Spelling suggestions: "subject:"premixed flame"" "subject:"remixed flame""
21 |
An Experimental Study of Soot Formation in Dual Mode Laminar Wolfhard-Parker FlamesHibshman, Randolph Joell II 10 October 1998 (has links)
An experimental study of sooting characteristics of laminar underventillated ethylene non-premixed flames in hot vitiated environments was performed using a modified Wolfhard-Parker co-flowing slot burner. The burner could be operated in "single mode" with a cold air/oxygen mixture as the oxidizer for the non-premixed flame or in varying degrees of "dual mode" where the products of lean premixed hydrogen/air/oxygen flames were used as the oxidizer for the non-premixed flame. Premixed flame stoichiometries of 0.3 and 0.5 were considered for the dual mode cases. Dual mode operation of the burner was intended to simulate the conditions of fuel rich pockets of gas burning in the wake of previously burned fuel/air mixture as typically found in real nonpremixed combustion devices.
Dual mode operation introduced competing thermal and chemical effects on soot chemistry. Experimental conditions were chosen to match peak nonpremixed flame temperatures among the cases by varying oxidizer inert (N2) concentration to minimize the dual mode thermal effect. In addition the molecular oxygen (post premixed flame for dual mode cases) and ethylene fuel flow rates were held constant to maintain the same overall equivalence ratio from case to case.
Thermocouple thermometry utilizing a rapid insertion technique and radiation corrections yielded the gas temperature field. Soot volume fractions were measured simultaneously with temperature using Thermocouple Particle Densitometry (TPD). Soot volume fraction, particle size and particle number density fields were measured using laser light scattering and extinction. Gas velocities were measured using Particle Imaging Velocimetry (PIV) on the non-premixed flame centerline by seeding the ethylene flow and calculated in the oxidizer flow stream. Porous sinters in the oxidizer slots prevented oxidizer particle seeding required for PIV measurements.
In general as the degree of dual mode operation was increased (i.e. increasing stoichiometry of the premixed flames) soot volume fractions decreased, particle sizes increased and soot particle number densities decreased. This trend is suspected to be result of water vapor elevating OH concentrations near the flame front in dual mode operation reducing soot particle nucleation early in the flame by oxidizing soot precursors. The larger particle sizes measured at later stages of dual mode flames are suspected to be the result of lower competition for surface growth species for the lower particle number densities in those flames. Integrated soot volume fraction and particle number fluxes at various heights in the flame decreased with increasing degree of dual mode operation. / Master of Science
|
22 |
Influence of Dusts on Premixed Methane-Air FlamesRanganathan, Sreenivasan 30 March 2018 (has links)
Influence of dust particles on the characteristics of premixed methane-air flames has been studied in this dissertation. Experiments are performed in a Bunsen burner type experimental set-up called Hybrid Flame Analyzer (HFA), which can be used to measure the burning velocity of gas, dust, and hybrid (gas and dust) premixed flames at constant pressure operating conditions. In the current study, analysis of particle-gas-air system of different types of dust particles (at particle size, dp = 75-90 µm) in premixed methane-air (ϕg = 0.8, 1.0 and 1.2) flames. Coal, sand, and sodium bicarbonate particles are fed along with a premixed methane-air mixture at different concentrations (λp = 0-75 g/m3) in both laminar and turbulent conditions. First, the variation of laminar burning velocity with respect to the concentration of dust particles, and type of dusts are investigated for different equivalence ratios. Second, the laminar premixed flame extinction with inert and chemical suppressant particles are studied. Third, the variation of turbulent burning velocity of these hybrid mixtures are investigated against different turbulent intensities apart from the different concentrations and types of dusts. Fourth, the radiative fraction of heat released from turbulent gas-dust premixed flames are also presented against the operating parameters considered. Combustible dust deflagration hazard is normally quantified using the deflagration index (Kst) measured using a constant volume explosion sphere, which typically is a sealed 20-liter metal sphere where a premixed mixture is ignited at the center and the progression of the resulting deflagration wave is recorded using the pressure measured at the vessel wall. It has been verified from prior studies that the quantification of the turbulence by this method is questionable and there is a need to analyze the controlling parameters of particle-gas-air premixed system accurately through a near constant pressure operated experimental platform. Thus, the main objective of this study is to analyze the influence