improved viability assay (long amplicon PMA-PCR) and conventional quantitative PCR were applied to investigate the survival trends of selected enteric bacterial pathogens including Yersinia enterocolitica, S. enterica, C. jejuni, and A. butzleri. The target bacteria were inoculated into sterile or non-sterile river water to study the impact of background microbiota on cell survival. These experiments were perfomed at 3 different temperatures (5, 15, and 25°C) and at high/low dissolved oxygen (DO) concentrations (for C. jejuni, and A. butzleri only) to evaluate the effect of these potential environmental stresses on bacterial survival trends. The results indicated that the autochthonous microbiota in river water had a significant effect on the bacterial die-off. Although lower temperatures enhanced bacterial survival in non-sterile river water, it was found that PCR may overestimate the effect of temperature on survival and that the PCR viability assays (PMA-PCR) could more accurately measure the impact of temperature. The survival of viable C. jejuni was adversely affected by high DO levels only at a low temperature (5°C) and this effect was observed only when the PMA-PCR viability assay was applied. A. butzleri survival was not affected by water DO levels. This research provides an improved understanding of viable/active enteric waterborne bacteria and their survival in the aquatic microcosms as well as reliable data to better elucidate the effect of environmental factors on the occurrence of pathogenic bacteria. It can also offer valuable information for microbial risk assessments used by regulators and decision makers.
276

Molecular and Comparative Phylogenetic Analysis of the Polyphenol Oxidase Gene Family in Poplar (Populus spp.)

Tran, Lan T. 29 October 2013 (has links)
Polyphenol oxidases (PPOs) are ubiquitous enzymes that oxidize phenols to quinones in the presence of molecular oxygen, often leading to tissue discolouration. They are sometimes considered as defense proteins but other functions, for example in phenolic compound biosynthesis, have also been found. In this thesis, bioinformatic searches were conducted to identify putative PPO genes from available genomes representing five Viridiplantae lineages: chlorophytes, bryophytes, lycophytes, monocotyledonous anthophytes and eudicotyledonous anthophytes. Duplicated PPO genes were found in most land plant genomes. A detailed investigation of the poplar (Populus trichocarpa) PPO gene family found nine genes that exhibit differential expression profiles during development and following stress, of which PtrPPO1 was the only significant wound-inducible PPO gene. A phylogenetic reconstruction of the poplar PPOs identified PtrPPO13 to be an unusual PPO homolog and it was studied in detail. Experimental evidence indicated that PtrPPO13 is expressed in most organs, and unlike most PPOs, is localized to the vacuole. Together, the phylogeny, gene expression and subcellular localization studies suggest that PPOs are likely to have variable physiological functions in plants and that PtrPPO13 is distinct from most typical PPOs. / Graduate / 0309
277

Microfluidic system with open loop control for rapid infrared reverse transcription quantitative PCR (RT-qPCR)

Saunders, Daniel Curtis 05 July 2012 (has links)
Microfluidic techniques have allowed for fast, sensitive, and low cost applications of the Polymerase Chain Reaction (PCR) through the use of small reaction volumes, rapid amplification speeds, and the on-chip integration of upstream and downstream sample handling processes including purification and electrophoretic separation functionality. While such systems are capable of measuring the expression levels of thousands of genes simultaneously, or in hundreds of cells, or with sample-in and answer-out capability, none of these systems are easily scalable in the time domain. Because of this, the field of gene expression measurement has yet to fully utilize the advantages of microfluidic PCR in developing systems to measure changes in gene expression in increments of hours rather than days. In this project, we developed a microfluidic RT-qPCR system that utilizes infrared heating and open-loop control to reliably reverse transcribe, amplify, and detect samples in a single 1 μl polymer chip. Optimized power profiles were created that allow for fast heating and cooling rates while minimizing undershoot and overshoot from the desired hold temperatures. By utilizing repeatable microfluidic chip manufacturing techniques, and by controlling the environment around the chip, the same open loop program can repeatedly amplify multiple samples without any need for temperature feedback or recalibration between runs. Furthermore, the system was designed to operate on top of a fluorescence microscope to enable real-time fluorescence detection and quantification of starting copy number. By eliminating complicated setup procedures and calibration runs, this system increases the practicality of measuring gene expression at a high temporal frequency.
278

Simultaneous amplification of multiple dna targets with optimized annealing temperatures

