• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 10
  • 1
  • Tagged with
  • 27
  • 27
  • 17
  • 17
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Correspondance entre régression par processus Gaussien et splines d'interpolation sous contraintes linéaires de type inégalité. Théorie et applications. / Correspondence between Gaussian process regression and interpolation splines under linear inequality constraints. Theory and applications

Maatouk, Hassan 01 October 2015 (has links)
On s'intéresse au problème d'interpolation d'une fonction numérique d'une ou plusieurs variables réelles lorsque qu'elle est connue pour satisfaire certaines propriétés comme, par exemple, la positivité, monotonie ou convexité. Deux méthodes d'interpolation sont étudiées. D'une part, une approche déterministe conduit à un problème d'interpolation optimale sous contraintes linéaires inégalité dans un Espace de Hilbert à Noyau Reproduisant (RKHS). D'autre part, une approche probabiliste considère le même problème comme un problème d'estimation d'une fonction dans un cadre bayésien. Plus précisément, on considère la Régression par Processus Gaussien ou Krigeage pour estimer la fonction à interpoler sous les contraintes linéaires de type inégalité en question. Cette deuxième approche permet également de construire des intervalles de confiance autour de la fonction estimée. Pour cela, on propose une méthode d'approximation qui consiste à approcher un processus gaussien quelconque par un processus gaussien fini-dimensionnel. Le problème de krigeage se ramène ainsi à la simulation d'un vecteur gaussien tronqué à un espace convexe. L'analyse asymptotique permet d'établir la convergence de la méthode et la correspondance entre les deux approches déterministeet probabiliste, c'est le résultat théorique de la thèse. Ce dernier est vu comme unegénéralisation de la correspondance établie par [Kimeldorf and Wahba, 1971] entre estimateur bayésien et spline d'interpolation. Enfin, une application réelle dans le domainede l'assurance (actuariat) pour estimer une courbe d'actualisation et des probabilités dedéfaut a été développée. / This thesis is dedicated to interpolation problems when the numerical function is known to satisfy some properties such as positivity, monotonicity or convexity. Two methods of interpolation are studied. The first one is deterministic and is based on convex optimization in a Reproducing Kernel Hilbert Space (RKHS). The second one is a Bayesian approach based on Gaussian Process Regression (GPR) or Kriging. By using a finite linear functional decomposition, we propose to approximate the original Gaussian process by a finite-dimensional Gaussian process such that conditional simulations satisfy all the inequality constraints. As a consequence, GPR is equivalent to the simulation of a truncated Gaussian vector to a convex set. The mode or Maximum A Posteriori is defined as a Bayesian estimator and prediction intervals are quantified by simulation. Convergence of the method is proved and the correspondence between the two methods is done. This can be seen as an extension of the correspondence established by [Kimeldorf and Wahba, 1971] between Bayesian estimation on stochastic process and smoothing by splines. Finally, a real application in insurance and finance is given to estimate a term-structure curve and default probabilities.
