• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 38
  • 23
  • 1
  • Tagged with
  • 175
  • 65
  • 51
  • 31
  • 28
  • 26
  • 26
  • 24
  • 23
  • 22
  • 20
  • 20
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Polynômes orthogonaux : processus limites et modèles exactement résolubles

Lemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal polynomials are caracterized through limit processes applied to families belonging to the Askey and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also introduced. The second part presents four exactly solvable models connected to the theory of orthogonal polynomials. The perfect transfer of quantum information and entanglement generation properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are examined. Two superintegrable models containing reflexion operators are proposed. Their solutions are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.
162

Contributions à l'étude des sous-variétés aléatoires / Contributions to the study of random submanifolds

Letendre, Thomas 24 November 2016 (has links)
Dans cette thèse, nous étudions le volume et la caractéristique d'Euler de sous-variétés aléatoires de codimension r ∈ {1, . . . , n} dans une variété ambiante M de dimension n. Dans un premier modèle, dit des ondes riemanniennes aléatoires, M est une variété riemannienne fermée. Nous considérons alors le lieu Zλ des zéros communs de r combinaisons linéaires aléatoires indépendantes de fonctions propres du laplacien associées à des valeurs propres inférieures à λ 0. Nous obtenons alors les asymptotiques du volume moyen et de la caractéristique d'Euler moyenne de Zλ lorsque λ tend vers l'infini. Dans un second modèle, M est le lieu réel d'une variété projective définie sur les réels. On s'intéresse dans ce cadre au lieu d'annulation réel Zd d'une section holomorphe réelle globale aléatoire de E⊗Ld, où E est un fibré hermitien de rang r, L est un fibré en droites hermitien ample et tous deux sont définis sur les réels. Nous estimons alors les moyennes du volume et de la caractéristique d'Euler de Zd quand d tend vers l'infini. Dans ce modèle algébrique réel, nous calculons aussi l'asymptotique de la variance du volume de Zd pour 1 r < n. Nous en déduisons, dans ce cas, des résultats asymptotiques d'équidistribution de Zd dans M / We study the volume and Euler characteristic of codimension r ∈ {1, . . . , n} random submanifolds in a dimension n manifold M. First, we consider Riemannian random waves. That is M is a closed Riemannian manifold and we study the common zero set Zλ of r independent random linear combinations of eigenfunctions of the Laplacian associated to eigenvalues smaller than λ 0. We compute estimates for the mean volume and Euler characteristic of Zλ as λ goes to infinity. We also consider a model of random real algebraic manifolds. In this setting, M is the real locus of a projective manifold defined over the reals. Then, we consider the real vanishing locus Zd of a random real global holomorphic section of E ⊗ Ld, where E is a rank r Hermitian vector bundle, L is an ample Hermitian line bundle and both these bundles are defined over the reals. We compute the asymptotics of the mean volume and Euler characteristic of Zd as d goes to infinity. In this real algebraic setting, we also compute the asymptotic of the variance of the volume of Zd, when 1 r < n. In this case, we prove asympotic equidistribution results for Zd in M
163

Calcul des invariants de groupes de permutations par transformée de Fourier / Calculate invariants of permutation groups by Fourier Transform

Borie, Nicolas 07 December 2011 (has links)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage. / This thesis concerns algorithmic approaches to three challenging problems in computational algebraic combinatorics.The firsts parts propose a Gröbner basis free approach for calculating the secondary invariants of a finite permutation group, proceeding by using evaluation at appropriately chosen points. This approach allows for exploiting the symmetries to confine the calculations into a smaller quotient space, which gives a tighter control on the algorithmic complexity, especially for large groups. The theoretical study is illustrated by extensive benchmarks using a fine implementation of algorithms. An important prerequisite is the generation of integer vectors modulo the action of a permutation group, whose algorithmic constitute a preliminary part of the thesis.The fourth part of this thesis is determining for a certain interesting quotient of an affine Hecke algebra exactly which root-of-unity specialization of its parameter lead to non-generic behavior.Finally, the last part presents a conjecture on the structure of certain q-deformed diagonal harmonics in many sets of variables for the infinite family of complex reflection groups.All chapters proceed widely by computer exploration, and most of established algorithms constitute contributions of the software Sage.
164

Une approche intrinsèque des foncteurs de Weil / An intrinsic approach of Weil functors