Pak, Nikita 16 July 2012 (has links)
The polymerase chain reaction (PCR) is an extremely powerful tool for viral detection and screening because it can detect specific infectious agents with great sensitivity and specificity. It works by exponentially amplifying a target viral DNA sequence to high enough concentrations through the use of specific reagents and thermal cycling. It has surpassed culture based methods as the gold standard for viral detection because of the increased speed and sensitivity. Microfluidic approaches to PCR have focused on decreasing the time to thermally cycle, the volumes used for reactions, and they have also added upstream and downstream processes that are of benefit for on-chip viral detection. While these improvements have made great strides over commercially available products in terms of speed, cost, and integration, a major limitation that has yet to be explored is the throughput associated with running PCR. Since each PCR reaction relies on primers with a unique annealing temperature to detect specific viral DNA, only a single virus can be screened for at a time. The device presented here uses two infrared laser diodes that are driven identically by the same laser driver to independently thermally cycle two chambers on the same microfluidic chip. Different temperatures are achieved in the two chambers by modulating the radiation reaching one of those chambers with an optical shutter. Closed loop temperature feedback in both chambers is done with a Labview program and thermocouples embedded in the polymer chip. This allows for accurate temperature measurement without inhibiting the reaction. To demonstrate the capabilities of this device, two different reactions were simultaneously amplified successfully on the same device that have annealing temperatures that differ by 15°C.
279

Preimplantation diagnosis / Ke-hui Cui

Cui, Ke-hui January 1993 (has links)
Bibliography: leaves 126-147 / xiv, 147 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Summary: Aims to develop reliable procedures for determining the genetic status of embryos derived by IVF procedures prior to implantation. Prenatal diagnosis allows pregnancy to be established using only acceptable embryos / Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1994
280

Minimal residual disease in chronic myeloid leukaemia after imatinib treatment.

Ross, David Morrall January 2010 (has links)
Around 50% of chronic myeloid leukaemia (CML) patients who remain on imatinib treatment for more than 5 years will achieve a complete molecular response (CMR), defined by undetectable BCR-ABL mRNA in a sensitive reverse transcriptase real-time quantitative PCR (RQ-PCR) assay. Given the increasing importance of CMR on imatinib therapy the primary aim of this study was to improve the accuracy and sensitivity of MRD detection to allow a more accurate estimation of relapse risk when therapy is withdrawn. Firstly, we investigated ways of improving the sensitivity of RT-PCR methods for the detection of BCR-ABL mRNA. Secondly, we investigated the use of the patient-specific BCR-ABL gene for the detection of MRD. Thirdly, we conducted a multi-centre clinical trial of imatinib withdrawal in selected CML patients in a stable CMR. This clinical trial provided patient samples that could be used to test our optimized MRD assays, and provided clinical data on the risk and patterns of relapse after withdrawal of imatinib therapy. The trial is ongoing, but an interim analysis of the study data was performed. In 22 patients the estimated probability of molecular relapse after imatinib withdrawal was 54%, and 60% of relapses occurred within the first 4 months. The average detection limit of BCR-ABL mRNA by RQ-PCR is estimated at around 4.5 log below the level of BCR-ABL prior to commencing treatment. The number of leukaemic cells at diagnosis is around 10¹ ², so the number of residual leukaemic cells in CMR might vary from zero to over a million. We hypothesized that the amount of residual leukaemia in CMR is variable between patients, and that this heterogeneity is a determinant of the risk of relapse when treatment is withdrawn. We developed more sensitive methods for the detection of BCR-ABL and tested these methods in samples from our study patients. We showed that random pentadecamer (15-mer) primers improved the efficiency of reverse transcriptase PCR (RT-PCR), and resulted in a lower detection limit of BCR-ABL mRNA. We also developed a novel nested RT-PCR method using real-time PCR for the second round of the reaction, and this resulted in a lower detection limit of BCR-ABL in patient samples. The utility of this nested RT-PCR method was limited by a false positive rate of 2-3% in the HeLa cell line that we used as our negative control. Consequently, we examined the detection of the patient-specific genomic BCR-ABL sequence as an alternative to RT-PCR. Breakpoints in BCR and ABL1 in CML patients are widely dispersed over 3 kb and 150 kb, respectively. Therefore, the BCR-ABL genomic sequence is essentially unique to each patient. We sequenced the genomic breakpoints of 43 CML patients. We showed that the distribution of breakpoints in BCR and ABL1 was non-random, but we were unable to identify any genomic feature that determined the specific location of individual breakpoints. We developed a novel BCR-ABL DNA Q-PCR method for 12 of the study patients, and in 11 of the patients BCR-ABL DNA was detected when the patient was in a CMR, confirming that this method was more sensitive than RQ-PCR. Contrary to our hypothesis, the detection of BCR-ABL DNA was not predictive of relapse. In most patients who relapsed there was a significant increase in BCR-ABL DNA prior to mRNA relapse. Two patients had stable levels of BCR-ABL DNA measurable on multiple occasions, but remained in remission after 6 months and 15 months, respectively. We have shown that a stable CMR after the withdrawal of imatinib therapy does not necessarily indicate the eradication of leukaemia. / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2010

Page generated in 0.0826 seconds