Spelling suggestions: "subject:"1protein characterization"" "subject:"1protein acharacterization""
11 |
Extraction, purification et caractérisation d’isoformes d’hexokinase du tubercule de pomme de terre (Solanum tuberosum)Moisan, Marie-Claude 12 1900 (has links)
L’hexokinase (HK) est la première enzyme du métabolisme des hexoses et catalyse la
réaction qui permet aux hexoses d’entrer dans le pool des hexoses phosphates et donc par le
fait même la glycolyse. Bien que le glucose soit son principal substrat, cette enzyme peut
aussi phosphoryler le mannose et le fructose. Malgré son importance dans le métabolisme
primaire, l’HK n’a jamais été purifiée à homogénéité sous forme native. Le but de ce travail
était donc de purifier une isoforme d’HK à partir de tubercule de Solanum tuberosum et par
la suite de caractériser ses propriétés cinétiques.
Bien avant que je commence mon travail, un groupe de recherche avait déjà séparé et
partiellement purifié trois isoformes d’HK de S. tuberosum. Un protocole d’extraction était
donc disponible, mais l’HK ainsi extraite était peu stable d’où le besoin d’y apporter
certaines modifications. En y ajoutant certains inhibiteurs de protéases ainsi qu’en
modifiant les concentrations de certains éléments, le tampon d’extraction ainsi modifié a
permis d’obtenir un extrait dont l’activité HK était stable pendant au moins 72h après
l’extraction, en empêchant la dégradation.
À l’aide du tampon d’extraction optimisé et d’une chromatographie sur colonne de butyl
sépharose, il a été possible de séparer 4 isoformes d’HKs. Par la suite, une isoforme d’HK
(HK1) a été purifiée à l’homogénéité à l’aide de 5 étapes de chromatographie
supplémentaires. En plus de caractériser les propriétés cinétiques de cette enzyme, l’analyse
de séquençage par MS/MS a permis de l’associer au produit du gène StHK1 de Solanum
tuberosum. Avec une activité spécifique de 10.2 U/mg de protéine, il s’agit de l’HK
purifiée avec l’activité spécifique la plus élevée jamais rapportée d’un tissu végétal.L’ensemble des informations recueillies lors de la purification de HK1 a ensuite été utilisée
pour commencer la purification d’une deuxième isoforme (HK3). Ce travail a permis de
donner des lignes directrices pour la purification de cette isoforme et certains résultats
préliminaires sur sa caractérisation enzymatique. / Hexokinase (HK) catalyzes the first step of hexose metabolism by phosphorylating hexose
to generate the corresponding hexose phosphate thereby allowing hexose entrance in
glycolysis. Even though glucose is the main substrate, HK can also phosphorylate a broad
spectrum of hexoses. Despite its importance this enzyme has never been purified to
homogeneity in a native form. The aim of this work was therefore to purify this enzyme
from Solanum tuberosum tubers and subsequently characterize its kinetic properties.
Before I started this work, another group had already separated and partially purified 3 HK
isoform from S. tuberosum. An extraction protocol was available but improvement was
necessary since the extracted HK had little stability. By adding some protease inhibitors
and by modifying the concentration of certain components in the extraction buffer we were
able to obtain an extract with a HK activity stable for at least 72 h after extraction by
preventing degradation.
With this buffer and chromatography on butyl sepharose it was possible to separate 4 HK
isoforms from S. tuberosum. After 5 more chromatographic steps, one HK isoform was
purified to homogeneity (HK1). This enzyme was characterized and sequenced by MS/MS.
We were able to associate this protein sequence with the gene product of StHK1 from S.
tuberosum. With a specific activity of 10.2 U/mg of protein, this is the HK with the highest
specific activity ever reported from a plant tissue.
All the information gathered while purifying HK1 was used to undertake the purification of
a second isoform (HK3). We were able to obtain preliminary results on its kinetic
properties.
|
12 |
Extraction, purification et caractérisation d’isoformes d’hexokinase du tubercule de pomme de terre (Solanum tuberosum)Moisan, Marie-Claude 12 1900 (has links)
L’hexokinase (HK) est la première enzyme du métabolisme des hexoses et catalyse la
réaction qui permet aux hexoses d’entrer dans le pool des hexoses phosphates et donc par le
fait même la glycolyse. Bien que le glucose soit son principal substrat, cette enzyme peut
aussi phosphoryler le mannose et le fructose. Malgré son importance dans le métabolisme
primaire, l’HK n’a jamais été purifiée à homogénéité sous forme native. Le but de ce travail
était donc de purifier une isoforme d’HK à partir de tubercule de Solanum tuberosum et par
la suite de caractériser ses propriétés cinétiques.
