Spelling suggestions: "subject:"powercontrol"" "subject:"powerontrol""
131 |
Multihop Wireless Networks with Advanced Antenna Systems : An Alternative for Rural CommunicationSánchez Garache, Marvin January 2008 (has links)
Providing access to telecommunication services in rural areas is of paramount importance for the development of any country. Since the cost is the main inhibiting factor, any technical solution for access in sparsely populated rural areas has to be reliable, efficient, and deployable at low-cost. This thesis studies the utilization of Multihop Wireless Networks (MWN) as an appealing alternative for rural communication. MWN are designed with a self-configuring capability and can adapt to the addition or removal of network radio units (nodes). This makes them simple to install, allowing unskilled users to set up the network quickly. To increase the performance and cost-efficiency, this thesis focuses on the use of Advanced Antenna Systems (AAS) in rural access networks. AAS promise to increase the overall capacity in MWN, improving the link quality while suppressing or reducing the multiple access interference. To effectively exploit the capabilities of AAS, a proper design of Medium Access Control (MAC) protocols is needed. Hence, the results of system level studies into MAC protocols and AAS are presented in this thesis. Two different MAC protocols are examined: Spatial Time Division Multiple Access (STDMA) and Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) with handshaking. The effects of utilizing advanced antennas on the end-to-end network throughput and packet delay are analyzed with routing, power control and adaptive transmission data rate control separately and in combination. Many of the STDMA-related research questions addressed in this thesis are posed as nonlinear optimization problems that are solved by the technique called "column generation" to create the transmission schedule using AAS. However, as finding the optimal solution is computationally expensive, we also introduce low-complexity algorithms that, while simpler, yield reasonable results close to the optimal solution. Although STDMA has been found to be very efficient and fair, one potential drawback is that it may adapt slower than a distributed approach like CSMA/CA to network changes produced e.g. by traffic variations and time-variant channel conditions. In CSMA/CA, nodes make their own decisions based on partial network information and the handshaking procedure allows the use of AAS at the transmitter and the receiver. How to effectively use AAS in CSMA/CA with handshaking is addressed in this thesis. Different beam selection policies using switched beam antenna systems are investigated. Finally, we demonstrate how the proposed techniques can be applied in a rural access scenario in Nicaragua. The result of a user-deployed MWN for Internet access shows that the supported aggregated end-to-end rate is higher than an Asymmetric Digital Subscriber Line (ADSL) connection. / QC 20100908
|
132 |
Distributed Power Control and Medium Access Control Protocol Design for Multi-Channel Ad Hoc Wireless NetworksAlmotairi, Khaled Hatem January 2012 (has links)
In the past decade, the development of wireless communication technologies has made the use of the Internet ubiquitous. With the increasing number of new inventions and applications using wireless communication, more interference is introduced among wireless devices that results in limiting the capacity of wireless networks. Many approaches have been proposed to improve the capacity. One approach is to exploit multiple channels by allowing concurrent transmissions, and therefore it can provide high capacity. Many available, license-exempt, and non-overlapping channels are the main advantages of using this approach. Another approach that increases the network capacity is to adjust the transmission power; hence, it reduces interference among devices and increases the spatial reuse.
Integrating both approaches provides further capacity. However, without careful transmission power control (TPC) design, the network performance is limited. The first part of this thesis tackles the integration to efficiently use multiple channels with an effective TPC design in a distributed manner.
We examine the deficiency of uncontrolled asymmetrical transmission power in multi-channel ad hoc wireless networks. To overcome this deficiency, we propose a novel distributed transmission power control protocol called the distributed power level (DPL) protocol for multi-channel ad hoc wireless networks. DPL allocates different maximum allowable power values to different channels so that the nodes that require higher transmission power are separated from interfering with the nodes that require lower transmission power. As a result, nodes select their channels based on their minimum required transmission power to reduce interference over the channels. We also introduce two TPC modes for the DPL protocol: symmetrical and asymmetrical. For the symmetrical mode, nodes transmit at the power that has been assigned to the selected channel, thereby creating symmetrical links over any channel. The asymmetrical mode, on the other hand, allows nodes to transmit at a power that can be lower than or equal to the power assigned to the selected channel.