22

Simulation and optimization of steam-cracking processes / Simulation et optimisation des procédés de craquage thermique

Campet, Robin 17 January 2019 (has links)
Le procédé de craquage thermique est un procédé industriel sensible aux conditions de température et de pression. L’utilisation de réacteurs aux parois nervurées est une méthode permettant d’améliorer la sélectivité chimique du procédé en augmentant considérablement les transferts de chaleur. Cependant, cette méthode induit une augmentation des pertes de charge dans le réacteur, ce qui est dommageable pour le rendement chimique et doit être quantifié. En raison de la complexité de l’écoulement turbulent et de la cinétique chimique, le gain réel offert par ces géométries en termes de sélectivité chimique est toutefois mal connu et difficile à estimer, d’autant plus que des mesures expérimentales détaillées sont très rares et difficiles à mener. L’objectif de ce travail est double: d’une part évaluer le gain réel des parois nervurées sur le rendement chimique; d’autre part proposer de nouveaux designs de réacteurs offrant une sélectivité chimique optimale. Ceci est rendu possible par l’approche de simulation numérique aux grandes échelles (LES), qui est utilisée pour étudier l’écoulement réactif à l’intérieur de diverses géométries de réacteurs. Le code AVBP, qui résout les équations de Navier Stokes compressibles pour les écoulements turbulents, est utilisé pour simuler le procédé grâce à une méthodologie numérique adaptée. En particulier, les effets des pertes de charge et du transfert thermique sur la conversion chimique sont comparés pour un réacteur lisse et un réacteur nervuré afin de quantifier l’impact de la rugosité de paroi dans des conditions d’utilisation industrielles. Une méthodologie d’optimisation du design des réacteurs, basée sur plusieurs simulations numériques et les processus Gaussiens, est finalement mise au point et utilisée pour aboutir à un design de réacteur de craquage thermique innovant, maximisant le rendement chimique / Thermal cracking is an industrial process sensitive to both temperature and pressure operating conditions. The use of internally ribbed reactors is a passive method to enhance the chemical selectivity of the process, thanks to a significant increase of heat transfer. However, this method also induces an increase in pressure loss, which is damageable to the chemical yield and must be quantified. Because of the complexity of turbulence and chemical kinetics, and as detailed experimental measurements are difficult to conduct, the real advantage of such geometries in terms of selectivity is however poorly known and difficult to assess. This work aims both at evaluating the real benefits of internally ribbed reactors in terms of chemical yields and at proposing innovative and optimized reactor designs. This is made possible using the Large Eddy Simulation (LES) approach, which allows to study in detail the reactive flow inside several reactor geometries. The AVBP code, which solves the Navier-Stokes compressible equations for turbulent flows, is used in order to simulate thermal cracking thanks to a dedicated numerical methodology. In particular, the effect of pressure loss and heat transfer on chemical conversion is compared for both a smooth and a ribbed reactor in order to conclude about the impact of wall roughness in industrial operating conditions. An optimization methodology, based on series of LES and Gaussian process, is finally developed and an innovative reactor design for thermal cracking applications, which maximizes the chemical yield, is proposed
23

Méthodes mathématiques et numériques pour la modélisation des déformations et l'analyse de texture. Applications en imagerie médicale / Mathematical and numerical methods for the modeling of deformations and image texture analysis. Applications in medical imaging

Chesseboeuf, Clément 23 November 2017 (has links)
Nous décrivons une procédure numérique pour le recalage d'IRM cérébrales 3D. Le problème d'appariement est abordé à travers la distinction usuelle entre le modèle de déformation et le critère d'appariement. Le modèle de déformation est celui de l'anatomie computationnelle, fondé sur un groupe de difféomorphismes engendrés en intégrant des champs de vecteurs. Le décalage entre les images est évalué en comparant les lignes de niveau de ces images, représentées par un courant différentiel dans le dual d'un espace de champs de vecteurs. Le critère d'appariement obtenu est non local et rapide à calculer. On se place dans l'ensemble des difféomorphismes pour rechercher une déformation reliant les deux images. Pour cela, on minimise le critère en suivant le principe de l'algorithme sous-optimal. L'efficacité de l'algorithme est renforcée par une description eulérienne et périodique du mouvement. L'algorithme est appliqué pour le recalage d'images IRM cérébrale 3d, la procédure numérique menant à ces résultats est intégralement décrite. Nos travaux concernent aussi l'analyse des propriétés de l'algorithme. Pour cela, nous avons simplifié l'équation représentant l'évolution de l'image et étudié l'équation simplifiée en utilisant la théorie des solutions de viscosité. Nous étudions aussi le problème de détection de rupture dans la variance d'un signal aléatoire gaussien. La spécificité de notre modèle vient du cadre infill, ce qui signifie que la distribution des données dépend de la taille de l'échantillon. L'estimateur de l'instant de rupture est défini comme le point maximisant une fonction de contraste. Nous étudions la convergence de cette fonction et ensuite la convergence de l'estimateur associé. L'application la plus directe concerne l'estimation de changement dans le paramètre de Hurst d'un mouvement brownien fractionnaire. L'estimateur dépend d'un paramètre p > 0 et nos résultats montrent qu'il peut être intéressant de choisir p < 2. / We