• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 38
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemical Structure - Nonlinear Optical Property Relationships For A Series Of Two-photon Absorbing Fluorene Molecules

Hales, Joel McCajah 01 January 2004 (has links)
This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are promising candidates for 2PA applications because their material properties can be tailored through molecular engineering thereby facilitating optimization of their nonlinear optical properties. Fluorene derivatives are particularly interesting since they possess high photochemical stability for organic molecules and are generally strongly fluorescent. By systematically altering the structural properties in a series of fluorenyl molecules, we have determined how these changes affect their two-photon absorbing capabilities. This was accomplished through characterization of both the strength and location of their 2PA spectra. In order to ensure the validity of these results, three separate nonlinear characterization techniques were employed: two-photon fluorescence spectroscopy, white-light continuum pump-probe spectroscopy, and the Z-scan technique. In addition, full linear spectroscopic characterization was performed on these molecules along with supplementary quantum chemical calculations to obtain certain molecular properties that might impact the nonlinearity. Different designs in chemical architecture allowed investigation of the effects of symmetry, solvism, donor-acceptor strengths, conjugation length, and multi-branched geometries on the two-photon absorbing properties of these molecules. In addition, the means to enhance 2PA via intermediate state resonances was investigated. To provide plausible explanations for the experimentally observed trends, a conceptually simple three level model was employed. The subsequent correlations found between chemical structure and the linear and nonlinear optical properties of these molecules provided definitive conclusions on how to properly optimize their two-photon absorbing capabilities. The resulting large nonlinearities found in these molecules have already shown promise in a variety of the aforementioned applications.
12

Separation of Single-Walled Carbon Nanotubes By Electronic Type Using Conjugated Polymers

Rice, Nicole 11 1900 (has links)
Since their discovery over two decades ago, single-walled carbon nanotubes (SWNTs) have become one of the most investigated nanomaterials in materials science. Their exotic optical, electrical, thermal and mechanical properties afford them amazing potential in a variety of different fields. Current SWNT synthetic processes produce heterogeneous mixtures of both semiconducting and metallic SWNTs. The mixed electronic nature of these materials, combined with their limited solubility, has significantly hampered the realization of many applications and necessitates the development of post-synthetic purification techniques. Conjugated polymers offer a significant advantage over other proposed strategies in that not only do they provide a cheaper and scalable route towards the isolation of SWNTs, but they also allow for the preparation of materials with novel properties. Polyfluorenes have been extensively investigated in the literature due to their preference towards dispersing semiconducting SWNTs; however, these dispersions are often quite dilute, and the polyfluorene structure is incompatible with certain device applications for SWNTs. Poly(2,7-carbazole)s offer a viable alternative to polyfluorenes for the purification of bulk SWNT material. At the time of this thesis, there have been relatively few reports investigating the interactions of poly(2,7-carbazole)s with SWNTs, and the majority of examples in the literature have suffered from poor stability and complex dispersal procedures due to the inherent insolubility of the 2,7-carbazole structure. The work presented in this thesis involved the preparation and characterization of a novel poly(2,7-carbazole) structure that displayed excellent solubility in a variety of organic solvents, allowing for the preparation of extremely stable and relatively concentrated dispersions of SWNTs. Thorough characterization of the supramolecular complexes through absorbance, photoluminescence and Raman spectroscopies determined that this polymer preferentially disperses semiconducting SWNTs. A second objective of this work was to investigate how modification of various parameters (including polymer structure, molecular weight and the type of SWNTs) can influence the quality of the resultant composite dispersions. One important study performed was to investigate how the electronic nature of the polymer backbone can affect the separation of SWNTs by electronic type. We demonstrate for the first time that by incorporating an electron-poor functionality into a polyfluorene it is possible to change from dispersing only semiconducting SWNTs to solubilizing both electronic types. This investigation highlights the potential importance of incorporating electron-poor functionalities in the development of polymeric systems that can selectively discriminate metallic SWNTs, which remains a challenging endeavor at the time of this thesis publication. / Thesis / Doctor of Philosophy (PhD)
13