In the second part of this thesis, we propose the multi-channel MAC protocol with hopping reservation (MMAC-HR) for multi-hop ad hoc networks to overcome the multi-channel exposed terminal problem, which leads to poor channel utilization over multiple channels. The proposed protocol is distributed, does not require clock synchronization, and fully supports broadcasting information. In addition, MMAC-HR does not require nodes to monitor the control channel in order to determine whether or not data channels are idle; instead, MMAC-HR employs carrier sensing and independent slow channel hopping without exchanging information to reduce the overhead.
In the last part of this thesis, a novel multi-channel MAC protocol is developed without requiring any change to the IEEE 802.11 standard known as the dynamic switching protocol (DSP) based on the parallel rendezvous approach. DSP utilizes the available channels by allowing multiple transmissions at the same time and avoids congestion because it does not need a dedicated control channel and enables nodes dynamically switch among channels. Specifically, DSP employs two half-duplex interfaces: One interface follows fast hopping and the other one follows slow hopping. The fast hopping interface is used primarily for transmission and the slow hopping interface is used generally for reception. Moreover, the slow hopping interface never deviates from its default hopping sequence to avoid the busy receiver problem. Under single-hop ad hoc environments, an analytical model is developed and validated. The maximum saturation throughput and theoretical throughput upper limit of the proposed protocol are also obtained.
|
133 |
Design And Implementation Of A Voltage Source Converter Based Statcom For Reactive Power Compensation And Harmonic FilteringCetin, Alper 01 April 2007 (has links) (PDF)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the
simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a & / #8710 / /Y
connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-cooled high voltage IGBT modules switched at 850 Hz for the elimination of 5th, 7th, 11th, 13th, 17th, 19th, 23rd,and 25th voltage harmonics. Special care has been taken in the laminated busbar design to minimize stray inductances between power semiconductors and dc link
capacitor. Reactive power control is achieved by applying the phase angle control technique. The effect of input filter on total demand distortion has been investigated theoretically by mathematical derivations.
The proposed VSC STATCOM has been implemented for reactive power compensation of Coal Preparation System in Kemerkö / y Thermal Power Plant. The field test results have shown the success of the implemented system in view of fast
response in reactive power compensation, and minimum input current harmonic content, and compliance with the IEEE Std. 519-1992 even for the weakest power systems. The application of selective harmonic elimination technique and phase angle control to VSC STATCOM has led to optimum switching frequency and device utilization for high voltage IGBTs at the expense of slower response as compared to other PWM techniques.
|
134 |
Optimal Resource Allocation Algorithms For Efficient Operation Of Wireless NetworksOzel, Omur 01 July 2009 (has links) (PDF)
In this thesis, we analyze allocation of two separate resources in wireless networks: transmit power and buffer space. Controlled allocation of power can provide good performance for both users and the network. Although centralized mechanisms are possible, distributed power control algorithms are preferable for efficient operation of the network. Viewing distributed power allocation as the collection of rational decisions of each user, we make game theoretic problem formulations, devise distributed algorithms and analyze them. First, equilibrium analysis of a vector power control game based on network energy efficiency in a multiple access point wireless network is presented. Then, a distributed mechanism is proposed that can smooth admission control type power control so that every user can stay in the system. Introducing a new externality into utility function, a game theoretic formulation that results in desired distributed actions is made. Next, the proposed externality is investigated in a control theoretic framework. Convergence of gradient based iterative power updates are investigated and stability of corresponding continuous time dynamical system is established. In the final part of the thesis, allocation of buffer space is addressed in a wireless downlink using a queueing theoretic framework. An efficient algorithm that finds optimal buffer partitioning is proposed and applications of the algorithm for different scenarios are illustrated. Implications of the results about cross layer design and multiuser diversity are discussed.
|
135 |
Modeling And Experimental Evaluation Of Variable Speed Pump And Valve Controlled Hydraulic Servo DrivesCaliskan, Hakan 01 September 2009 (has links) (PDF)
In this thesis study, a valveless hydraulic servo system controlled by two
pumps is investigated and its performance characteristics are compared with a
conventional valve controlled system both experimentally and analytically. The
two control techniques are applied on the position control of a single rod linear
actuator. In the valve controlled system, the flow rate through the actuator is
regulated with a servovalve / whereas in the pump controlled system, two variable
speed pumps driven by servomotors regulate the flow rate according to the needs of
the system, thus eliminating the valve losses.