present a numerical procedure for the matching of 3D MRI. The problem of image matching is addressed through the usual distinction between the deformation model and the matching criterion. The deformation model is based on the theory of computational anatomy and the set of deformations is a group of diffeomorphisms generated by integrating vector fields. The discrepancy between the two images is evaluated through comparisons of level lines represented by a differential current in the dual of a space of vector fields. This representation leads to a quickly computable non-local criterion. Then, the optimisation method is based on the minimization of the criterion following the idea of the so-called sub-optimal algorithm. We take advantage of the eulerian and periodical description of the algorithm to get an efficient numerical procedure. This algorithm can be used to deal with 3d MR images and numerical experiences are presented. In an other part, we focus on theoretical properties of the algorithm. We begin by simplifying the equation representing the evolution of the deformed image and we use the theory of viscosity solutions to study the simplified equation. The second issue we are interested in is the change-point estimation for a gaussian sequence with change in the variance parameter. The main feature of our model is that we work with infill data and the nature of the data can evolve jointly with the size of the sample. The usual approach suggests to introduce a contrast function and using the point of its maximum as a change-point estimator. We first get an information about the asymptotic fluctuations of the contrast function around its mean function. Then, we focus on the change-point estimator and more precisely on the convergence of this estimator. The most direct application concerns the detection of change in the Hurst parameter of a fractional brownian motion. The estimator depends on a parameter p > 0, generalizing the usual choice p = 2. We present some results illustrating the advantage of a parameter p < 2.
24

Modèles de substitution spatio-temporels et multifidélité : Application à l'ingénierie thermique / Spatio-temporal and multifidelity surrogate models : Application in thermal engineering

De lozzo, Matthias 03 December 2013 (has links)
Cette thèse porte sur la construction de modèles de substitution en régimes transitoire et permanent pour la simulation thermique, en présence de peu d'observations et de plusieurs sorties.Nous proposons dans un premier temps une construction robuste de perceptron multicouche bouclé afin d'approcher une dynamique spatio-temporelle. Ce modèle de substitution s'obtient par une moyennisation de réseaux de neurones issus d'une procédure de validation croisée, dont le partitionnement des observations associé permet d'ajuster les paramètres de chacun de ces modèles sur une base de test sans perte d'information. De plus, la construction d'un tel perceptron bouclé peut être distribuée selon ses sorties. Cette construction est appliquée à la modélisation de l'évolution temporelle de la température en différents points d'une armoire aéronautique.Nous proposons dans un deuxième temps une agrégation de modèles par processus gaussien dans un cadre multifidélité où nous disposons d'un modèle d'observation haute-fidélité complété par plusieurs modèles d'observation de fidélités moindres et non comparables. Une attention particulière est portée sur la spécification des tendances et coefficients d'ajustement présents dans ces modèles. Les différents krigeages et co-krigeages sont assemblés selon une partition ou un mélange pondéré en se basant sur une mesure de robustesse aux points du plan d'expériences les plus fiables. Cette approche est employée pour modéliser la température en différents points de l'armoire en régime permanent.Nous proposons dans un dernier temps un critère pénalisé pour le problème de la régression hétéroscédastique. Cet outil est développé dans le cadre des estimateurs par projection et appliqué au cas particulier des ondelettes de Haar. Nous accompagnons ces résultats théoriques de résultats numériques pour un problème tenant compte de différentes spécifications du bruit et de possibles dépendances dans les observations. / This PhD thesis deals with the construction of surrogate models in transient and steady states in the context of thermal simulation, with a few observations and many outputs.First, we design a robust construction of recurrent multilayer perceptron so as to approach a spatio-temporal dynamic. We use an average of neural networks resulting from a cross-validation procedure, whose associated data splitting allows to adjust the parameters of these models thanks to a test set without any information loss. Moreover, the construction of this perceptron can be distributed according to its outputs. This construction is applied to the modelling of the temporal evolution of the temperature at different points of an aeronautical equipment.Then, we proposed a mixture of Gaussian process models in a multifidelity framework where we have a high-fidelity observation model completed by many observation models with lower and no comparable fidelities. A particular attention is paid to the specifications of trends and adjustement coefficients present in these models. Different kriging and co-krigings models are put together according to a partition or a weighted aggregation based on a robustness measure associated to the most reliable design points. This approach is used in order to model the temperature at different points of the equipment in steady state.Finally, we propose a penalized criterion for the problem of heteroscedastic regression. This tool is build in the case of projection estimators and applied with the Haar wavelet. We also give some numerical results for different noise specifications and possible dependencies in the observations.