of dust particles on premixed methane-air flames at near constant pressure conditions. The turbulent burning velocity is calculated by averaging the measured flame heights and the laminar burning velocity is calculated through the premixed cone angle measurements from several high-speed shadowgraph images obtained from the experiments. The turbulent intensity and length scale of turbulence generated by a perforated plate in the burner is quantified from the hot-wire anemometer measurements. Radiative heat flux is also measured for each of the turbulent test conditions. The outcomes from these experiments are: 1. An understanding of the variation of turbulent burning velocity of gas-dust premixed flames as a function of dust type, turbulent intensity, integral length scale, dust concentration and gas phase mixture ratio. 2. An understanding of the flame extinction characteristics and variation of laminar burning velocity of gas-dust premixed flames as a function of dust concentration and gas phase mixture ratio. 3. Quantify the radiative heat flux and radiative fraction of heat released from gas-dust turbulent premixed flames as a function of dust type, turbulent intensity, dust concentration and gas phase mixture ratio. Dust type and concentration play an important role in deciding the trend in the variation of both laminar (SL) and turbulent burning velocity (ST). Coal particles, with the release of volatile (methane), tend to increase burning velocities except for fuel rich conditions and at higher coal concentrations at larger turbulent intensities. At a higher turbulent intensity and larger concentrations, higher ST values are observed with the addition of sand. Sodium bicarbonate addition, with the release of CO2 and H2O, decreased the burning velocity at all the concentrations, turbulent intensities and equivalence ratios. Laminar flame extinction was observed with the addition of sand and sodium bicarbonate particles at conditions exceeding certain critical dust concentrations. These critical concentrations varied with the equivalence ratios of gaseous premixed flames. The turbulence modulation exhibited by particles and particle concentration is evident in these observations. The independent characteristic time scale analysis performed using the experimental data provided further insights to the results. The chemical and convective times in gas phase confirm the broadened preheat thin reaction zone regime in the current test cases, which has an effect of attenuating turbulence and thereby the resulting turbulent burning velocity. The particle time scale analysis (Stokes number) show that the effect of particles and particle concentration is to slightly enhance the turbulence and increase the turbulent burning velocity at lower concentrations. However, the time scale analysis of particle vaporization (vaporization Damköhler number) indicate an increase in the vaporization rate for particles (coal and sodium bicarbonate) resulting in a decrease in their turbulent burning velocities at higher concentrations and turbulent intensities. Sodium bicarbonate has higher evaporation rate than coal at same level of turbulence and the absence of this effect for inert (sand) results in higher turbulent burning velocities at higher concentrations. An increase in the turbulent intensity increases the vaporization rate of particles. The investigation on radiative fraction of heat released by methane-air-dust turbulent premixed flames identified that, the addition of dust particles increases the radiative fraction irrespective of the dust type due to the radial and axial extension of flame. A unified approach to couple this multiple complex phenomenon of turbulence, particle interaction, particle vaporization and combustion in particle laden premixed gaseous flames is the direction for future research.
|
23 |
Analysis of the Wave Scattering From Turbulent Premixed FlameCho, Ju Hyeong 22 May 2006 (has links)
A theoretical investigation of acoustic wave interactions with turbulent premixed flames was performed. Such interactions affect the characteristic unsteadiness of combustion processes, e.g., combustion instabilities. The small perturbation method (SPM) was utilized to evaluate the scattered fields as a result of the flame-wave interaction at the instantaneous wrinkling surface of a randomly moving turbulent flame. Stochastic analysis of ensemble-averaged net acoustic energy was conducted to examine coherent and incoherent acoustic energy amplification /damping by the interaction. Net acoustic energy flux out of the flame is due to two factors: the acoustic velocity jump due to unsteady heat release from flame. The other is the flames unsteady motion. Five(5) dimensionless parameters that govern this net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, the ratio of flames diffusion time to flame fronts correlation time, and incidence angle. The dependence of net acoustic energy upon these dimensionless parameters was illustrated and discussed by numerical simulations in case of Gaussian statistics of flame front.