Bien avant que je commence mon travail, un groupe de recherche avait déjà séparé et
partiellement purifié trois isoformes d’HK de S. tuberosum. Un protocole d’extraction était
donc disponible, mais l’HK ainsi extraite était peu stable d’où le besoin d’y apporter
certaines modifications. En y ajoutant certains inhibiteurs de protéases ainsi qu’en
modifiant les concentrations de certains éléments, le tampon d’extraction ainsi modifié a
permis d’obtenir un extrait dont l’activité HK était stable pendant au moins 72h après
l’extraction, en empêchant la dégradation.
À l’aide du tampon d’extraction optimisé et d’une chromatographie sur colonne de butyl
sépharose, il a été possible de séparer 4 isoformes d’HKs. Par la suite, une isoforme d’HK
(HK1) a été purifiée à l’homogénéité à l’aide de 5 étapes de chromatographie
supplémentaires. En plus de caractériser les propriétés cinétiques de cette enzyme, l’analyse
de séquençage par MS/MS a permis de l’associer au produit du gène StHK1 de Solanum
tuberosum. Avec une activité spécifique de 10.2 U/mg de protéine, il s’agit de l’HK
purifiée avec l’activité spécifique la plus élevée jamais rapportée d’un tissu végétal.L’ensemble des informations recueillies lors de la purification de HK1 a ensuite été utilisée
pour commencer la purification d’une deuxième isoforme (HK3). Ce travail a permis de
donner des lignes directrices pour la purification de cette isoforme et certains résultats
préliminaires sur sa caractérisation enzymatique. / Hexokinase (HK) catalyzes the first step of hexose metabolism by phosphorylating hexose
to generate the corresponding hexose phosphate thereby allowing hexose entrance in
glycolysis. Even though glucose is the main substrate, HK can also phosphorylate a broad
spectrum of hexoses. Despite its importance this enzyme has never been purified to
homogeneity in a native form. The aim of this work was therefore to purify this enzyme
from Solanum tuberosum tubers and subsequently characterize its kinetic properties.
Before I started this work, another group had already separated and partially purified 3 HK
isoform from S. tuberosum. An extraction protocol was available but improvement was
necessary since the extracted HK had little stability. By adding some protease inhibitors
and by modifying the concentration of certain components in the extraction buffer we were
able to obtain an extract with a HK activity stable for at least 72 h after extraction by
preventing degradation.
With this buffer and chromatography on butyl sepharose it was possible to separate 4 HK
isoforms from S. tuberosum. After 5 more chromatographic steps, one HK isoform was
purified to homogeneity (HK1). This enzyme was characterized and sequenced by MS/MS.
We were able to associate this protein sequence with the gene product of StHK1 from S.
tuberosum. With a specific activity of 10.2 U/mg of protein, this is the HK with the highest
specific activity ever reported from a plant tissue.
All the information gathered while purifying HK1 was used to undertake the purification of
a second isoform (HK3). We were able to obtain preliminary results on its kinetic
properties.
|
13 |
Self-Assembly and Structure Formation of Spider Silk Based Proteins in (Ultra)thin FilmsHofmaier, Mirjam 13 February 2024 (has links)
Spider silk is one of the most fascinating materials found in nature. Besides its properties like biodegradability, low immunoreactivity, and biocompatibility, especially the mechanical properties outperforming today’s artificial high-tech materials like Kevlar® are of great interest in biomedicine or material science. Spider silk comprises highly repetitive amino acid sequence motives, whose structure is accepted to be responsible for the extraordinary properties of spider silk. Typically, hydrophilic sequence motives alternate with hydrophobic ones making spider silk proteins resemble block copolymers. Additionally, the simple amino acid sequence and the possibility to form fibrillar structures are common characteristics of spider silk proteins as well as intrinsically disordered proteins (IDP) or protein regions (IDR). Both are suspected of being involved in the development of certain neurodegenerative diseases like Alzheimer´s disease. These aspects open promising possibilities of the use of spider silk proteins in nanotechnology, but also as model systems for the fibrillization processes of IDPs and IDRs, which are still unresolved today.
