• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The cultural aspects of intervention with Soft Systems Methodogy

Davies, Lynda J. January 1989 (has links)
No description available.
2

The Implementation of Emerging Knowledge in K-12 Schools: The Challenge of Computational Thinking

Azeka, Steven January 2024 (has links)
This dissertation examines the response of a group of educators to a state mandate to integrate computational thinking (CT) into all levels of the curriculum. It explores the historical development of CT and its significance within the broader context of Science, Technology, Engineering, and Mathematics education, emphasizing the rapid growth and evolving nature of this interdisciplinary field. By examining the challenges and potential strategies for incorporating CT into K-12 curricula, the research highlights the critical role of school leadership in navigating the complexities associated with this integration. Utilizing Everett Rogers’s Diffusion of Innovation theory, the dissertation explores how new knowledge is integrated into schools and examines the pivotal role of educational leaders in steering this endeavor. A mixed-methods research design was used to gather the attitudes and perceptions of school leaders toward CT, identifying key factors that influence the adoption and implementation of CT in schools. The study reveals that leadership awareness, involvement, and support are pivotal in overcoming obstacles to CT integration. It also underscores the importance of developing a shared understanding of CT among educators and administrators, aligning CT initiatives with school priorities, and providing adequate resources and professional development opportunities to ensure effective implementation. The findings of the dissertation offer valuable insights for policymakers, educators, and educational leaders, suggesting that a comprehensive approach to integrating CT into K-12 education requires strategic planning, collaboration, and sustained support. By addressing the gaps in current research and practice, this dissertation contributes to the discourse on effective strategies for embedding CT within the educational curriculum, with the goal of enhancing students’ preparedness for an increasingly computational world. This research sheds light on the challenges and opportunities of CT integration and contributes to the development of a roadmap for future efforts to integrate new bodies of knowledge into the K-12 curriculum.
3

Sistemas lineares: aplicações e propostas de aula usando a metodologia de resolução de problemas e o software GeoGebra / Linear systems: applications and classroom proposals using teaching methodology and GeoGebra software

Boccardo, Mateus Eduardo [UNESP] 25 September 2017 (has links)
Submitted by Mateus Eduardo Boccardo null (mateuseboccardo@hotmail.com) on 2017-10-16T21:58:41Z No. of bitstreams: 1 SISTEMAS LINEARES- APLICAÇÕES E PROPOSTAS DE AULA USANDO A METODOLOGIA DE RESOLUÇÃO DE PROBLEMAS E O SOFTWARE GEOGEBRA.pdf: 1649568 bytes, checksum: c2692aee302e29bada55e36958c6599b (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-10-18T18:37:19Z (GMT) No. of bitstreams: 1 boccardo_me_me_sjrp.pdf: 1649568 bytes, checksum: c2692aee302e29bada55e36958c6599b (MD5) / Made available in DSpace on 2017-10-18T18:37:19Z (GMT). No. of bitstreams: 1 boccardo_me_me_sjrp.pdf: 1649568 bytes, checksum: c2692aee302e29bada55e36958c6599b (MD5) Previous issue date: 2017-09-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Sistemas Lineares, mais precisamente, Sistemas de Equações Lineares, é ferramenta útil para a resolução de vários problemas práticos e importantes, por exemplo, problemas relacionados a tráfego de veículos, balanceamento de equações químicas, cálculo de uma alimentação diária equilibrada, circuitos elétricos e interpolação polinomial. Neste trabalho abordamos o conteúdo Sistemas Lineares, seus métodos de resolução, algumas de suas inúmeras aplicações, bem como a interpretação geométrica do conjunto solução de sistemas lineares em duas ou três variáveis. Apresentamos também, uma análise de como esse assunto é tratado em alguns documentos oficiais de ensino. Por fim, são expostas duas Propostas de Aula que foram elaboradas para alunos do Ensino Básico, uma para ser desenvolvida usando a Resolução de Problemas como metodologia de ensino (na abordagem de problemas sobre sistemas lineares) e outra, sobre a Interpretação Geométrica do conjunto solução de Sistemas Lineares, para ser realizada na Sala de Informática, utilizando o software GeoGebra. / Linear System, more precisely, System of Linear Equations, is a useful tool for their solution of several practical and important problems, for example problems related to vehicle traffic, balancing of chemical equations, elaboration healthy daily diet, electrical circuits and polynomial interpolation. In this work, we study Linear System, its methods of resolution, some of its numerous applications, as well as the geometric interpretation of the solution set of linear system in two or three variables. We also present an analysis of how this subject is treated in some official teaching documents. Finally, we present two Class Proposals that are elaborated for Basic Education students, one to be developed using Problem Solving as a teaching methodology (in the approach to problems on linear system) and another, on the Geometric Interpretation of the solution set of Linear System, to be held in the Computer Laboratory, using GeoGebra software.
4