The laminar flame response to equivalence ratio perturbations was also examined, showing that the overall heat release response is controlled by the superposition of three disturbances: heat of reaction, flame speed, and flame area. Heat of reaction disturbances dominate the flame response at low Strouhal numbers, roughly defined as (frequency x flame length)/(axial flow velocity). All three disturbances play equal roles at Strouhal numbers of O(1). In addition, the mean equivalence ratio exerts little effect upon this transfer function at low Strouhal numbers. At O(1) Strouhal numbers, the flame response increases with decreasing values of the mean equivalence ratio.
|
24 |
Numerical studies of turbulent flames in wall-jet flowsPouransari, Zeinab January 2015 (has links)
The present thesis deals with the fundamental aspects of turbulent mixing and non-premixed combustion in the wall-jet flow, which has a close resemblance to many industrial applications. Direct numerical simulations (DNS) of turbulent wall-jets with isothermal and exothermic reactions are performed. In the computational domain, fuel and oxidizer enter separately in a nonpremixed manner and the flow is compressible, fully turbulent and subsonic. The triple “turbulence-chemistry-wall” interactions in the wall-jet flow have been addressed first by focusing on turbulent flow effects on the isothermal reaction, and then, by concentrating on heat-release effects on both turbulence and flame characteristics in the exothermic reaction. In the former, the mixing characteristics of the flow, the key statistics for combustion and the near-wall effects in the absence of thermal effects are isolated and studied. In the latter, the main target was to identify the heat-release effects on the different mixing scales of turbulence. Key statistics such as the scalar dissipation rates, time scale ratios, two-point correlations, one and two-dimensional premultiplied spectra are used to illustrate the heat release induced modifications. Finer small mixing scales were observed in the isothermal simulations and larger vortical structures formed after adding significant amounts of heat-release. A deeper insight into the heat release effects on three-dimensional mixing and reaction characteristics of the turbulent wall-jet flow has been gained by digging in different scales of DNS datasets. In particular, attention has been paid to the anisotropy levels and intermittency of the flow by investigating the probability density functions, higher order moments of velocities and reacting scalars and anisotropy invariant maps for different reacting cases. To evaluate and isolate the Damkohler number effects on the reaction zone structure from those of the heat release a comparison between two DNS cases with different Damkohler numbers but a comparable temperature rise is performed. Furthermore, the wall effects on the flame and flow characteristics, for instance, the wall heat transfer; the near-wall combustion effects on the skin-friction, the isothermal wall cooling effects on the average burning rates and the possibility of formation of the premixed mode within the non-premixed flame are addressed. The DNS datasets are also used for a priori analysis, focused on the heat release effects on the subgrid-scale (SGS) statistics. The findings regarding the turbulence small-scale characteristics, gained through the statistical analysis of the flow have many phenomenological parallels with those concerning the SGS statistics. Finally, a DNS of turbulent reacting wall-jet at a substantially higher Reynolds number is performed in order to extend the applicability range for the conclusions of the present study and figuring out the possible differences. / <p>QC 20150225</p>
|
25 |
Numerical Investigation of Combustion Noise of Turbulent Flames / 数値解析による乱流火炎の燃焼騒音に関する研究Abhishek, Lakshman Pillai 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21100号 / 工博第4464号 / 新制||工||1694(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 中部 主敬, 教授 吉田 英生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
26 |
Application of a flamelet-based combustion model to diesel-like reacting spraysPérez Sánchez, Eduardo Javier 25 February 2019 (has links)
[ES] El objetivo de esta tesis es la investigación y análisis de la estructura interna de los chorros diésel reactivos y el efecto de las condiciones de contorno en los parámetros asociados a la combustión. Este objetivo se consigue por medio de la simulación numérica del chorro con modelos de turbulencia RANS y LES usando un modelo de combustión avanzado basado en el concepto flamelet.
Para este estudio, se aplica una aproximación simplificada de las flamelets de difusión, conocidas en la literatura como Flamelets de Difusión Aproximadas (ADF en inglés), como fundamento del modelo de combustión. En una primera etapa, el modelo se valida con combustibles de diferente complejidad química en regímenes estacionarios y transitorios para el conjunto de posibles velocidades de deformación. Una vez se confirma su idoneidad para condiciones encontradas en chorros diésel, se aplica a la simulación del chorro A del Engine Combustion Network (ECN), representativo de chorros diésel.