Currently, most of the research and application is focused on 1-dimensional spider silk protein fibrils and fibers or 0-dimensional spider silk particles. However, 2-dimensional spider silk protein films or porous 3-dimensional objects are highly relevant platforms with the potential for cell-supporting scaffolds, biodegradable electrolyte materials in transistors, or e.g., planar drug-eluting implant coatings. Generally, the effects of sequence-based and external influences on the self-assembly and folding of spider silk proteins have not yet been fully elucidated in all of these various dimensional spider silk materials, even concerning IDP and IDR models. Thus, basic research regarding assembly and folding processes is still needed, especially in films. Particularly, 2-dimensional films allow a broad spectrum of (surface) analytical techniques, from whose outcome general structure-property relations of spider silk materials across all material dimensions can be obtained.
In this work, engineered spider silk proteins, which are based on the consensus sequence motives in the spider silk fibroin (spidroin) 3 and 4 of the European garden spider Araneus diadematus (eADF4(Cx), eADF3(AQ)x, eADF3(QAQ)x) as well as blends of two short peptides with the respective aa sequence of the hydrophobic (pep-c) and hydrophilic (pep-a) part of eADF4(Cx) proteins were used. Spider silk-related proteins and peptides were dissolved in 1,1,1,3,3,3-hexafluoroisopropanol or formic acid, processed as thin films, and post-treated with methanol vapor to induce β-sheet formation.
Dichroic FTIR-spectroscopy was used, a powerful tool for studying protein secondary structure formation and orientation. Proteins reveal characteristic amide bands, which are highly sensitive to the conformation of the protein backbone. In the course of this work, a set of components for the line shape analysis (LSA) of the Amide I band was developed. Therby, each component was assigned to a typical secondary structure allowing a quantitative determination of the respective portions and their structural orientation. Quantitative secondary structure portions and their orientation could be determined on this basis.
Furthermore, a comprehensive study of folding and self-assembly-influencing parameters like hydrophobic and hydrophilic sequences, molecular weight, the repeating sequence motive order, the film thickness, surface topography, and the surface chemistry in engineered spider silk protein and spider silk protein-based films was carried out. In general, methanol vapor post-treatment induced the formation of β-sheet structures in all films, causing phase separation and the formation of spherical and filamentous structures.
The phase separation upon post-treatment was influenced by the covalent connectivity between hydrophobic and hydrophilic sequence parts as well as the repeating sequence motives. In thin films, the increased flexibility of shorter peptides enabled the formation of multipack filaments instead of spherical structures, which were formed by higher molecular weight proteins with several inter-connected repeating sequence motives. Stamping wrinkled structures using poly(dimethylsiloxane) substrates was possible. Filamentous structures were successfully assigned to β-sheet rich structures using infrared nanospectroscopy for the first time. Further, enhanced surface hydrophobicity led to the clustering of β-sheet filaments.
The β-sheet content could be controlled by the amount of hydrophobic sequences in thin films. With a higher amount of hydrophobic sequences in the proteins or blends, the β-sheet content increased until a maximum β-sheet content of around 60% was reached. Additionally, β-sheet formation could be suppressed by increasing substrate hydrophobicity or by decreasing the number of repeating sequence motives by going from protein-like folding to peptide-like self-assembly. The backfolding of proteins with covalently linked repeating sequence motives further promoted the formation of more antiparallel β-sheets. Antiparallel β-sheet formation was also favored when the portion of the hydrophilic, amorphous phase was increased.
Micrometer thick films did not reveal any preferred alignment of β-sheets, while a general out-of-plane orientation of β-sheets could be obtained in all thin protein, peptide, and blend films. Z-axial orientation in films was increased by using short pep-c and pep-a peptides, higher molecular weight proteins or the deposition of monolayered films instead of thin multilayered films. Also, increased hydrophilicity of the substrate promoted the alignment of β-sheets perpendicular to the substrate surface.