To understand the dynamic behaviors of two systems, the order of the
differential equations defining the system dynamics of the both systems are reduced
by using the fact that the dynamic pressure changes in the hydraulic cylinder
chambers become linearly dependent on leakage coefficients and cylinder chamber
volumes above and below some prescribed cut off frequencies. Thus the open loop
speed response of the pump controlled and valve controlled systems are defined by
v
second order transfer functions. The two systems are modeled in MATLAB
Simulink environment and the assumptions are validated.
For the position control of the single rod hydraulic actuator, a linear state
feedback control scheme is applied. Its state feedback gains are determined by
using the linear and linearized reduced order dynamic system equations. A linear
Kalman filter for pump controlled system and an unscented Kalman filter for valve
controlled system are designed for estimation and filtering purposes.
The dynamic performances of both systems are investigated on an
experimental test set up developed by conducting open loop and closed loop
frequency response and step response tests. MATLAB Real Time Windows Target
(RTWT) module is used in the tests for application purposes.
|
136 |
Design and Development of a Hybrid TDMA/CDMA MAC Protocol for Multimedia Wireless NetworksD, Rajaveerappa 04 1900 (has links)
A wireless local area network (WLAN) provides high bandwidth to users in a limited geographical area. This network faces certain challenges and constraints that are not imposed on their wired counterparts. They are: frequency allocation, interference and reliability, security, power consumption, human safety, mobility, connection to wired LAN,service area, handoff and roaming, dynamic configuration and the throughput. But the
wireless medium relies heavily on the features of MAC protocol and the MAC protocol is the core of medium access control for WLANs. The available MAC protocols all have their own merits and demerits.
In our research works, we propose a hybrid MAC protocol forWLAN. In the design, we have combined the merits of the TDMA and CDMA systems to improve the throughput of the WLAN in a picocellular environment. We have used the reservation and polling methods of MAC protocols to handle both the low and high data traffics of the mobile users. We have strictly followed the standards specified by IEEE 802.11 for WLANs to
implement the designed MAC protocol.
We have simulated the hybrid TDMA/CDMA based MAC protocols combined with RAP (Randomly Addressed Polling) for Wireless Local Area Networks. We have developed a closed form mathematical expressions analytically for this protocol. We have also studied the power control aspects in this environment and we derived a closed form
mathematical expressions analytically for this power control technique.
This hybrid protocol is capable of integrating different types of traffic (like CBR,VBR and ABR services) and compiles with the requirements of next-generation systems.The lower traffic arrival is dealt with the Random Access and the higher traffic arrival is with the Polling methods. This enables us to obtain higher throughput and lowmean delay performance compared to the contention-reservation-based MAC schemes.
The protocol offers the ability to integrate different types of services in a flexible way
by the use of multiple slots per frame, while CDMA allows multiple users to transmit
simultaneously using their own codes. The RAP uses an efficient "back-off" algorithm to
improve throughput at higher arrival rates of user's data. The performance is evaluated
in terms of throughput, delay, and rejection rate using computer simulation.
A detailed simulation is carried out regarding the maximum number of users that each base station can support on a lossy channel. This work has analyzed the desired user's signal quality in a single cell CDMA (Code Division Multiple Access) system in the presence of MAI (Multiple Access Interference). Earlier power control techniques were designed to assure that all signals are received with equal power levels. Since these algorithms are designed for a imperfect control of power, the capacity of the system is reduced for a given BER (Bit-Error Rate). We proposed an EPCM (Efficient Power
Control Mechanism) based system capacity which is designed for the reverse link (mobile
to base station) considering the path loss, log-normal shadowing and Rayleigh fading.
We have simulated the following applications for the further improvement of the performance
of the designed MAC protocol:Designed protocol is tested under different traffic conditions.
The protocol is tested for multimedia traffic under application oriented QoS requirements.
Buffer Management and resource allocation.
Call Admission Control (hand-offs, arrival of new users).
The adaptability to the variable nature of traffic.The propagation aspects in the wireless medium.
The proposed MAC protocol has been simulated and analysed by using C++/MATLAB Programming in IBM/SUN-SOLARIS UNIX environment. The results were plotted using MATLAB software.
All the functions of the protocol have been tested by an analysis and also by simulation.
Call admission control function of the protocol has been tested by simulation and analysis in a multimedia wireless network topology and from analysis we found that at low traffic the throughput is high and at high traffic the throughput is kept constant at a reasonable high value. The simulation results also justify/ coordinate the analysis results.