Para proporcionar un cuadro completo de los fenómenos subyacentes, la combustión se analiza inicialmente para condiciones homogéneas y llamas laminares para las distintas condiciones de contorno de este experimento. Después este análisis se complementa con la simulación de diferentes mecanismos químicos para determinar cómo las características del encendido predichas por el esquema de oxidación afectan a la propagación de llama. Los resultados obtenidos en esta etapa se enlazan con el análisis del chorro turbulento en el contexto de simulaciones RANS y LES para describir cómo el fenómeno de la combustión se modifica con los diferentes niveles de complejidad física. La estructura del chorro turbulento se describe profundamente para las distintas condiciones de contorno y mecanismos químicos en términos de mezcla y escalares reactivos para las fases temporales y las regiones espaciales de la llama.
La satisfactoria concordancia con los resultados experimentales muestran que el concepto flamelet, y más particularmente el modelo ADF, es adecuado para las simulaciones de chorros diésel. / [CA] L'objectiu d'esta tesi és la investigació i anàlisi de l'estructura interna dels dolls dièsel reactius i l'efecte de les condicions de contorn en els paràmetres associats a la combustió. Este objectiu s'aconsegueix per mitjà de la simulació numèrica del doll amb models de turbulència RANS i LES usant un model de combustió avançat basat en el concepte flamelet.
Per a este estudi, s'aplica una aproximació simplificada de les flamelets de difusió, conegudes a la literatura com Flamelets de Difusió Aproximades (ADF en anglés), com a fonament del model de combustió. En una primera etapa, el model es valida amb combustibles de diferent complexitat química en règims estacionaris i transitoris per al conjunt de possibles velocitats de deformació. Una vegada es confirma la seua idoneïtat per a condicions trobades en dolls dièsel, s'aplica a la simulació del doll A del Engine Combustion Network (ECN), representatiu de dolls dièsel.
Per a proporcionar un cuadre complet dels fenòmens subjacents, la combustió s'analitza inicialment per a condicions homogènies i flames laminars per a les distintes condicions de contorn d'aquest experiment. Després esta anàlisi es complementa amb la simulació de diferents mecanismes químics per a determinar com les característiques de l'encesa predites per l'esquema d'oxidació afecten la propagació de flama. Els resultats obtinguts en esta etapa s'enllacen amb l'anàlisi del doll turbulent en el context de simulacions RANS i LES per a descriure com el fenomen de la combustió es modifica amb els diferents nivells de complexitat física. L'estructura del doll turbulent es descriu profundament per a les distintes condicions de contorn i mecanismes químics en termes de mescla i escalars reactius per a les fases temporals i les regions espacials de la flama.
La satisfactòria concordança amb els resultats experimentals mostren que el concepte flamelet, i més particularment el model ADF, és adequat per a les simulacions de dolls dièsel. / [EN] The objective of this thesis is the investigation and analysis of the internal structure of diesel-like reacting sprays and the effect of boundary conditions on combustion related parameters. This objective is achieved by means of the numerical simulation of the spray with RANS and LES turbulence models using an advanced combustion model based on the flamelet concept.
For this study, a simplified approach for diffusion flamelets, known in the literature as Approximated Diffusion Flamelet (ADF), is applied as the basis of the combustion model. In a first step, this model is validated for fuels with different chemical complexity in steady and transient regimes for the whole set of possible strain rates. Once its suitability is confirmed for conditions found in diesel sprays, it is applied to the simulation of spray A from the Engine Combustion Network (ECN), representative of diesel-like sprays.
In order to provide a complete picture of the underlying phenomena, combustion is initially analysed in homogeneous conditions and laminar flames for the different boundary conditions of this experiment. Later, this analysis is complemented with the simulation of different chemical mechanisms in order to determine how the ignition characteristics predicted by the oxidation scheme affect to the flame propagation. The results obtained at this stage are connected with the analysis of the turbulent spray in the context of RANS and LES simulations as a way to track how combustion phenomenon is modified at the different levels of physical complexity. The turbulent spray structure is thoroughly described for the different boundary conditions and chemical schemes in terms of mixing and reactive variables for both temporal phases and spatial flame regions.