The folding kinetics and final domain size were found to be directly correlated. The amount of hydrophobic phase, backfolding, and increased flexibility due to low chain lengths increased the folding kinetics and led to smaller domain sizes. Thus, competing effects of backfolding and flexibility of the protein/peptide backbone could be rationalized. The film integrity and water contact angle were directly related to the β-sheet content and the molecular weight.
Beyond the classical protein conformation and orientation analysis, the possibilities and limits of orientation analysis using dichroic attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were elaborated on the seemingly ideal oriented polymer model system of end-grafted poly(N,N-dimethylaminoethylmethacrylate) chains. Such a system featured a polymer brush regime in the swollen state with z-axial orientation expected similarly high as thin spider silk films after ptm. Moreover, dichroic ATR-FTIR spectroscopy is a promising analytical method for closing gaps in the defined assignment of brush regimes.
In summary, general models of the structure formation and self-assembly of spider silk protein in films depending on the parameters mentioned above could be developed and set in relation to IDP/IDR self-assembly by using dichroic FTIR spectroscopy as the basic analysis method. The herein postulated models on the molecular level contribute to the understanding and development of future industrial applications of spider silk protein-based materials and the clarification of unresolved questions regarding IDP and IDR systems.:Abstract V
Kurzfassung IX
List of Publications XIII
Publications in Trade Journals XIII
Presentations and Posters XIII
Contribution to Joint Publications XV
List of Abbrevations XVII
List of Symbols XIX
List of Figures XXV
List of Tables XXXIII
1 Introduction and Motivation 1
2 Theory 5
2.1 Proteins and Peptides 5
2.1.1 General Definition of Proteins and Peptides 5
2.1.2 Structure of Globular Proteins 7
2.1.3 Protein Folding 10
2.1.4 Intrinsically Disordered Proteins and Protein Regions 11
2.2 Block Copolymers 14
2.3 Spiders and Spider Silks 17
2.3.1 Classification of Spiders 17
2.3.2 The Natural Spider Silk Spinning Process 18
2.3.3 Structure of Spider Silk and Spider Silk Proteins 19
2.3.4 Structure-Property Relationships of Spider Silk 21
2.4 Infrared Spectroscopy 23
2.4.1 Basic Principles of Infrared Spectroscopy 23
2.4.2 Basic Equipment and IR-Technologies 27
2.4.3 Orientation Analysis using Dichroic FTIR Spectroscopy 32
2.4.4 Infrared Spectroscopy of Proteins and Peptides 38
2.4.5 Quantitative Analysis of TRANS- and ATR-FTIR Protein Spectra 43
2.5 Electronic Circular Dichroism 46
2.5.1 Basics Principles of Circular Dichroism 46
2.5.2 Circular Dichroism of Proteins and Polypeptides 48
2.5.3 Spectra Analysis 50
2.6 Atomic Force Microscopy 51
2.6.1 Setup of Atomic Force Microscopes 51
2.6.2 Basic Principles of Atomic Force Microscopy 52
2.6.3 AFM Operation Modes 55
3 Experimental Section 57
3.1 Materials 57
3.1.1 Chemicals 57
3.1.2 Substrates 57
3.1.3 Film Preparation 58
3.2 Analytical Methods 60
3.2.1 Dichroic FTIR Spectroscopy 60
3.2.2 Atomic Force Microscopy 64
3.2.3 Electronic Circular Dichroism 64
3.2.4 Spectroscopic Ellipsometry 64
3.2.5 Infrared Nanospectroscopy 65
3.2.6 Grazing Incident Small Angle X-Ray Scattering 66
4 Results 67
4.1 Self-Assembly of eADF4(C16) Films 67
4.1.1 Motivation 67
4.1.2 Dichroic FTIR Spectroscopy Characterization of ß-sheet Orientation in Spider Silk Films on Silicon Substrates 68