25

Extending standard outdoor noise propagation models to complex geometries / Extension des modèles standards de propagation du bruit extérieur pour des géométries complexes

Kamrath, Matthew 28 September 2017 (has links)
Les méthodes d'ingénierie acoustique (e.g. ISO 9613-2 ou CNOSSOS-EU) approchent efficacement les niveaux de bruit générés par les routes, les voies ferrées et les sources industrielles en milieu urbain. Cependant, ces approches d'ingénierie sont limitées à des géométries de forme simple, le plus souvent de section rectangulaire. Ce mémoire développe donc, et valide, une approche hybride permettant l'extension des méthodes d'ingénierie à des formes plus complexes, en introduisant un terme d’atténuation supplémentaire qui représente l'effet d'un objet réel comparé à un objet simple.Le calcul de cette atténuation supplémentaire nécessite des calculs de référence, permettant de quantifier la différence entre objets simple et complexe. Dans la mesure où il est trop onéreux, numériquement, '’effectuer ce calcul pour tous les chemins de propagation, l'atténuation supplémentaire est obtenue par interpolation de données stockées dans un tableau et évaluées pour un large jeu de positions de sources, de récepteurs et de fréquences. Dans notre approche, le calcul de référence utilise la méthode BEM en 2.5D, et permet ainsi de produire les niveaux de référence pour les géométries simple et complexe, tout en tabulant leur écart. Sur le principe, d'autres approches de référence pourraient être utilisées.Ce travail valide cette approche hybride pour un écran en forme de T avec un sol rigide, un sol absorbant et un cas avec bâtiments. Ces trois cas démontrent que l'approche hybride est plus précise que l'approche d’ingénierie standard dans des cas complexes. / Noise engineering methods (e.g. ISO 9613-2 or CNOSSOS-EU) efficiently approximate sound levels from roads, railways, and industrial sources in cities. However, engineering methods are limited to only simple box-shaped geometries. This dissertation develops and validates a hybrid method to extend the engineering methods to more complicated geometries by introducing an extra attenuation term that represents the influence of a real object compared to a simplified object.Calculating the extra attenuation term requires reference calculations to quantify the difference between the complex and simplified objects. Since performing a reference computation for each path is too computationally expensive, the extra attenuation term is linearly interpolated from a data table containing the corrections for many source and receiver positions and frequencies. The 2.5D boundary element method produces the levels for the real complex geometry and a simplified geometry, and subtracting these levels yields the corrections in the table.This dissertation validates this hybrid method for a T-barrier with hard ground, soft ground, and buildings. All three cases demonstrate that the hybrid method is more accurate than standard engineering methods for complex cases.