Dynamic channel allocation function of the protocol was tested and analysed and
the coordinated results show that at low traffic, high throughput and at high traffic the throughput is constant.
Buffer management function of the protocol simulation shows the results that the
packet loss can be controlled to a minimum by adjusting the buffer threshold level at any traffic conditions.
Maintenance of data transfer during the hand-offs function was simulated and the
results show that the blocked calls are less during low traffic and at high traffic the
blocked calls can be kept constant at low value.
Thus, the proposed model aimed at having high throughput, high spectral efficiency, low
delay, moderate BER and moderate blocking probability.
We have considered a pico cell with a maximum of several users and studied the power efficiency of combined channel coding and modulation with perfect power controlled CDMA system. Thus our simulation of the "software radio" has flexibility in choosing the proper channel coders dynamically depending upon the variations of AWGN channel.
|
137 |
Power-Aware Compilation Techniques For Embedded SystemsShyam, K 07 1900 (has links)
The demand for devices like Personal Digital Assistants (PDA’s), Laptops, Smart Mobile
Phones, are at an all time high. As the demand for these devices increases, so is the push to provide sophisticated functionalities in these devices. However energy consumption has become a major constraint in providing increased functionality for these devices. A majority of the applications meant for these devices are rich with multimedia content.
In this thesis, we propose two approaches for compiler directed energy reduction, one
targeting the memory subsystem and another the processor.
The first technique is a compiler directed optimization technique that reduces the
energy consumption of the memory subsystem, for an off-chip partitioned memory archi-
tecture, having multiple memory banks, and various low-power operating modes for each
of these banks. We propose an efficient layout of the data segment to reduce the number
of simultaneously active memory banks, so that the other memory banks that are inactive
can be put to low power modes to reduce the energy. We model this problem as a graph
partitioning problem, and use well known heuristics to solve the same. We also propose
a simple Integer Linear Programming (ILP) formulation for the above problem. Perfor-
mance results indicate that our approach achieves an energy reduction of 20% compared
to the base scheme, and a reduction of 8%-10% over a previously suggested method. Also,
our results are well within the optimal results obtained by using ILP method.
The second approach proposed in this thesis reduces the dynamic energy consumed by the processor using dynamic voltage and frequency scaling technique. Earlier works on dynamic voltage scaling focused mainly on performing voltage scaling when the CPU is waiting for memory subsystem or concentrated chiefly on loop nests and/or subroutine
calls having sufficient number of dynamic instructions. We concentrate on coarser pro-
gram regions and for the first time uses program phase behavior for performing dynamic
voltage scaling. We relate the Dynamic Voltage Scaling Problem to the Multiple Choice Knapsack Problem, and use well known heuristics to solve it efficiently. Also, we develop a simple Integer Linear Programming (ILP) problem formulation for this problem. Experi-mental evaluation on a set of media applications reveal that our heuristic method obtains 35-40% reduction in energy consumption on an average, with a negligible performance degradation. Further the energy consumed by our heuristic solution is within 1% the optimal solution obtained by the ILP approach.
|
138 |
Investigation and Model Development for Operational Modes of a Unified Power Flow ControllerMahmoodianfard, Forough 30 November 2012 (has links)
The focus of this research is on deriving small signal stability models for different Flexible AC Transmission Systems devices by introducing a simple systematic method that is applicable to any dynamic device.
Two different small signal models for Unified Power Flow Controllers are introduced. One model is called the power control mode and the other model is the voltage control mode. The two models are compared from transient stability point of view to show the necessity of developing both models for UPFC.
The thesis also shows how to derive the small signal stability model of Static Synchronous Compensator, as the shunt branch of UPFC. The small signal stability models of both devices are then validated to ensure the accuracy of the derived models. STATCOM and UPFC power control mode are validated against PSCAD. The UPFC voltage control mode is validated against nonlinear solution of system equations.