4.2 Influence of the Hydrophilic and Hydrophobic Blocks on Peptide Self-Assembly 90
4.2.1 Motivation 90
4.2.2 β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides 90
4.2.3 Influence of the Hydrophilic and Hydrophobic Blocks on the Inner Morphology in Spider Silk Protein Based Blend Films 122
4.3 Influence of the Sequence Motive Repeating Number on Spider Silk Protein Folding 123
4.3.1 Motivation 123
4.3.2 Influence of Sequence Motive Repeating Number on Protein Folding in Spider Silk Protein Films 124
4.4 Influence of the Module Order on Spider Silk Protein Self-Assembly 152
4.4.1 Motivation 152
4.4.2 Secondary Structure upon Post-treatment 153
4.4.3 β-Sheet Orientation after Post-treatment 157
4.4.4 Morphology and Surface Properties 158
4.4.5 Conclusion 160
4.5 Surface Induced Changes of Spider Silk Protein Self-Assembly 161
4.5.1 Motivation 161
4.5.2 Variation of the Substrate Surface Chemistry and Topography 161
4.5.3 Influence of the Surface Topography on Protein Self-Assembly 162
4.5.4 Influence of the Surface Chemistry on Protein Self-Assembly 164
4.5.5 Conclusion 169
4.6 Chances and Limits of Dichroic ATR-FTIR Spectroscopy 170
4.6.1 Motivation 170
4.6.2 Novel Insights into Swelling and Orientation of End-Grafted PDMAEMA Chains by In-Situ ATR-FTIR Complementing In-Situ Ellipsometry 171
5 Conclusion and Outlook 197
6 References 203
7 Appendix 219
8 Danksagung 227
9 Eidesstattliche Versicherung 229
|
14 |
L’étude des stratégies de séparations préparatrices de protéines par électrophorèse capillaireSantiagos, Denis 04 1900 (has links)
La protéomique est un sujet d'intérêt puisque l'étude des fonctions et des structures de protéines est essentiel à la compréhension du fonctionnement d'un organisme donné. Ce projet se situe dans la catégorie des études structurales, ou plus précisément, la séquence primaire en acides aminés pour l’identification d’une protéine. La détermination des protéines commence par l'extraction d'un mélange protéique issu d'un tissu ou d'un fluide biologique pouvant contenir plus de 1000 protéines différentes. Ensuite, des techniques analytiques comme l’électrophorèse en gel polyacrylamide en deux dimensions (2D-SDS-PAGE), qui visent à séparer ce mélange en fonction du point isoélectrique et de la masse molaire des protéines, sont utilisées pour isoler les protéines et pour permettre leur identification par chromatographie liquide and spectrométrie de masse (MS), typiquement. Ce projet s'inspire de ce processus et propose que l'étape de fractionnement de l'extrait protéique avec la 2D-SDS-PAGE soit remplacé ou supporté par de multiples fractionnements en parallèle par électrophorèse capillaire (CE) quasi-multidimensionnelle. Les fractions obtenues, contenant une protéine seule ou un mélange de protéines moins complexe que l’extrait du départ, pourraient ensuite être soumises à des identifications de protéines par cartographie peptidique et cartographie protéique à l’aide des techniques de séparations analytiques et de la MS. Pour obtenir la carte peptidique d'un échantillon, il est nécessaire de procéder à la protéolyse enzymatique ou chimique des protéines purifiées et de séparer les fragments peptidiques issus de cette digestion. Les cartes peptidiques ainsi générées peuvent ensuite être comparées à des échantillons témoins ou les masses exactes des peptides enzymatiques sont soumises à des moteurs de recherche comme MASCOT™, ce qui permet l’identification des protéines en interrogeant les bases de données génomiques.