REINFORCEMENT OF MELT-BLEND COMPOSITES; POLYMER-FILLER INTERACTIONS, PHASE BEHAVIOR, AND STRUCTURE-PROPERTY RELATIONSHIPS

Henry, Milliman W. January 2011 (has links)
No description available.
14

REINFORCEMENT OF MELT-BLEND COMPOSITES; POLYMER-FILLER INTERACTIONS, PHASE BEHAVIOR, AND STRUCTURE-PROPERTY RELATIONSHIPS

Milliman, Henry 31 January 2012 (has links)
No description available.
15

Modeling of mechanical properties in alpha/beta-titanium alloys

Kar, Sujoy Kumar 01 August 2005 (has links)
No description available.
16

Structure-Property-Transfection Relationships in Polycation-mediated Non-viral DNA Delivery

Layman, John 12 December 2008 (has links)
Non-viral gene delivery agents, such as cationic polyelectrolytes, are attractive replacements to viruses due to the absence of potential immunogenic risk and the ability to tune their macromolecular structure. Although non-viral vectors possess numerous design advantages, several investigators have shown that transfer efficiencies are considerably lower when compared to viral vectors. The work reported in this dissertation aims to fundamentally understand the underlying structure-transfection relationships involved in polycation-mediated gene delivery. Efforts focused on the influence of molecular weight, macromolecular topology, carbohydrate modifications, and charge density on the overall transfection activity in vitro. Several families of polycations were synthesized in order to correlate chemo-physical characterization with transfection results. Results revealed that seemingly small changes in the structure of cationic polyelectrolytes can have profound consequences on their transfection activity. / Ph. D.
17

Cresol Novolac/Epoxy Networks: Synthesis, Properties, and Processability

Lin-Gibson, Sheng 27 April 2001 (has links)
Void-free phenolic networks have been prepared by the reaction of phenolic novolac resins with various diepoxides. The stoichiometric ratio can be adjusted to achieve networks with good mechanical properties while maintaining excellent flame retardance. A series of linear, controlled molecular weight, 2,6-dimethylphenol endcapped cresol novolac resins have been synthesized and characterized. The molecular weight control was achieved by adjusting the stoichiometric ratio of cresol to 2,6-dimethylphenol and using an excess of formaldehyde. A dynamic equilibrium reaction was proposed to occur which allowed the targeted molecular weight to be obtained. A 2000 g/mol ortho-cresol novolac resin was crosslinked by a diepoxide oligomer and by an epoxidized phenolic oligomer in defined weight ratios and the structure-property relationships were investigated. The networks comprised of 60 or 70 weight percent cresol novolac exhibited improved fracture toughness, high glass transition temperatures, low water uptake, and good flame retardance. The molecular weights between crosslinks were also determined for these networks. The stress relaxation moduli were measured as a function of temperature near the glass transition temperatures. Crosslink densities as well as the ability to hydrogen bond affect the glassy moduli of these networks. Rheological measurements indicated that cresol novolac/epoxy mixtures have an increased processing window compared to phenolic novolac/epoxy mixtures. Maleimide functionalities were incorporated into cresol novolac oligomers, and these were crosslinked with bisphenol-A epoxy. The processability of oligomers containing thermally labile maleimides were limited to lower temperatures. However, sufficiently high molecular weight oligomers were necessary to obtain good network mechanical properties. Networks prepared from 1250 g/mol cresol novolac containing maleimide functionilities and epoxy exhibited good network properties and could be processed easily. Latent triphenylphosphine catalysts which are inert at processing temperatures (~140°C) but possess significant catalytic activity at cure temperatures 180-220°C were necessary for efficient composite fabrication using phenolic novolac/epoxy matrix resins. Both sequestered catalyst particles and sizings were investigated for this purpose. Phenolic novolac/epoxy mixtures containing sequestered catalysts exhibited significantly longer processing time windows than those containing free catalysts. The resins also showed accelerated reaction rates in the presence of sequestered catalysts at cure temperatures. Trihexylamine salt of a poly(amic acid) was sized onto reinforcing carbon fibers and the composite properties indicated that fast phenolic novolac/epoxy cure could be achieved in its presence. / Ph. D.
18