|
139 |
Dynamic power control in backbone wireless mesh networks : a decentralized approachOlwal, Thomas 15 December 2010 (has links) (PDF)
The remarkable evolution of wireless networks into the next generation to provide ubiquitous and seamless broadband applications has recently triggered the emergence of Wireless Mesh Networks (WMNs). The WMNs comprise stationary Wireless Mesh Routers (WMRs) forming Wireless Backbone Mesh Networks (WBMNs) and mobile Wireless Mesh Clients (WMCs) forming the WMN access. While WMCs are limited in function and radio resources, the WMRs are expected to support heavy duty applications : that is, WMRs have gateway and bridge functions to integrate WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, et cetera. Consequently, WMRs are constructed from fast switching radios or multiple radio devices operating on multiple frequency channels. WMRs are expected to be self-organized, self-configured and constitute a reliable and robust WBMN which needs to sustain high traffic volumes and long "online" time. However, meeting such stringent service expectations requires the development of decentralized dynamic transmission power control (DTPC) approaches. This thesis addresses the DTPC problem for both single and multiple channel WBMNs. For single channel networks, the problem is formulated as the minimization of both the link-centric and network-centric convex cost function. In order to solve this issue, multiple access transmission aware (MATA) models and algorithms are proposed. For multi-radio multi-channel (MRMC) WBMNs, the network is modelled as sets of unified channel graphs (UCGs), each consisting of interconnected active network users communicating on the same frequency channel. For each UCG set, the minimization of stochastic quadratic cost functions are developed subject to the dynamic Link State Information (LSI) equations from all UCGs. An energy-efficient multi-radio unification protocol (PMMUP) is then suggested at the Link-Layer (LL). Predictive estimation algorithms based on this protocol are proposed to solve such objective functions. To address transmission energy and packet instabilities, and interference across multiple channels, singularly-perturbed weakly-coupled (SPWC) control problems are formulated. In order to solve the SPWC transmission power control problem, a generalized higher-order recursive algorithm (HORA) that obtains the Riccati Stabilizing Solutions to the control problem is developed. The performance behaviours of the proposed models and algorithms are evaluated both analytically and through computer simulations. Several simulations are performed on a large number of randomly generated topologies. Simulation and analytical results confirm the efficacy of the proposed algorithms compared to the most recently studied techniques
|
140 |
Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation StudiesSamadi, Afshin January 2014 (has links)
Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load and high PV generation conditions. Therefore, new strategies are required to address the associated challenges. Moreover, due to these changes in distribution grids, a different response behavior of the distribution grid on the transmission side can be expected. Hence, a new equivalent model of distribution grids with high penetration of PV systems is needed to be addressed for future power system studies. The thesis contributions lie in three parts. The first part of the thesis copes with the PV modelling. A non-proprietary PV model of a three-phase, single stage PV system is developed in PSCAD/EMTDC and PowerFactory. Three different reactive power regulation strategies are incorporated into the models and their behavior are investigated in both simulation platforms using a distribution system with PV systems. In the second part of the thesis, the voltage rise problem is remedied by use of reactive power. On the other hand, considering large numbers of PV systems in grids, unnecessary reactive power consumption by PV systems first increases total line losses, and second it may also jeopardize the stability of the network in the case of contingencies in conventional power plants, which supply reactive power. Thus, this thesis investigates and develops the novel schemes to reduce reactive power flows while still keeping voltage within designated limits via three different approaches: decentralized voltage control to the pre-defined set-points developing a coordinated active power dependent (APD) voltage regulation Q(P)using local signals developing a multi-objective coordinated droop-based voltage (DBV) regulation Q(V) using local signals In the third part of the thesis, furthermore, a gray-box load modeling is used to develop a new static equivalent model of a complex distribution grid with large numbers of PV systems embedded with voltage support schemes. In the proposed model, variations of voltage at the connection point simulate variations of the model’s active and reactive power. This model can simply be integrated intoload-flow programs and replace the complex distribution grid, while still keepingthe overall accuracy high. The thesis results, in conclusion, demonstrate: i) using rms-based simulations in PowerFactory can provide us with quite similar results using the time domain instantaneous values in PSCAD platform; ii) decentralized voltage control to specific set-points through the PV systems in the distribution grid is fundamentally impossible dueto the high level voltage control interaction and directionality among the PV systems; iii) the proposed APD method can regulate the voltage under the steady-state voltagelimit and consume less total reactive power in contrast to the standard characteristicCosφ(P)proposed by German Grid Codes; iv) the proposed optimized DBV method can directly address voltage and successfully regulate it to the upper steady-state voltage limit by causing minimum reactive power consumption as well as line losses; v) it is beneficial to address PV systems as a separate entity in the equivalencing of distribution grids with high density of PV systems. / <p>The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20141028</p>
|
Page generated in 0.0449 seconds