Les avantages exploitables de la CE, par rapport à la 2D-SDS-PAGE, sont sa haute efficacité de séparation, sa rapidité d'analyse et sa facilité d'automatisation. L’un des défis à surmonter est la faible quantité de masse de protéines disponible après analyses en CE, due partiellement à l'adsorption des protéines sur la paroi du capillaire, mais due majoritairement au faible volume d'échantillon en CE. Pour augmenter ce volume, un capillaire de 75 µm était utilisé. Aussi, le volume de la fraction collectée était diminué de 1000 à 100 µL et les fractions étaient accumulées 10 fois; c’est-à-dire que 10 produits de séparations étaient contenu dans chaque fraction. D'un autre côté, l'adsorption de protéines se traduit par la variation de l'aire d'un pic et du temps de migration d'une protéine donnée ce qui influence la reproductibilité de la séparation, un aspect très important puisque 10 séparations cumulatives sont nécessaires pour la collecte de fractions. De nombreuses approches existent pour diminuer ce problème (e.g. les extrêmes de pH de l’électrolyte de fond, les revêtements dynamique ou permanent du capillaire, etc.), mais dans ce mémoire, les études de revêtement portaient sur le bromure de N,N-didodecyl-N,N-dimethylammonium (DDAB), un surfactant qui forme un revêtement semi-permanent sur la paroi du capillaire. La grande majorité du mémoire visait à obtenir une séparation reproductible d'un mélange protéique standard préparé en laboratoire (contenant l’albumine de sérum de bovin, l'anhydrase carbonique, l’α-lactalbumine et la β-lactoglobulin) par CE avec le revêtement DDAB. Les études portées sur le revêtement montraient qu'il était nécessaire de régénérer le revêtement entre chaque injection du mélange de protéines dans les conditions étudiées : la collecte de 5 fractions de 6 min chacune à travers une séparation de 30 min, suivant le processus de régénération du DDAB, et tout ça répété 10 fois. Cependant, l’analyse en CE-UV et en HPLC-MS des fractions collectées ne montraient pas les protéines attendues puisqu'elles semblaient être en-dessous de la limite de détection. De plus, une analyse en MS montrait que le DDAB s’accumule dans les fractions collectées dû à sa désorption de la paroi du capillaire. Pour confirmer que les efforts pour recueillir une quantité de masse de protéine étaient suffisants, la méthode de CE avec détection par fluorescence induite par laser (CE-LIF) était utilisée pour séparer et collecter la protéine, albumine marquée de fluorescéine isothiocyanate (FITC), sans l'utilisation du revêtement DDAB. Ces analyses montraient que l'albumine-FITC était, en fait, présente dans la fraction collecté. La cartographie peptidique a été ensuite réalisée avec succès en employant l’enzyme chymotrypsine pour la digestion et CE-LIF pour obtenir la carte peptidique. / Proteomics is a field of growing interest because the study of protein function and structure is essential to understand how an organism operates. This project is concerned with structural studies, or more precisely the primary amino acid sequence for identification of proteins. Protein determination starts with a protein extract obtained from tissue or a biological fluid, which can contain more than 1000 distinct proteins. Analytical techniques like two-dimensional polyacrylamide gel electrophoresis (2D-SDS-PAGE), which separates proteins based on their isoelectric point and molar mass, are then used to isolate the different proteins and permit their identification by liquid chromatography and mass spectrometry (MS) typically. This project, inspired by the fractionation of a protein extract by 2D-SDS-PAGE, proposes to support or to replace it with multiple fractionations by capillary electrophoresis (CE) in a quasi-multidimensional scheme. The individual fractions, containing a single protein or a mixture of proteins much less complex than the original extract, would then be analyzed to identify the proteins by peptide mapping and by protein mass mapping using analytical separation techniques and MS. To obtain a peptide map of proteins isolated in a fraction, enzymatic or chemical proteolysis is carried out and the peptide fragments in the digest are separated. The generated peptide map is either compared to a second sample to reveal changes, or the exact masses of the peptides are submitted to search engine like MASCOT™, which permits the identification of proteins by interrogation of genomic data bases.
The exploitable advantages of CE compared to 2D-SDS-PAGE are its high separation efficiency, its rapid analysis and its easy automation. The challenge to overcome is its small quantity of mass available after CE fractionation due in part to protein adsorption on the capillary walls, but due mainly to the tiny sample volumes used in CE. To increase mass, a 75 µm ID capillary was used in this study. Also, the volume into which each fraction is collected was decreased from 1000 to 100 µL and each fraction was collected 10 times; in other words 10 injections of the protein mixture were made. On the other hand, protein adsorption leads to variations in peak area and migration time of a given protein which influences the repeatability of CE separations, a very important aspect since 10 cumulative separations are needed for fraction collection. There are numerous approaches to reduce this problem (e.g. using pH extremes for the background electrolyte, using dynamic or permanent capillary coatings, etc.) but in this project, studies focused on didodecyldimethylammonium bromide (DDAB), a surfactant that forms a semi-permanent wall coating in the capillary. The majority of work presented here was aimed at obtaining a reproducible CE separation of a standard protein mixture prepared in house (containing bovine serum albumin, carbonic anhydrase, α-lactalbumin and β-lactoglobulin) while using the DDAB coating. Studies of this particular coating material revealed that it was necessary to regenerate the DDAB coating between each injection of the protein mixture under the studied conditions: collection of 5 fractions of 6 min each across a 30-min separation that followed the DDAB regeneration, repeated 10 times. However, CE-UV and HPLC-MS analyses of the collected fractions showed none of the expected proteins present; they seemed to be below the instrument detection limits. In addition, the MS analyses revealed that DDAB had accumulated in the collected fractions due to its desorption from the capillary walls. To confirm that our efforts to collect a certain protein mass were sufficient, CE coupled to laser-induced fluorescence detection (CE-LIF) was used to separate and then collect the protein albumin labeled with fluorescein isothiocyanate (FITC) without the DDAB coating in the capillary. Analyses demonstrated that albumin-FITC was, in fact, present in the collected fraction. Peptide mapping was then successfully carried out using the enzyme chymotrypsin for digestion and CE-LIF for peptide mapping.