Poly(acrylonitrile/methyl acrylate) copolymers and clay nanocomposites : structural and property relationships

Zengeni, Eddson 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2009. / Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Polymer Science) at University of Stellenbosch. / ENGLISH ABSTRACT: The preparation of poly(acrylonitrile/methyl acrylate) [poly(AN-co-MA)] copolymers and poly(AN-co-MA)/clay nanocomposites, via emulsion polymerization, their characterisation, and the relationships between their molecular structures and physical properties are described. The copolymer composition was varied, and the properties of the products were analysed and correlated to copolymer composition. The free volume properties of the copolymer were dependent on the glass transition temperature (Tg), which is dependant on the copolymer composition. The copolymer crystallinity decreased with increasing MA content. The decrease in crystallinity and increase in both o-Ps lifetime and o-Ps intensity with decreasing Tg was caused by the enhanced chain mobility brought about by the incorporation of methyl acrylate. The poly(acrylonitrile-co-methyl acrylate)/clay nanocomposites with 60% AN:40% MA (mol:mol) ratio were prepared using montmorillonite clay modified via adsorption, using 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS), via in-situ intercalation polymerization. The poly(AN-co-MA)/clay nanocomposites with different clay loadings showed no difference in morphology. They exhibited improved thermomechanical properties and higher thermal stability than the neat copolymers. The melt rheology results of these nanocomposites showed an improved storage modulus as well as increased shear thinning behaviour with increasing clay content. However, the nanocomposites exhibited long-time relaxation behaviour and their chemical structures evolved during analysis. This was attributed to cyclisation reactions taking place at the temperature used during the oscillatory tests. The sorption isotherms of water vapour in these nanocomposites followed a dualmode sorption behaviour (BET type II mode). Hysteresis was observed in sorption/desorption isotherms of these nanocomposites. The equilibrium water uptake was higher in the nanocomposites compared to the neat copolymers, and it increased with increasing clay content, especially at high water activities (0.8). Although diffusion and permeability decreased with increasing clay content the solubility increased due to the hydrophilic nature of the clay. Despite the decrease in diffusion and permeability parameters the free volume hole radius of the nanocomposites remained constant, but a slight decrease in free volume hole number was observed. / AFRIKAANSE OPSOMMING: Die bereiding van poli(akrilonitriel/metielakrilaat) [poli(AN-ko-MA)] kopolimere en poli(AN-ko-MA)/klei nanosamestellings deur middel van emulsiepolimerisasie, hul karakterisering asook die ooreenkoms tussen hul molekulêre strukture en fisiese eienskappe is beskryf. Die kopolimeersamestelling is gevarieer, en eienskappe is geanaliseer en dan gekorreleer met die kopolimeersamestelling. Die vrye-volume eienskappe van die kopolimeer was afhanklik van die glasoorgangstemperatuur (Tg) wat weer afhanklik is van die kopolimeersamestealling. Die kristalliniteit van die kopolimeer het verminder met die hoeveelheid MA teenwoordig. Die afname in kristalliniteit en toename in beide die o-Ps leeftyd en o-Ps intensiteit met afname in Tg is veroorsaak deur die beter kettingbeweegbaarheid wat veroorsaak is deur die byvoeging van metielakrilaat. Die poli(akrilonitriel-ko-metielakrilaat)/klei nanosamestellings met 60% AN:40% MA (mol:mol) verhouding is berei deur die gebruik van montmorillonietklei, gemodifiseer deur die adsorpsie van 2-akrielamido-2-metiel-1-propaansulfoonsuur (AMPS) deur middel van 'n in-situ interkaleringspolimerisasie. Die poli(AN-ko-MA)/klei nanosamestellings het, ten spyte van die verskillende hoeveelhede klei wat gebruik is, geen verandering in morfologie getoon nie. Hulle het wel beter termodinamiese eienskappe en hoër termiese stabiliteit as die oorspronklike kopolimere getoon. Die smeltreologie resultate van hierdie nanosamestellings het ‘n beter stoormodulus getoon, sowel as toenemende skuifverdunningsgedrag met 'n verhoogde klei inhoud. Tog het die nanosamestellings lang tyd-ontspanningsgedrag getoon en die chemiese struktuur het verander tydens analise. Dit word toegeskryf aan die sikliese reaksies wat plaasvind by die temperatuur wat gebruik is tydens die ossillatoriese toetse. Die sorpsie isoterme van waterdamp in hierdie nanosamestellings het ‘n dubbel-styl sorpsiegedrag gevolg (BET tipe II styl). Histerese is waargeneem in sorpsie/desorpsie isoterme van hierdie nanosamestellings. Die ewewig in wateropname van die nanosamestellings was hoër as vir dié van die oorspronklike kopolimere en dit het toegeneem met 'n toenemende klei inhoud, veral by hoë humiditeit (0.8). Al het die diffusie en deurlaatbaarheid afgeneem met 'n toename in die klei inhoud, het die oplosbaarheid toegeneem as gevolg van die hidrofiliese karakter van die klei. Ten spyte van die afname in diffusie en deurlaatbaarheidsparameters, het die radius van die vryevolume openinge van die nanosamestellings konstant gebly, maar ‘n klein afname in die aantal vrye-volume openinge is gevind.
19