The Effects of Equivalence Based Instruction on Mathematical Problem-Solving

Shapiro, Lauren January 2024 (has links)
In 2 experiments, I studied the effects of an Equivalence Based Instruction (EBI) math intervention on the emergence of untaught selection responses and abstraction to production responses. In Experiment I, using a multiple baseline design, I implemented the EBI intervention among a group of 17 first grade participants with varying levels of math prerequisites and verbal behavior development. The intervention sought to develop a comprehensive relational network for the part-whole relations involved in addition and subtraction operations. This intervention, informed by Verbal Behavior Development Theory, Relational Frame Theory, and research on math proficiency, utilized visual and verbal stimulus presentations of fact families to establish the concepts underlying addition and subtraction. The key concept was that of a fact-family, in which two parts are equivalent to the whole and the whole is equivalent to the sum of its parts. The goal of the EBI intervention was to establish a relational network involving pictures, number bonds, sentences, and equations such that the part-whole relations involved in fact-families could be related to both addition and subtraction. The EBI intervention consisted of 3 phases to build this relational network. In Phase I, participants learned to match sentences describing complete fact-families with pictures and number bonds. In Phase II, participants learned to match sentences describing incomplete fact-families with number bonds. In Phase III, participants learned to match incomplete number bonds with addition and subtraction equations presented in various topographies. Before and after each phase of the intervention, I assessed the degree to which participants acquired untaught responses as well as their performance on production, or problem-solving, probes. Results revealed that the combinatorially entailed response (i.e., matching pictures with number bonds) emerged for all participants, while the mutually entailed response (i.e., selecting sentences) emerged for only some participants. Participants generally improved their problem-solving following the intervention; however, further examination was needed to supplement initial visual analyses of the graphs. Accordingly, I conducted a series of statistical analyses to evaluate individual and group-level differences in responding during the EBI intervention. These analyses also sought to reveal whether math prerequisites or level of verbal behavior development were associated with performance during Phases I, II, and III. Results showed that the EBI intervention was associated with standardized math performance and problem-solving accuracy, and results suggested that verbal behavior development has a meaningful relation with rate of learning. In Experiment II, I aimed to evaluate the educational significance of the repertoires involved in the EBI intervention by conducting a correlational study with 32 additional first grade participants. This experiment revealed that the response-types targeted in Phase III of the intervention were significantly associated with standardized math performance.
5

Resolução de problemas da pré-álgebra e álgebra para fundamental II do ensino básico com auxílio do modelo de barras