26

Optimisation de dispositifs de contrôle actif pour des écoulements turbulents décollés / Optimization of active control devices for separated turbulent flows

Labroquère, Jérémie 20 November 2014 (has links)
Les stratégies de contrôle d’écoulement, telles que le soufflage / aspiration, ont prouvé leur efficacité à modifier les caractéristiques d’écoulement à des fins diverses en cas de configurations usuellement simples. Pour étendre cette approche sur des cas industriels, la simulation de dispositifs à échelle réelle et l’optimisation des paramètres de contrôle s’avèrent nécessaires. L’objectif de cette thèse est de mettre en place une procédure d’optimisation pour résoudre cette catégorie de problèmes. Dans cette perspective, l’organisation de la thèse est divisé en trois parties. Tout d’abord, le développement et la validation d’un solveur d’écoulement turbulent compressible instationnaire, résolvant les équations de Navier-Stokes moyennées (RANS) dans le cadre d’une discrétisation mixte de type éléments finis / volumes finis (MEV) sont présentés. Une attention particulière est portée sur la mise en œuvre de modèles numériques de jet synthétique à l’aide de simulations sur une plaque plane. Le deuxième axe de la thèse décrit et valide la mise en œuvre d’une méthode d’optimisation globale basée sur un modèle réduit du type processus gaussien (GP), incluant une approche de filtrage d’erreurs numériques liées aux observations. Cette méthode EGO (Efficient Global Optimization), est validée sur des cas analytiques bruités 1D et 2D. Pour finir, l’optimisation de paramètres de contrôle de jet synthétique sur deux cas test pertinents pour les industriels : un profil d’aile NACA0015, avec objectif de maximiser la portance moyenne et une marche descendante avec objectif de minimiser la longueur de recirculation moyenne. / Active flow control strategies, such as oscillatory blowing / suction, have proved their efficiency to modify flow characteristics for various purposes (e.g. skin friction reduction, separation delay, etc.) in case of rather simple configurations. To extend this approach to industrial cases, the simulation of a large number of devices at real scale and the optimization of parameters are required. The objective of this thesis is to set up an optimization procedure to solve this category of problems. In this perspective, the organization of the thesis is split into three main parts. First, the development and validation of an unsteady compressible turbulent flow solver using the Reynolds-Averaged Navier-Stokes (RANS) using a Mixed finite-Element/finite-Volume (MEV) framework is described. A particular attention is drawn on synthetic jet numerical model implementation by comparing different models in the context of a simulation over a flat plate. The second axis of the thesis describes and validates the implementation of a Gaussian Process surrogate model based global optimization method including an approach to account for some numerical errors during the optimization. This EGO (Efficient Global Optimization) method, is validated on noisy 1D and 2D analytical test cases. Finally, the optimization of two industrial relevant test cases using a synthetic jet actuator are considered: a turbulent flow over a NACA0015 for which the time-averaged lift is regarded as the control criterion to be maximized, and an incompressible turbulent flow over a Backward Facing Step for which the time-averaged recirculation length is minimized.
27

Analysis of the human corneal shape with machine learning

Bouazizi, Hala 01 1900 (has links)
Cette thèse cherche à examiner les conditions optimales dans lesquelles les surfaces cornéennes antérieures peuvent être efficacement pré-traitées, classifiées et prédites en utilisant des techniques de modélisation géométriques (MG) et d’apprentissage automatiques (AU). La première étude (Chapitre 2) examine les conditions dans lesquelles la modélisation géométrique peut être utilisée pour réduire la dimensionnalité des données utilisées dans un projet d’apprentissage automatique. Quatre modèles géométriques ont été testés pour leur précision et leur rapidité de traitement : deux modèles polynomiaux (P) – polynômes de Zernike (PZ) et harmoniques sphériques (PHS) – et deux modèles de fonctions rationnelles (R) : fonctions rationnelles de Zernike (RZ) et fonctions rationnelles d’harmoniques sphériques (RSH). Il est connu que les modèles PHS et RZ sont plus précis que les modèles PZ pour un même nombre de coefficients (J), mais on ignore si les modèles PHS performent mieux que les modèles RZ, et si, de manière plus générale, les modèles SH sont plus précis que les modèles R, ou l’inverse. Et prenant en compte leur temps de traitement, est-ce que les modèles les plus précis demeurent les plus avantageux? Considérant des valeurs de J (nombre de coefficients du modèle) relativement basses pour respecter les contraintes de dimensionnalité