Souvay, Arnaud 23 November 2012 (has links)
Nous construisons un foncteur de la catégorie des variétés sur un corps ou un anneau topologique K, de caractéristique arbitraire, dans la catégorie des variétés sur A, où A est une algèbre de Weil, c'est-à-dire une K-algèbre de la forme A = K + N, où N est un idéal nilpotent. Le foncteur correspondant, noté T^A, et appelé foncteur de Weil, peut être interprété comme un foncteur d'extension scalaire de K à A. Il est construit à l'aide des polynômes de Taylor, dont nous donnons une définition en caractéristique quelconque. Ce résultat généralise à la fois des résultats connus pour les variétés réelles ordinaires, et les résultats obtenus dans le cas des foncteurs tangents itérés et dans le cas des anneaux de jets (A = K[X]/(X^{k+1})). Nous montrons que pour toute variété M, T^A M possède une structure de fibré polynomial sur M, et nous considérons certains aspects algébriques des foncteurs de Weil, notamment ceux liés à l'action du « groupe de Galois » Aut_K(A). Nous étudions les connexions, qui sont un outil important d'analyse des fibrés, dans deux contextes différents : d'une part sur les fibrés T^A M, et d?autre part sur des fibrés généraux sur M, en suivant l'approche d'Ehresmann. Les opérateurs de courbure d'une connexion sont induits par l'action du groupe de Galois Aut_K(A) et ils forment une obstruction à l'« intégrabilité » d'une connexion K-lisse en une connexion A-lisse / We construct a functor from the category of manifolds over a general topological base field or ring K, of arbitrary characteristic, to the category of manifolds over A, where A is a so-called Weil algebra, i.e. a K-algebra of the form A = K + N, where N is a nilpotent ideal. The corresponding functor, denoted by T^A, and called a Weil functor, can be interpreted as a functor of scalar extension from K to A. It is constructed by using Taylor polynomials, which we define in arbitrary characteristic. This result generalizes simultaneously results known for ordinary, real manifolds, and results for iterated tangent functors and for jet rings (A = K[X]/(X^{k+1})). We show that for any manifold M, T^A M is a polynomial bundle over M, and we investigate some algebraic aspects of the Weil functors, in particular those related to the action of the "Galois group" Aut_K(A). We study connections, which are an important tool for the analysis of fiber bundles, in two different contexts : connections on the Weil bundles T^A M, and connections on general bundles over M, following Ehresmann's approach. The curvature operators are induced by the action of the Galois group Aut_K(A) and they form an obstruction to the "integrability" of a K-smooth connection to an A-smooth one
165

Analyse d'Erreurs d'Estimateurs des Dérivées de Signaux Bruités et Applications

Liu, Da-Yan 17 October 2011 (has links) (PDF)
Ce mémoire concerne la construction et l'analyse d'estimateurs robustes pour le calcul numérique des dérivés de signaux bruités et des paramètres de signaux sinusoïdaux bruités. Ces estimateurs, originalement introduits par Fliess, Mboup et Sira Ramirez, sont actuellement étudiés au sein de l'équipe projet NON-A de l'INRIA Lille Nord Europe. Pour une classe d'entre eux, nous les obtenons à partir de la réécriture dans le domaine opérationnel de Laplace des équations différentielles linéaires des signaux analysés. Par des manipulations algébriques simples dans l'anneau R(s)[d/ds] des polynômes différentiels en d/ds à coefficients rationnels en la variable opérationnelle s, nous montrons que ces estimateurs sont non-asymptotiques et que les estimations numériques obtenues, même en présence de bruits, sont robustes pour un faible nombre d'échantillons des signaux. Nous montrons, de plus, que ces propriétés sont vérifiées pour une large classe de type de bruits. Ces estimateurs exprimés dans le domaine temporel s'écrivent en général via des fractions d'intégrales itérées des signaux analysés. Dans la première partie du mémoire, nous étudions des familles d'estimateurs de dérivées obtenus par ces méthodes algébriques. Nous montrons que pour une classe d'entre eux, il est possible de les formuler directement en tronquant une série orthogonale de polynômes de Jacobi. Cette considération nous permet alors d'étendre à IR le domaine de définition des paramètres de ces estimateurs. Nous analysons ensuite l'influence de ces paramètres étendus sur l'erreur de troncature, qui produit un retard d'estimation dans le cas causal, puis sur l'erreur due aux bruits, considérés comme des processus stochastiques, et enfin sur l'erreur numérique de discrétisation des intégrales. Ainsi, nous montrons comment réduire le retard d'estimation et l'effet du aux bruits. Une validation de cette approche est réalisée par la construction d'un observateur non asymptotique de variables d'état d'un système non linéaire. Dans la deuxième partie de ce mémoire, nous construisons par cette approche algébrique des estimateurs des paramètres d'un signal sinusoïdal bruité dont l'amplitude varie avec le temps. Nous montrons que les méthodes classiques de fonctions modulatrices sont un cas particulier de cette approche. Nous étudions ensuite l'influence des paramètres algébriques sur l'erreur d'estimation due au bruit et l'erreur numérique d'intégration. Des majorations de ces erreurs sont données pour une classe d'estimateurs. Finalement, une comparaison entre ces estimateurs et la méthode classique de détection synchrone est réalisée pour démontrer l'efficacité de notre approche sur ce type de signaux.
166