|
15 |
Design, expression and purification of virus-like particles derived from metagenomic studies : Virus-like Particles (VLP) of novel Partitiviridae species, Hubei.PLV 11, and novel Soutern pygmy squid flavilike virus were designed, expressed using the bac-to-bac expression system and then pruified using various methodsAyranci, Diyar January 2021 (has links)
Viruses are entities which are made of a few genes and are reliant on obligate parasitism to propagate. Due to the obligate connection to their hosts, virus evolution is constrained to the type of host. Viruses however do transmit to evolutionary distinct hosts; in these cases, the phylogenetic relationship of the hosts usually are close. In some instances, RNA-viruses have made host jumps between evolutionary distant hosts, such as the host jump from invertebrates to vertebrates, and fungi to arthropod. Partitiviruses are double stranded RNA viruses which mainly infect fungi and plants. The defining characteristic of these double stranded RNA viruses are the double layered capsids which are formed by a single open reading frame (ORF). The capsid proteins form icosahedral virus particles which are in the magnitude of 30-40 nm. Metagenomic studies have discovered partitiviruses originating from an insect in the Odanata family, a finding which contradicts the fungal host specificity of partitiviruses. The finding of the Hubei.PLV 11 thus implies the existence of a partitiviruses containing structural elements in their capsids which could be involved in the infection of arthropods. Thus, this virus could be used as a model for a structural comparison with its fungi infecting relatives with hopes to identify common viral structural factors necessary for the infection of arthropods. For this purpose, the Hubei.PLV ORF was cloned and then transfected into insect Spodoptera frugiperda (Sf-9) cells using a baculovirus expression system, “bac-to-bac” expression system. The FLAG-tagged capsid proteins were expressed by the Sf-9 cells to be approximately 60 kDa. After ultra-centrifugation in a sucrose gradient, some spontaneous assembly into the expected ~40 nm icosahedral virus-like particles were observed using low resolution scanning electron microscopy. The observed particles were also confirmed by a dynamic light scattering experiment (DLS) and a higher resolution cryo-EM microscope. Thus, the bac-to-bac expression system can be used to produce VLPs from this genus of viruses, and this metagenomically derived virus genome. However, for future success in defining a high-resolution model of this virus, it is recommended that the Sf-9 culture volume is sufficiently high for enough particle production which is necessary for a high-resolution map. The other virus, the Southern pygmy squid Flavilike virus (SpSFV) has been suggested to be the oldest relative of the land based flaviviruses. The SpSFV was found to be the most divergent of the flaviviruses, and to infect invertebrates. Solving for the structure of the SpSFV and comparing it to vertebrate infecting flaviviruses could therefore lead to the identification of factors necessary for the adaptation to vertebrates and thus the humoral immunity by flaviviruses. The soluble E-protein was expressed using the bac-to-bac expression system. The protein was indicated to be multiglycosylated and approximately 50 kDa which is in line with other strains in the genus. Affinity chromatography did not elute this protein, likely due to the His-tag not being spatially available. Cation exchange could elute some protein, but not much from the small ~30 mL culture. To conclude, VLP assembly was confirmed by the Hubei.PLV, thus, solving for the structure is a distinct possibility when a larger Sf-9 culture is used to produce the VLPs. For the SpSFV soluble E-protein, the protein is secreted into the supernatant of the Sf-9 cultures, making purification a possibility. For this, a large Sf-9 culture can be used to produce this protein and then purify it with a cat-ion exchange chromatography.
|
Page generated in 0.1257 seconds