The satisfactory agreement with experimental results shows that the flamelet concept, and more particularly the ADF model, is suitable for diesel-like sprays simulations. / Pérez Sánchez, EJ. (2019). Application of a flamelet-based combustion model to diesel-like reacting sprays [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117316
|
27 |
Effects of turbulent flow regimes on pilot and perforated-plate stabilized lean premixed flamesJupyoung Kim (6845579) 14 August 2019 (has links)
An experimental study of the effects of turbulent flow regime on the flame structure is conducted by using perforated-plate-stabilized hydrogen-piloted lean premixed methane/air turbulent flames. The underlying non-reacting turbulent flow field was investigated using two-dimensional three-components particle imaging velocimetry (2D3C-PIV) with and without three perforated plates. The non-reacting flow data allowed a separation of the turbulent flow regime into axial velocity dominated and vortex dominated flows. A plate with 62\% blockage ratio was used to represent the stream-dominant flow regime and another with 86\% blockage ratio was used to represent the vortex-dominant flow regime. OH laser-induced fluorescence was used to study the effects of the turbulent flow regime on the mean progress variable, flame brush thickness, flame surface density, and global consumption speed. In comparison with the stream-dominant flow, the vortex-dominant flow makes a wider and shorter flame. Also, the vortex-dominant flow has a thicker horizontal flame brush thickness and a thinner longitudinal flame brush thickness. Especially, the horizontal flame brush thickness for the vortex-dominant flow does not follow the turbulence diffusion theory. Then, the vortex-dominant flow shows a relatively constant flame surface density along the stream-wise direction, while the stream-dominant flow shows a decreasing flame surface density. Lastly, the vortex-dominant turbulent flow improves the consumption speed in comparison to the stream-dominant turbulent flow regime with the same velocity fluctuation level.
|
28 |
Instabilités de flammes de prémélange en cellule de Hele-Shaw / Premixed flames instability in Hele-Shaw cellAl Sarraf, Elias 19 December 2017 (has links)
La combustion pré mélangée a été depuis longtemps un domaine vaste d’étude au niveau appliqué et fondamental. Bien que la plupart des applications industrielles en combustion aient lieu dans des régimes turbulents, le passage par l’étude laminaire est indispensable pour comprendre les mécanismes fondamentaux des flammes turbulentes. Ce travail de thèse porte essentiellement sur l’étude des différentes instabilités agissant sur un front de flamme laminaire de pré mélange pour des mélanges de propane-air et méthane-air, enrichis ou non en azote. L’étude consiste à mesurer les taux de croissance des perturbations dans un brûleur d’Hele-Shaw formé par deux plaques de verre ($150\times50cm$) très rapprochées (brûleur 2D). Grâce à un système de forçage constitué par des plaques modulées spatialement avec différentes longueurs d’onde, le taux de croissance peut être mesuré même en présence du développement spontané de l’instabilité avec la longueur d’onde la plus instable. A richesse constante et pour des valeurs croissantes de la dilution en oxygène le vecteur d'onde de coupure augmente avec la vitesse de flamme qui devient plus instable. Pour des mélanges de propane ce nombre d’onde augmente également lorsqu'on augmente la richesse à vitesse constante et il diminue dans le cas des mélanges de méthane, cela est en relation avec l'évolution des effets thermodiffusifs dans chacun des cas. Une augmentation de l’épaisseur de la cellule d’Hele-Shaw, aboutit à une augmentation du taux de croissance pour les petits nombres d’onde ainsi que du nombre de Markstein, et à une diminution du taux de croissance pour les grands nombres, du fait des effets des pertes thermiques. / Premixed combustion has been the subject of extensive work, concerning both applications and fundamental aspects. Although in most practical applications combustion occurs in a turbulent environment, the study of laminar flames is important to understand the fundamental mechanisms of turbulent flame propagation. The objective of this work is to study the various instabilities acting on a laminar premixed flame for mixtures of propane-air and methane-air, enriched or not with nitrogen. it consists in measuring the linear growth rates of disturbances in a Hele-Shaw burner formed by two glass plates ($150\times50cm$) separated by a thin gap width (2D burner). Using spatially modulated plates with different wavelengths, the linear growth rate of perturbations can be measured even in the presence of the most unstable wavelength. The experimental values of the linear growth rate as a function of wavenumber are fitted by a linear dispersion relation to estimate the Markstein number and the cutoff wavenumber. For a constant equivalence ratio with increasing values of the dilution in oxygen, the cutoff wavenumber grows with the flame velocity and it is becoming more unstable. The cutoff wave number rises also when the equivalence ratio increases for propane-air mixture and decreases for methane-air mixture, in relation to the evolution of thermal diffusive effects. An enlargement in the thickness of the Hele-Shaw cell results in an increase of the growth rate for small wavenumbers thus in the Markstein number, and in a decline in the growth rate for the large wavenumbers, in relation with the effects of heat losses.