Modélisation du mouvement par polynômes orthogonaux : application à l'étude d'écoulements fluides

Druon, Martin 11 February 2009 (has links) (PDF)
Dans ce mémoire, nous proposons une méthode permettant de modéliser, de façon globale, tout type de mouvement par des combinaisons linéaires de polynômes orthogonaux. Pour cela, nous projetons chaque champ de déplacement représentant le mouvement étudié sur une base orthogonale composée des polynômes de Legendre. Nous obtenons alors une expression polynomiale du mouvement considéré. Une modélisation d'ordre faible permet d'interpréter physiquement le mouvement dominant de séquences d'images. Cette caractéristique trouve un intérêt particulier dans des applications telles que la vidéo-surveillance, l'indexation ou l'étude du comportement. Nous montrons également que notre méthode permet de modéliser des mouvements complexes tels que des écoulements fluides. La représentation du mouvement sous forme polynomiale, les faibles temps de calcul ainsi que les taux de compression élevés sont alors des atouts importants pour traiter ce type de données.
167

Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiques

Thomé, Emmanuel 13 December 2012 (has links) (PDF)
Le problème de la factorisation et celui du logarithme discret sont deux fondements essentiels de nombreux algorithmes de la cryptographie à clé publique. Dans le champ des algorithmes pour attaquer ces problèmes éminemment ardus, le crible algébrique et ses algorithmes cousins occupent une place de première importance. La première partie de ce mémoire est consacrée à la présentation de la " famille " du crible algébrique, et à plusieurs de mes contributions dans ce domaine. D'autres travaux sont abordés dans la partie suivante, notamment en lien avec le problème du logarithme discret sur les jacobiennes de courbes, et à ma contribution à de nouveaux algorithmes pour ce problème dans certains cas particuliers. La partie 3 du mémoire aborde mes travaux sur le thème de l'algèbre linéaire creuse sur les corps finis, motivés par le contexte d'application des algorithmes précédemment cités. La partie 4, enfin, traite de mes travaux dans le domaine de l'arithmétique, notamment concernant l'arithmétique des polynômes sur GF(2). La proximité des travaux apparaissant dans ces parties 3 et 4 avec des problématiques d'implantation indique le souci permanent, dans mes travaux, de ne pas laisser de côté cet aspect.
168

Transfert d'information quantique et intrication sur réseaux photoniques

Bossé, Éric-Olivier 08 1900 (has links)
No description available.
169

q-oscillateurs et q-polynômes de Meixner

Gaboriaud, Julien 10 1900 (has links)
No description available.
170

Des équations de contrainte en gravité modifiée : des théories de Lovelock à un nouveau problème de σk-Yamabe / On the constraint equations in modified gravity

Lachaume, Xavier 15 December 2017 (has links)
Cette thèse est consacrée au problème d’évolution des théories de gravité modifiée : après avoir rappelé ce qu’il en est pour la Relativité Générale (RG), nous exposons le formalisme n + 1 des théories ƒ(R), Brans-Dicke et tenseur-scalaire et redémontrons un résultat connu : le problème de Cauchy est bien posé pour ces théories, et les équations de contrainte se réduisent à celles de la RG avec un champ de matière. Puis nous effectuons la même décomposition n + 1 pour les théories de Lovelock et, ce qui est nouveau, ƒ(Lovelock). Nous étudions ensuite les équations de contrainte des théories de Lovelock et montrons qu’elles sont, dans le cas conformément plat et symétrique en temps, la prescription d’une somme de σk-courbures. Afin de résoudre cette équation de prescription, nous introduisons une nouvelle famille de polynômes semi-symétriques homogènes et développons des résultats de concavité pour ces polynômes. Nous énonçons une conjecture qui, si elle était avérée, nous permettrait de résoudre l’équation de prescription dans de nombreux cas : ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P et Q sont scindés => p ∑ k=0 P(k) Q(p-k) est scindé / This thesis is devoted to the evolution problem for modified gravity theories. After having explained this problem for General Relativity (GR), we present the n + 1 formalism for ƒ(R) theories, Brans-Dicke and scalar-tensor theories. We recall a known result: the Cauchy problem for these theories is well-posed, and the constraint equations are reduced to those of GR with a matter field. Then we proceed to the same n+1 decomposition for Lovelock and ƒ(Lovelock) theories, the latter being an original result. We show that in the locally conformally flat timesymmetric case, they can be written as the prescription of a sum of σk-curvatures. In order to solve the prescription equation, we introduce a new family of homogeneous semisymmetric polynomials and prove some concavity results for those polynomials. We express the following conjecture: if this is true, we are able to solve the prescription equation in many cases. ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P and Q are real-rooted => p ∑ k=0 P(k) Q(p-k) is real-rooted:

Page generated in 0.0305 seconds