Spelling suggestions: "subject:"predictive 3dmodeling"" "subject:"predictive bymodeling""
151 |
Supervised and Unsupervised Machine Learning Strategies for Modeling Military AlliancesCampbell, Benjamin W. 10 October 2019 (has links)
No description available.
|
152 |
Machine Learning Based Prediction and Classification for Uplift Modeling / Maskininlärningsbaserad prediktion och klassificering för inkrementell responsanalysBörthas, Lovisa, Krange Sjölander, Jessica January 2020 (has links)
The desire to model the true gain from targeting an individual in marketing purposes has lead to the common use of uplift modeling. Uplift modeling requires the existence of a treatment group as well as a control group and the objective hence becomes estimating the difference between the success probabilities in the two groups. Efficient methods for estimating the probabilities in uplift models are statistical machine learning methods. In this project the different uplift modeling approaches Subtraction of Two Models, Modeling Uplift Directly and the Class Variable Transformation are investigated. The statistical machine learning methods applied are Random Forests and Neural Networks along with the standard method Logistic Regression. The data is collected from a well established retail company and the purpose of the project is thus to investigate which uplift modeling approach and statistical machine learning method that yields in the best performance given the data used in this project. The variable selection step was shown to be a crucial component in the modeling processes as so was the amount of control data in each data set. For the uplift to be successful, the method of choice should be either the Modeling Uplift Directly using Random Forests, or the Class Variable Transformation using Logistic Regression. Neural network - based approaches are sensitive to uneven class distributions and is hence not able to obtain stable models given the data used in this project. Furthermore, the Subtraction of Two Models did not perform well due to the fact that each model tended to focus too much on modeling the class in both data sets separately instead of modeling the difference between the class probabilities. The conclusion is hence to use an approach that models the uplift directly, and also to use a great amount of control data in each data set. / Behovet av att kunna modellera den verkliga vinsten av riktad marknadsföring har lett till den idag vanligt förekommande metoden inkrementell responsanalys. För att kunna utföra denna typ av metod krävs förekomsten av en existerande testgrupp samt kontrollgrupp och målet är således att beräkna differensen mellan de positiva utfallen i de två grupperna. Sannolikheten för de positiva utfallen för de två grupperna kan effektivt estimeras med statistiska maskininlärningsmetoder. De inkrementella responsanalysmetoderna som undersöks i detta projekt är subtraktion av två modeller, att modellera den inkrementella responsen direkt samt en klassvariabeltransformation. De statistiska maskininlärningsmetoderna som tillämpas är random forests och neurala nätverk samt standardmetoden logistisk regression. Datan är samlad från ett väletablerat detaljhandelsföretag och målet är därmed att undersöka vilken inkrementell responsanalysmetod och maskininlärningsmetod som presterar bäst givet datan i detta projekt. De mest avgörande aspekterna för att få ett bra resultat visade sig vara variabelselektionen och mängden kontrolldata i varje dataset. För att få ett lyckat resultat bör valet av maskininlärningsmetod vara random forests vilken används för att modellera den inkrementella responsen direkt, eller logistisk regression tillsammans med en klassvariabeltransformation. Neurala nätverksmetoder är känsliga för ojämna klassfördelningar och klarar därmed inte av att erhålla stabila modeller med den givna datan. Vidare presterade subtraktion av två modeller dåligt på grund av att var modell tenderade att fokusera för mycket på att modellera klassen i båda dataseten separat, istället för att modellera differensen mellan dem. Slutsatsen är således att en metod som modellerar den inkrementella responsen direkt samt en relativt stor kontrollgrupp är att föredra för att få ett stabilt resultat.
|
153 |
The Legislative Politics and Public Attitude on Immigrants and Immigration Policies Amid Health CrisesAfzal, Muhammad Hassan Bin 30 June 2023 (has links)
No description available.
|
154 |
Malicious Intent Detection Framework for Social NetworksFausak, Andrew Raymond 05 1900 (has links)
Many, if not all people have online social accounts (OSAs) on an online community (OC) such as Facebook (Meta), Twitter (X), Instagram (Meta), Mastodon, Nostr. OCs enable quick and easy interaction with friends, family, and even online communities to share information about. There is also a dark side to Ocs, where users with malicious intent join OC platforms with the purpose of criminal activities such as spreading fake news/information, cyberbullying, propaganda, phishing, stealing, and unjust enrichment. These criminal activities are especially concerning when harming minors. Detection and mitigation are needed to protect and help OCs and stop these criminals from harming others. Many solutions exist; however, they are typically focused on a single category of malicious intent detection rather than an all-encompassing solution. To answer this challenge, we propose the first steps of a framework for analyzing and identifying malicious intent in OCs that we refer to as malicious mntent detection framework (MIDF). MIDF is an extensible proof-of-concept that uses machine learning techniques to enable detection and mitigation. The framework will first be used to detect malicious users using solely relationships and then can be leveraged to create a suite of malicious intent vector detection models, including phishing, propaganda, scams, cyberbullying, racism, spam, and bots for open-source online social networks, such as Mastodon, and Nostr.
|
155 |
PRODUCT-APPLICATION FIT, CONCEPTUALIZATION, AND DESIGN OF TECHNOLOGIES: PROSTHETIC HAND TO MULTI-CORE VAPOR CHAMBERSSoumya Bandyopadhyay (13171827) 29 July 2022 (has links)
<p>From idea generation to conceptualization and development of products and technologies is a non-linear and iterative process. The work in this thesis follows a process that initiates with the review of existing technologies and products, examining their unique value proposition in the context of the specific applications for which they are designed. Next, the unmet needs of novel or emerging applications are identified that require new product or technologies. Once these user needs and product requirements are identified, the specific functions to be addressed by the product are specified. The subsequent process of design of products and technologies to meet these functions is enabled by engineering tools such as three-dimensional modelling, physics-based simulations, and manufacturing of a minimum viable prototype. In these steps, un-biased decisions have to be taken using weighted decision matrices to cater to the design requirements. Finally, the minimum viable prototype is tested to demonstrate the principal functionalities. The results obtained from the testing process identify the potential future improvements in the next generations of the prototype that would subsequently inform the final design of product. This thesis adopted this methodology to initiate the design two product-prototypes: i) an image-recognition-integrated service (IRIS) robotic hand for children and ii) cascaded multi-core vapor chamber (CMVC) for improving performance of next-generation computing systems. Minimum viable product-prototypes were manufactured to demonstrate the principal functionalities, followed by clear identification of future potential improvements. Tests of the prosthetic hand indicate that the image-recognition based feedback can successfully drive the actuators to perform the intended grasping motions. Experimental testing with the multi-core vapor chamber demonstrates successful performance of the prototype, which offers notable reduction in temperatures relative to the existing benchmark solid copper spreader. </p>
|
Page generated in 0.0857 seconds