Queiroz, Jonas Marques dos Santos 17 October 2014 (has links)
Made available in DSpace on 2016-06-02T20:02:57Z (GMT). No. of bitstreams: 1 6507.pdf: 2675622 bytes, checksum: 1fa2e1a89f27433883070d1a6ede575e (MD5) Previous issue date: 2014-10-17 / The difficulties in learning and teaching of algebra can be detected in the school cycle 4 (8th and 9th grades) of the Elementary School II and throughout High School, such difficulties being present in all Brazilian schools. These difficulties arise from an institutional failure, in others words, in the transition from arithmetic to algebra, in the phase of pre-algebra which occurs at cycle 3 ( 6th and 7th grades) of the Elementary School II. When this transition is unsatisfactory this compromises the subsequent studies making the students feel not motivated in learning the content of algebra. Therefore, in this research project we planned and executed 6 (six) activities based on the methodology of Problem Solving based on the phases proposed by George Polya, along with the methodology of the Bar Model from Singapore Mathematics. The activities were carried out in seventh grade classrooms of Elementary School II of Instituto Educacional Estilo , Campinas, SP. The results of this dissertation suggests to teachers of Elementary School II didactical sequences of activities that they can use and enjoy in classroom practices, so that they can improve also their teaching and learning, contributing to the development of the students. With the objective of achieving a satisfactory transition from arithmetic to algebra, the activities were developed and based on problems solving, and then analyzed critically using the Problem Solving steps. After 6 (six) activities, we applied a diagnostic evaluation in order to analyze the results and to check if the activities contributed to a meaningful learning of algebra. The dissertation presents a theoretical study about teaching and learning algebra as well as a study on the methodologies of Problem Solving in classroom practice and Bar Model from Singapore Mathematics. / As dificuldades na aprendizagem e no ensino da álgebra podem ser constatadas no ciclo 4 (8º Ano e 9º Ano) do Ensino Fundamental II e também em todo o Ensino Médio, tais dificuldades estão presentes em todas as escolas brasileiras. Essas dificuldades são decorrentes de uma falha na introdução, ou seja, na transição da aritmética para a álgebra, a pré-álgebra que ocorre no final do ciclo 3 (6º Ano e 7º Ano) do Ensino Fundamental II, já que feita de maneira não satisfatória pode comprometer as aulas seguintes fazendo com que os alunos se sintam desmotivados a aprenderem o conteúdo de álgebra. Deste modo foram planejadas e executadas 6 (seis) atividades utilizando a metodologia de Resolução de Problemas seguindo as etapas de George Polya, juntamente com a metodologia do Modelo de Barras segundo a Filosofia da Matemática de Singapura. As atividades foram aplicadas em duas turmas do sétimo ano do Ensino Fundamental II, no colégio Instituto Educacional Estilo, Campinas, SP. O trabalho desenvolvido nesta dissertação proporciona aos professores do Ensino Fundamental II e Ensino Médio uma sequência didática, que podem utilizar e aproveitar em suas aulas de forma que possam também melhorar em suas práticas de ensino e aprendizagens, de maneira a contribuir para o desenvolvimento de seus alunos. Com o objetivo de realizar uma transição satisfatória da aritmética para álgebra, as atividades foram elaboradas e baseadas na resolução de problemas, e depois analisadas criticamente por meio das etapas de resolução. Após as 6 (seis) atividades, aplicamos uma avaliação diagnóstica de forma a analisar os resultados para verificar se as atividades contribuíram com significado para uma aprendizagem da álgebra. O trabalho apresenta um estudo teórico sobre o ensino e aprendizagem da álgebra e também apresenta um estudo sobre as metodologias desenvolvidas no trabalho, Resolução de Problemas e Modelo de Barras segundo a Filosofia da Matemática de Singapura.
6

Resolução de problemas na formação continuada e em aulas de matemática nos anos iniciais