|
29 |
Factors that limit control effectiveness in self-excited noise driven combustorsCrawford, Jackie H., III 27 March 2012 (has links)
A full Strouhal number thermo-acoustic model is purposed for the feedback control of self excited noise driven combustors. The inclusion of time delays in the volumetric heat release perturbation models create unique behavioral characteristics which are not properly reproduced within current low Strouhal number thermo acoustic models. New analysis tools using probability density functions are introduced which enable exact expressions for the statistics of a time delayed system. Additionally, preexisting tools from applied mathematics and control theory for spectral analysis of time delay systems are introduced to the combustion community. These new analysis tools can be used to extend sensitivity function analysis used in control theory to explain limits to control effectiveness in self-excited combustors. The control effectiveness of self-excited combustors with actuator constraints are found to be most sensitive to the location of non-minimum phase zeros. Modeling the non-minimum phase zeros correctly require accurate volumetric heat release perturbation models. Designs that removes non-minimum phase zeros are more likely to have poles in the right hand complex plane. As a result, unstable combustors are inherently more responsive to feedback control.
|
30 |
Formation des oxydes d'azote dans les flammes haute pression : étude expérimentale par fluorescence induite par laser : application aux flammes méthane/air et méthane/hydrogène/air / Nitric oxide formation in high pressure flames : experimental study by laser induced fluorescence : application to methane/air and methane/hydrogen/air flamesMolet, Julien 24 January 2014 (has links)
Le monoxyde d’azote (NO) est un polluant atmosphérique responsable d’effets nuisibles sur l’environnement et la santé. Afin de mieux contrôler ces émissions, il est indispensable de comprendre et de maîtriser leur formation,en particulier lors de la combustion à haute pression, domaine d’application industrielle (cas des turbines à gaz,des moteurs…). On distingue quatre voies principales de formation de NO : la voie thermique, la voie du NO précoce, la voie NNH et la voie N2O. L’objectif de cette thèse à caractère expérimentale est de compléter la base de données expérimentale déjà existante nécessaire à la compréhension et à l’identification de la contribution de chaque voie à la formation du NO à haute pression.Dans cette thèse, un dispositif de brûleurs à contre-courants a été utilisé pour étudier la structure de flammes laminaires, prémélangées à haute pression. Les profils de concentration de NO dans les flammes CH4/O2/N2 à différentes richesses (Фc =0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser. L’effet de l’ajout d’hydrogène (80%CH4/20%H2 : Application Hythane®) sur la formation de NO a également été étudié dans les flammes pauvres CH4/O2/N2. Le mécanisme cinétique GDF-Kin®3.0_NCN a été comparé aux mesures de NO disponibles dans la littérature ainsi qu’aux simulations des mécanismes cinétiques du Gaz Research Institute (version 2.11 et 3.0). Ces trois mécanismes ont été ensuite comparés aux mesures expérimentales réalisées dans ces travaux de thèse. / The nitric oxide (NO) is a pollutant responsible of detrimental effects on the environment and health. To better control these emissions, it’s crucial to understand and to control their formation, in particular during the combustion process at high pressure, area of industrial applications (gas turbines, engines…).There are four major routes of the NO formation: the thermal route, the prompt-NO route, the NNH route and theN2O route. The aim of this experimental thesis is to complete the existing experimental database which isnecessary to the understanding and the identification of the contribution from each route to the NO formation at high pressure.In this thesis, a facility of two twin counter-flow burners was used to study the structure of the laminar, premixed flames at high pressure. Experimental NO concentration profiles have been measured in CH4/O2/N2 flames for arange of equivalence ratio (from 0.7 to 1.2) and pressures (from 0.1 to 0.7 MPa) by Laser Induced Fluorescence.The effect of adding hydrogen (80%CH4/20%H2: Hythane® application) on the NO formation has been also studied in lean CH4/O2/N2 flames. The GDF-Kin®3.0_NCN kinetic mechanism has been compared to experimental data from the literature and also compared to the simulations from the Gas Research Institute mechanisms (version 2.11 and 3.0). These three mechanisms have been finally compared to the experimental data from this thesis.
|
Page generated in 0.0742 seconds