Etude de la diffusion de l’eau dans une jonction HTA / Water diffusion study in HTA accessory

Lacuve, Maxime 18 March 2019 (has links)
Les élastomères à base d’Ethylène Propylène Diène Monomère (EPDM) sont utilisés dans les accessoires du réseau de distribution d’électricité sous-terrain pour assurer l’isolation des jonctions de câbles. En effet, la structure chimique de ce polymère est apolaire et induit donc l’hydrophobicité désirée pour cette application. Cependant, en conditions de service, la thermo-oxydation provoque l’incorporation d’atomes d’oxygène (formation de fonctions hydrophiles) aux chaines EPDM. Ainsi, l’objectif de cette thèse était d’étudier l’influence du vieillissement thermo-oxydant sur les propriétés de transport d’eau dans les accessoires en EPDM. Trois formulations d’EPDM sans charges (une réticulée au peroxyde et deux autres réticulées au soufre) ainsi que six formulations industrielles (toutes réticulées au soufre) ont subi un vieillissement thermique accéléré en étuve ventilée d’air entre 90 et 190°C. L’analyse multi-échelle (combinant plusieurs techniques expérimentales) a permis de mettre en évidence les modifications structurales dans les matrices EPDM et d’établir des corrélations entre les propriétés physico-chimiques mesurées au cours du vieillissement. Les propriétés de transport d’eau ont ensuite été caractérisées entre 30 et 70°C et entre 10 et 100 % HR à l’état initial et pour différents états d’oxydation. Ces résultats ont permis d’établir des relations structure/propriété entre les propriétés de transport d’eau et l’incorporation d’oxygène, mais aussi de simuler l’influence cruciale des charges. / Ethylene Propylene Diene Monomer (EPDM) based elastomers are used in the accessories of the underground electrical distribution network for guaranteeing the insulation of cable junctions. Indeed, the chemical structure of this apolar polymer gives the desired hydrophobicity for this application. However, in service conditions, thermo-oxidation causes an incorporation of oxygen atoms (formation of hydrophilic function) into EPDM chains. Thus, this PhD thesis aimed at studying the influence of thermal oxidative ageing on the water transport properties into EPDM accessories. Three unfilled formulations (one peroxide crosslinked and two sulfur vulcanized) and six industrial formulations (all vulcanized) were submitted to an accelerated thermal ageing in air-ventilated ovens between 90 and 190 °C. The multi-scale analysis (combining several experimental techniques) allowed highlighting the structural changes in EPDM matrices and establishing correlations between the physico-chemical properties measured during ageing. Then, the water transport properties were characterized between 30 and 70 °C and between 10 and 100 %RH at the initial state and for different oxidation states. These results allowed establishing structure/property relationships between water transport properties and oxygen incorporation, but also to simulate the crucial influence of fillers.
20