Oliveira, Sandra Alves de 03 March 2012 (has links)
Made available in DSpace on 2016-06-02T19:39:29Z (GMT). No. of bitstreams: 1 4658.pdf: 6526490 bytes, checksum: a3c08dfba9978c157f2ec6f812cc06c2 (MD5) Previous issue date: 2012-03-03 / This text reports a descriptive and interpretative research that analyzed challenges, dilemmas, knowledge and learning that were present in the process of continuing professional education of a group of sixteen Early Years teachers who attended an extension activity - "Mathematics in the Early Years: Program of Continuing Professional Education for Early Years Teachers from the Municipal Secretary of Education of São Carlos" - during the first semester of 2011, while studying and using the methodology of problem solving in mathematics lessons. The theoretical references that support this research are based on studies about problem solving and teacher education. The organization of the team/group that was involved in the continuing professional education activity founded the study. The continuing education program occurred in a perspective of collaborative work. Empirical data were constructed using a questionnaire, semi-structured interviews, audio and video records, written material, a reflective field journal elaborated by the participating teachers and the researcher, who worked as a trainer and observed the actions of the teachers in mathematics lessons. The data analysis indicates that the collaborative work approach helped the teachers to review knowledge and concepts about problem solving in mathematics lessons and implement more meaningful practices in their classes. The activities that were developed and created in the continuing education program gave the necessary contribution so that the sixteen participating teachers had the possibility to use, in their mathematics classes in Early Years education, the methodology of problem solving according to the perspective of Van de Walle, Onuchic, Vila and Callejo. The process of training was important because it valued the teaching knowledge and learning and enabled the teachers to build and rebuild other ones, express their experiences, their feelings about their practices and their interest in the development of problem solving methodology in teaching and learning of mathematics in the Early Years; understand the theoretical and practical knowledge in teaching and learning of mathematics and/or give them a new meaning. This knowledge contributed for the practical application of problem solving methodology in mathematics classes in Early Years Education. / Este texto relata uma pesquisa de natureza descritiva e interpretativa, que analisou desafios, dilemas, saberes e aprendizagens presentes no processo de formação continuada com um grupo de 16 professores dos anos iniciais, participantes de uma atividade de extensão - ACIEPE: A Matemática nos Anos Iniciais: Programa de Formação Contínua de Professores dos Anos Iniciais da Secretaria Municipal de Educação de São Carlos - durante o primeiro semestre de 2011, ao estudarem e utilizarem a metodologia da resolução de problemas nas aulas de matemática. Os referenciais teóricos que embasaram a investigação estão ancorados nos estudos a respeito da resolução de problemas e da formação de professores. A organização da equipe/grupo que participou da formação continuada alicerçou a pesquisa. A formação continuada se deu numa perspectiva de trabalho colaborativo. Os dados empíricos foram construídos através de questionário, entrevistas semiestruturadas, registro em áudio e vídeo, material escrito, diário de campo reflexivo produzido pelos professores participantes e pela pesquisadora, que atuou como formadora e acompanhou ações dos professores nas aulas de matemática. A análise dos dados indica que a abordagem do tipo trabalho colaborativo contribuiu para que os professores participantes ressignificassem saberes e concepções sobre resolução de problemas nas aulas de matemática e implementassem práticas mais significativas em suas aulas. As atividades desenvolvidas e criadas na formação continuada contribuíram para que os 16 professores participantes utilizassem, nas suas aulas de matemática dos anos iniciais, a metodologia da resolução de problemas na perspectiva apontada por Van de Walle, Onuchic, Vila e Callejo. O processo da formação foi importante porque valorizou os saberes e as aprendizagens docentes e possibilitou aos professores construir e reconstruir outros; expressar suas experiências, seus sentimentos em relação às suas práticas e seus desejos para o desenvolvimento da metodologia da resolução de problemas no ensino e na aprendizagem de matemática nos anos iniciais; apropriar-se dos conhecimentos teóricos e práticos no processo ensino-aprendizagem da matemática e/ou ressignificá-los. Esses conhecimentos contribuíram para a prática da metodologia da resolução de problemas em aulas de matemática dos anos iniciais.
7

Metodologia da resolução de problemas no planejamento de atividades para a transição da Aritmética para a Álgebra