propres aux taches d’apprentissage automatique, nous avons établi que les modèles HS (PHS et RHS) étaient tous deux plus précis que les modèles Z correspondants (PZ et RR), et que l’avantage de précision conféré par les modèles HS était plus important que celui octroyé par les modèles R. Par ailleurs, les courbes de temps de traitement en fonction de J démontrent qu’alors que les modèles P sont traités en temps quasi-linéaires, les modèles R le sont en temps polynomiaux. Ainsi, le modèle SHR est le plus précis, mais aussi le plus lent (un problème qui peut en partie être remédié en appliquant une procédure de pré-optimisation). Le modèle ZP était de loin le plus rapide, et il demeure une option intéressante pour le développement de projets. SHP constitue le meilleur compromis entre la précision et la rapidité. La classification des cornées selon des paramètres cliniques a une longue tradition, mais la visualisation des effets moyens de ces paramètres sur la forme de la cornée par des cartes topographiques est plus récente. Dans la seconde étude (Chapitre 3), nous avons construit un atlas de cartes d’élévations moyennes pour différentes variables cliniques qui pourrait s’avérer utile pour l’évaluation et l’interprétation des données d’entrée (bases de données) et de sortie (prédictions, clusters, etc.) dans des tâches d’apprentissage automatique, entre autres. Une base de données constituée de plusieurs milliers de surfaces cornéennes antérieures normales enregistrées sous forme de matrices d’élévation de 101 by 101 points a d’abord été traitée par modélisation géométrique pour réduire sa dimensionnalité à un nombre de coefficients optimal dans une optique d’apprentissage automatique. Les surfaces ainsi modélisées ont été regroupées en fonction de variables cliniques de forme, de réfraction et de démographie. Puis, pour chaque groupe de chaque variable clinique, une surface moyenne a été calculée et représentée sous forme de carte d’élévations faisant référence à sa SMA (sphère la mieux ajustée). Après avoir validé la conformité de la base de donnée avec la littérature par des tests statistiques (ANOVA), l’atlas a été vérifié cliniquement en examinant si les transformations de formes cornéennes présentées dans les cartes pour chaque variable étaient conformes à la littérature. C’était le cas. Les applications possibles d’un tel atlas sont discutées. La troisième étude (Chapitre 4) traite de la classification non-supervisée (clustering) de surfaces cornéennes antérieures normales. Le clustering cornéen un domaine récent en ophtalmologie. La plupart des études font appel aux techniques d’extraction des caractéristiques pour réduire la dimensionnalité de la base de données cornéennes. Le but est généralement d’automatiser le processus de diagnostique cornéen, en particulier en ce qui a trait à la distinction entre les cornées normales et les cornées irrégulières (kératocones, Fuch, etc.), et dans certains cas, de distinguer différentes sous-classes de cornées irrégulières. L’étude de clustering proposée ici se concentre plutôt sur les cornées normales afin de mettre en relief leurs regroupements naturels. Elle a recours à la modélisation géométrique pour réduire la dimensionnalité de la base de données, utilisant des polynômes de Zernike, connus pour leur interprétativité transparente (chaque terme polynomial est associé à une caractéristique cornéenne particulière) et leur bonne précision pour les cornées normales. Des méthodes de différents types ont été testées lors de prétests (méthodes de clustering dur (hard) ou souple (soft), linéaires or non-linéaires. Ces méthodes ont été testées sur des surfaces modélisées naturelles (non-normalisées) ou normalisées avec ou sans traitement d’extraction de traits, à l’aide de différents outils d’évaluation (scores de séparabilité et d’homogénéité, représentations par cluster des coefficients de modélisation et des surfaces modélisées, comparaisons statistiques des clusters sur différents paramètres cliniques). Les résultats obtenus par la meilleure méthode identifiée, k-means sans extraction de traits, montrent que les clusters produits à partir de surfaces cornéennes naturelles se distinguent essentiellement en fonction de la courbure de la cornée, alors que ceux produits à partir de surfaces normalisées se distinguent en fonction de l’axe cornéen. La dernière étude présentée dans cette thèse (Chapitre 5) explore différentes techniques d’apprentissage automatique pour prédire la forme de la cornée à partir de données cliniques. La base de données cornéennes a d’abord été traitée par modélisation géométrique (polynômes de Zernike) pour réduire sa dimensionnalité à de courts vecteurs de 12 à 20 coefficients, une fourchette de valeurs potentiellement optimales pour effectuer de bonnes prédictions selon des prétests. Différentes méthodes de régression non-linéaires, tirées de la bibliothèque scikit-learn, ont été testées, incluant gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest neighbors, bagging, et multi-layer perceptron. Les prédicteurs proviennent des variables cliniques disponibles dans la base de données, incluant des variables géométriques (diamètre horizontal de la cornée, profondeur de la chambre cornéenne, côté de l’œil), des variables de réfraction (cylindre, sphère et axe) et des variables démographiques (âge, genre). Un test de régression a été effectué pour chaque modèle de régression, défini comme la sélection d’une des 256 combinaisons possibles de variables cliniques (les prédicteurs), d’une méthode de régression, et d’un vecteur de coefficients de Zernike d’une certaine taille (entre 12 et 20 coefficients, les cibles). Tous les modèles de régression testés ont été évalués à l’aide de score de RMSE établissant la distance entre les surfaces cornéennes prédites (les prédictions) et vraies (les topographies corn¬éennes brutes). Les meilleurs d’entre eux ont été validés sur l’ensemble de données randomisé 20 fois pour déterminer avec plus de précision lequel d’entre eux est le plus performant. Il s’agit de gradient boosting utilisant toutes les variables cliniques comme prédicteurs et 16 coefficients de Zernike comme cibles. Les prédictions de ce modèle ont été évaluées qualitativement à l’aide d’un atlas de cartes d’élévations moyennes élaborées à partir des variables cliniques ayant servi de prédicteurs, qui permet de visualiser les transformations moyennes d’en groupe à l’autre pour chaque variables. Cet atlas a permis d’établir que les cornées prédites moyennes sont remarquablement similaires aux vraies cornées moyennes pour toutes les variables cliniques à l’étude. / This thesis aims to investigate the best conditions in which the anterior corneal surface of normal corneas can be preprocessed, classified and predicted using geometric modeling (GM) and machine learning (ML) techniques. The focus is on the anterior corneal surface, which is the main responsible of the refractive power of the cornea. Dealing with preprocessing, the first study (Chapter 2) examines the conditions in which GM can best be applied to reduce the dimensionality of a dataset of corneal surfaces to be used in ML projects. Four types of geometric models of corneal shape were tested regarding their accuracy and processing time: two polynomial (P) models – Zernike polynomial (ZP) and spherical harmonic polynomial (SHP) models – and two corresponding rational function (R) models – Zernike rational function (ZR) and spherical harmonic rational function (SHR) models. SHP and ZR are both known to be more accurate than ZP as corneal shape models for the same number of coefficients, but which type of model is the most accurate between SHP and ZR? And is an SHR model, which is both an SH model and an R model, even more accurate? Also, does modeling accuracy comes at the cost of the processing time, an important issue for testing large datasets as required in ML projects? Focusing on low J values (number of model coefficients) to address these issues in consideration of dimensionality constraints that apply in ML tasks, it was found, based on a number of evaluation tools, that SH models were both more accurate than their Z counterparts, that R models were both more accurate than their P counterparts and that the SH advantage was more important than the R advantage. Processing time curves as a function of J showed that P models were processed in quasilinear time, R models in polynomial time, and that Z models were fastest than SH models. Therefore, while SHR was the most accurate geometric model, it was the slowest (a problem that can partly be remedied by applying a preoptimization procedure). ZP was the fastest model, and with normal corneas, it remains an interesting option for testing and development, especially for clustering tasks due to its transparent interpretability. The best compromise between accuracy and speed for ML preprocessing is SHP. The classification of corneal shapes with clinical parameters has a long tradition, but the visualization of their effects on the corneal shape with group maps (average elevation maps, standard deviation maps, average difference maps, etc.) is relatively recent. In the second study (Chapter 3), we constructed an atlas of average elevation maps for different clinical variables (including geometric, refraction and demographic variables) that can be instrumental in the evaluation of ML task inputs (datasets) and outputs (predictions, clusters, etc.). A large dataset of normal adult anterior corneal surface topographies recorded in the form of 101×101 elevation matrices was first preprocessed by geometric modeling to reduce the dimensionality of the dataset to a small number of Zernike coefficients found to be optimal for ML tasks. The modeled corneal surfaces of the dataset were then grouped in accordance with the clinical variables available in the