Estudo do mecanismo de ação antirradicalar de betalaínas / Study of the mechanism of antiradical action of betalains

Nakashima, Karina Kinuyo 21 December 2015 (has links)
Foi preparada uma série de quatro betalaínas com o objetivo de determinar o efeito da metilação do nitrogênio imínico e da presença de uma hidroxila fenólica na posição 3 do anel aromático sobre a estabilidade e propriedades antirradicalares, fotofísicas e redox desta classe de pigmentos vegetais. O estudo destes compostos, chamados de m-betalainofenol, N-metil-m-betalainofenol, fenilbetalaína e N-metil-fenilbetalaína, revelou que os derivados metilados apresentam um deslocamento hipsocrômico sutil dos máximos de absorção e fluorescência em relação aos compostos não metilados. Os deslocamentos de Stokes são maiores em cerca de 4 kJ mol-1 para os derivados metilados e os rendimentos quânticos de fluorescência cerca de três vezes menores. A hidrólise destas betalaínas foi investigada na faixa de pH entre 3 e 7. Todas as betalaínas são mais persistentes em pH = 6 e a metilação da porção imínica aumenta significativamente a estabilidade da betalaína em meio aquoso. A presença da porção fenólica, em comparação a um grupo fenila, não afeta as propriedades fotofísicas dos compostos e tem um efeito menos pronunciado do que o da metilação sobre a estabilidade destes em meio aquoso. O comportamento eletroquímico dos compostos foi estudado por voltametria cíclica, nas mesmas condições de pH. A N-metilação foi novamente mais significativa do que a hidroxilação, provocando aumento de até 200 mV no potencial de pico anódico. O aumento do pH diminuiu o potencial de pico anódico dos quatro compostos, com uma razão entre prótons e elétrons igual a 1 para a maioria dos picos. A capacidade antirradicalar foi quantificada pelo ensaio colorimétrico TEAC baseado na redução de ABTS•+. Os dois derivados N-metilados apresentaram, em média, o mesmo valor de TEAC, apesar de um ser fenólico e o outro não. Já entre os não metilados, que têm TEAC de 2 a 3 unidades inferior à dos outros, a presença do fenol provoca elevação da capacidade antirradicalar. Os resultados sugerem a participação dos elétrons do anel 1,2,3,4-tetraidropiridínico, acoplados ao próton do nitrogênio imínico na ação antirradicalar de betalaínas. / A series of four artificial betalains was prepared in order to determine the effect of imine nitrogen methylation and phenyl hydroxylation (position 3) over stability and antiradical, photophysical and redox properties of this class of natural pigments. The study of m-betalainophenol, N-methyl-m-betalainophenol, phenylbetalain and N-methylbetalain, revealed that the methylated compounds present a small hypsochromic shift of both absorption and fluorescence maxima when compared to the others. The Stokes shifts are around 4 kJ mol-1 higher for methylated betalains, whereas the quantum yields are approximately three times lower. Their hydrolysis was investigated between pH 3 and 7. All compounds are more persistent in pH = 6, and imine methylation increases the overall stability in aqueous medium. The presence of a phenol group, in comparison with a phenyl substituent, has a minor effect on the photophysical properties of betalains and has a less pronounced effect over stability than that of methylation. The electrochemical behavior was studied by cyclic voltammetry, in the same pH range, and is also more significantly affected by methylation, rather than by hydroxylation. Methylation increases anodic peak potential up to 200 mV, and the potential is also much higher in more acidic media for all compounds. The number of protons involved in the electrochemical oxidation is the same as the number of electrons for most peaks The antiradical capacity was quantified using the TEAC assay, and ABTS•+ as radical. The methylated betalains presented, in average, the same TEAC value, although only one of them is phenolic. Among the non methylated, which are 2 to 3 units more efficient than the others, the phenolic one has a greater TEAC. These results suggest a participation of the 1,2,3,4-tetraidropiridinic ring electrons in the oxidation by ABTS•+, coupled to the imine nitrogen proton.

Page generated in 0.0883 seconds