Pimentel, Danilo Eudes 13 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:02:48Z (GMT). No. of bitstreams: 1 3278.pdf: 1300698 bytes, checksum: 42d6e6a50f7a0f2127c6a2130f835199 (MD5) Previous issue date: 2010-03-13 / Difficulties in learning algebra found on high school, especially among students of the first year have motivated this research, in order to discover and understand the origins of the problem and consider proposals for possible solutions. The first target of the present research was to explore the possible causes of difficulties on the transition from arithmetic to algebra, which should be done in the second half of elementary school but occurs most notably in the eighth year / seventh grade. Activities configured as problem solving were planned and implemented to detect problems and to support the introduction to algebraic reasoning on three groups of seventh grade students at Escola Estadual Professor Euclides de Carvalho Campos , Botucatu, SP. The objectives of those activities are: 1 Search the steps involved in planning activities for teaching algebra; find the students difficulties in its learning; 2 Implement classroom activities in the seventh grade; collect and analyze the results in order to support the dissertation work and prepare proposals to assist the learning of algebra. In order to reach it, the problem solving methodology was used with proposals for contextual problems involving modeling problems with first-degree equations, linear systems, geometry and counting. In addition to explanative lessons, in which the results were synthesized, the group work and participatory learning were emphasized. As a result, the students shown their difficulties to discern the role of the unknowns in the equation s solving, the meaning of characters as variables in modeling problems and also a strong tendency of trying to solve only arithmetic s exercises, especially through the method of trial and error. The present research examined the difficulties found as by the points of view of the theoretical conceptual transition from arithmetic to algebra as by the contextual problem solving methodology, which involves the school planning and the social environment. / As dificuldades na aprendizagem de álgebra constatadas especialmente em alunos do primeiro ano do ensino médio motivaram esta pesquisa, que tem a finalidade de descobrir e entender as origens do problema e estudar propostas para possíveis soluções. O primeiro alvo do presente trabalho é explorar as possíveis causas das dificuldades na transição da aritmética para a álgebra, que deveria ser feita na segunda metade do Ensino Fundamental, porém ocorre com maior destaque no oitavo ano/sétima série. Foram planejadas e aplicadas atividades sob forma de resolução de problemas para detectar estas dificuldades e auxiliar na introdução ao raciocínio algébrico em três turmas de sétima série da Escola Estadual Professor Euclides de Carvalho Campos , Botucatu, SP. Os objetivos das atividades são: 1 Pesquisar as etapas do processo de planejamento de atividades matemáticas para o ensino de álgebra; detectar as dificuldades dos estudantes na sua aprendizagem; 2 Executar as atividades em salas de aula de sétima série; coletar os resultados e analisá-los de forma a subsidiar o trabalho de dissertação; elaborar propostas que contribuam para facilitar a aprendizagem de álgebra. Para isso foi utilizada a metodologia de resolução de problemas, com propostas de problemas contextualizados, envolvendo modelagem de problemas com equações do primeiro grau, sistemas lineares, geometria e contagem. Além de aulas expositivas nas quais se fez a síntese dos resultados obtidos, foi enfatizada a aprendizagem participativa do trabalho em grupo para a execução das atividades. Como resultado, foram detectadas dificuldades no discernimento do papel das incógnitas na resolução de equações, no significado das letras utilizadas como variáveis na modelagem de problemas e a forte tendência em tentar resolver exercícios apenas pela aritmética, especialmente pelo método da tentativa e erro. O presente trabalho analisou as dificuldades detectadas tanto do ponto de vista teórico-conceitual de transição da aritmética para a álgebra, quanto pela ótica contextual da metodologia de resolução de problemas que envolvem o planejamento escolar e o ambiente social.
8

O ensino de ciências por resolução de problemas: uma proposta aplicada a estudantes do ensino fundamental da cidade de Araucária / The teaching of sciences by problem-based learning: a proposal applied to students of the elementary school of Araucária

Sierra, Cristine Lois Coleti 05 May 2017 (has links)
Acompanha produto. / A Resolução de Problemas consiste em uma metodologia de ensino que se empenha em instigar os alunos na busca e apropriação de estratégias adequadas para que respondam tanto perguntas escolares quanto questões cotidianas. Na Metodologia da Resolução de Problemas, o problema demanda do aluno uma carga cognitiva e motivacional maior do que em outras metodologias. O objetivo desta pesquisa é avaliar as contribuições da Metodologia da Resolução de Problemas (MRP) no Ensino de Ciências nos anos finais do Ensino Fundamental, a partir das problemáticas locais. Para isto, a pesquisa foi planejada em três etapas: Planejamento do Trabalho Pedagógico; Planejamento e Aplicação da Metodologia da Resolução de Problemas; e Obtenção dos Resultados da Pesquisa. Os resultados desta pesquisa foram analisados em termos qualitativos. Para isso, foram analisados questionários e atividades realizadas pelos alunos, bem como fatores observacionais durante a aplicação da MRP. Por fim, foi escrito um Caderno Pedagógico destinado aos professores no intuito de difundir e motivar os professores de Ciências no Nível Fundamental, na aplicação da Metodologia da Resolução de Problemas em suas aulas. / The Problem-Based Learning (PBL) consists of a teaching methodology that strives to instill students in the search and appropriation of appropriate strategies to answer both school and daily questions. In the Problem-Based Learning, the problem demands from the student a greater cognitive and motivational load than in other methodologies. The objective of this research is to evaluate the contributions of the Problem-Based Learning in Science Teaching in the final years of Elementary Education, based on local problems. For this, the research was planned in three stages: Pedagogical Work Planning; Planning and Application of Problem-Based Learning; and Obtaining Search Results. The results of this research were analyzed in qualitative terms. For this, we analyzed the questionnaires and activities carried out by the students, as well as observational factors during the application of MRP. Finally, a Pedagogical Notebook was written for teachers in order to disseminate and motivate Science teachers at the Fundamental Level, in the application of the Problem-Based Learning in their classes.

Page generated in 0.0948 seconds