dataset transformed into categorical variables. An average elevation map was constructed for each group of corneal surfaces of each clinical variable in their natural (non-normalized) state and in their normalized state by averaging their modeling coefficients to get an average surface and by representing this average surface in reference to the best-fit sphere in a topographic elevation map. To validate the atlas thus constructed in both its natural and normalized modalities, ANOVA tests were conducted for each clinical variable of the dataset to verify their statistical consistency with the literature before verifying whether the corneal shape transformations displayed in the maps were themselves visually consistent. This was the case. The possible uses of such an atlas are discussed. The third study (Chapter 4) is concerned with the use of a dataset of geometrically modeled corneal surfaces in an ML task of clustering. The unsupervised classification of corneal surfaces is recent in ophthalmology. Most of the few existing studies on corneal clustering resort to feature extraction (as opposed to geometric modeling) to achieve the dimensionality reduction of the dataset. The goal is usually to automate the process of corneal diagnosis, for instance by distinguishing irregular corneal surfaces (keratoconus, Fuch, etc.) from normal surfaces and, in some cases, by classifying irregular surfaces into subtypes. Complementary to these corneal clustering studies, the proposed study resorts mainly to geometric modeling to achieve dimensionality reduction and focuses on normal adult corneas in an attempt to identify their natural groupings, possibly in combination with feature extraction methods. Geometric modeling was based on Zernike polynomials, known for their interpretative transparency and sufficiently accurate for normal corneas. Different types of clustering methods were evaluated in pretests to identify the most effective at producing neatly delimitated clusters that are clearly interpretable. Their evaluation was based on clustering scores (to identify the best number of clusters), polar charts and scatter plots (to visualize the modeling coefficients involved in each cluster), average elevation maps and average profile cuts (to visualize the average corneal surface of each cluster), and statistical cluster comparisons on different clinical parameters (to validate the findings in reference to the clinical literature). K-means, applied to geometrically modeled surfaces without feature extraction, produced the best clusters, both for natural and normalized surfaces. While the clusters produced with natural corneal surfaces were based on the corneal curvature, those produced with normalized surfaces were based on the corneal axis. In each case, the best number of clusters was four. The importance of curvature and axis as grouping criteria in corneal data distribution is discussed. The fourth study presented in this thesis (Chapter 5) explores the ML paradigm to verify whether accurate predictions of normal corneal shapes can be made from clinical data, and how. The database of normal adult corneal surfaces was first preprocessed by geometric modeling to reduce its dimensionality into short vectors of 12 to 20 Zernike coefficients, found to be in the range of appropriate numbers to achieve optimal predictions. The nonlinear regression methods examined from the scikit-learn library were gradient boosting, Gaussian process, kernel ridge, random forest, k-nearest neighbors, bagging, and multilayer perceptron. The predictors were based on the clinical variables available in the database, including geometric variables (best-fit sphere radius, white-towhite diameter, anterior chamber depth, corneal side), refraction variables (sphere, cylinder, axis) and demographic variables (age, gender). Each possible combination of regression method, set of clinical variables (used as predictors) and number of Zernike coefficients (used as targets) defined a regression model in a prediction test. All the regression models were evaluated based on their mean RMSE score (establishing the distance between the predicted corneal surfaces and the raw topographic true surfaces). The best model identified was further qualitatively assessed based on an atlas of predicted and true average elevation maps by which the predicted surfaces could be visually compared to the true surfaces on each of the clinical variables used as predictors. It was found that the best regression model was gradient boosting using all available clinical variables as predictors and 16 Zernike coefficients as targets. The most explicative predictor was the best-fit sphere radius, followed by the side and refractive variables. The average elevation maps of the true anterior corneal surfaces and the predicted surfaces based on this model were remarkably similar for each clinical variable.

Page generated in 0.0747 seconds