• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 43
  • 43
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Variation in length of proteins by repeats and disorder regions

Sagit, Rauan January 2013 (has links)
Protein-coding genes evolve together with their genome and acquire changes, some of which affect the length of their protein products. This explains why equivalent proteins from different species can exhibit length differences. Variation in length of proteins during evolution arguably presents a large number of possibilities for improvement and innovation of protein structure and function. In order to contribute to an increased understanding of this process, we have studied variation caused by tandem domain duplications and insertions or deletions of intrinsically disordered residues. The study of two proteins, Nebulin and Filamin, together with a broader study of long repeat proteins (&gt;10 domain repeats), began by confirming that tandem domains evolve by internal duplications. Next, we show that vertebrate Nebulins evolved by duplications of a seven-domain unit, yet the most recent duplications utilized different gene parts as duplication units. However, Filamin exhibits a checkered duplication pattern, indicating that duplications were followed by similarity erosions that were hindered at particular domains due to the presence of equivalent binding motifs. For long repeat proteins, we found that human segmental duplications are over-represented in long repeat genes. Additionally, domains that have formed long repeats achieved this primarily by duplications of two or more domains at a time. The study of homologous protein pairs from the well-characterized eukaryotes nematode, fruit fly and several fungi, demonstrated a link between variation in length and variation in the number of intrinsically disordered residues. Next, insertions and deletions (indels) estimated from HMM-HMM pairwise alignments showed that disordered residues are clearly more frequent among indel than non-indel residues. Additionally, a study of raw length differences showed that more than half of the variation in fungi proteins is composed of disordered residues. Finally, a model of indels and their immediate surroundings suggested that disordered indels occur in already disordered regions rather than in ordered regions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 4: Manuscript.</p>
32

Modeling protein evolution using secondary structures

Mohaddes, Zia 08 1900 (has links)
L’évolution des protéines est un domaine important de la recherche en bioinformatique et catalyse l'intérêt de trouver des outils d'alignement qui peuvent être utilisés de manière fiable et modéliser avec précision l'évolution d'une famille de protéines. TM-Align (Zhang and Skolnick, 2005) est considéré comme l'outil idéal pour une telle tâche, en termes de rapidité et de précision. Par conséquent, dans cette étude, TM-Align a été utilisé comme point de référence pour faciliter la détection des autres outils d'alignement qui sont en mesure de préciser l'évolution des protéines. En parallèle, nous avons élargi l'actuel outil d'exploration de structures secondaires de protéines, Helix Explorer (Marrakchi, 2006), afin qu'il puisse également être utilisé comme un outil pour la modélisation de l'évolution des protéines. / Protein evolution is an important field of research in bioinformatics and catalyzes the requirement of finding alignment tools that can be used to reliably and accurately model the evolution of a protein family. TM-Align (Zhang and Skolnick, 2005) is considered to be the ideal tool for such a task, in terms of both speed and accuracy. Therefore in this study, TM-Align has been used as a point of reference to facilitate the detection of other alignment tools that are able to accurately model protein evolution. In parallel, we expand the existing protein secondary structure explorer tool, Helix Explorer (Marrakchi, 2006), so that it can also be used as a tool to model protein evolution.
33

Protein fold evolution on completed genomes : distinguishing between young and old folds

Abeln, Sanne January 2007 (has links)
We review fold usage on completed genomes in order to explore protein structure evolution and assess the evolutionary relevance of current structural classification systems (SCOP and CATH). We assign folds on a set of 150 completed genomes using fold recognition methods (PSI-BLAST, SUPERFAMILY and Gene3D). The patterns of presence or absence of folds on genomes gives us insights into the relationships between folds and how we have arrived at the set of folds we see today. In particular, we develop a technique to estimate the relative ages of a protein fold based on genomic occurrence patterns in a phylogeny. We find that SCOP's `alpha/beta' class has relatively fewer distinct folds on large genomes, and that folds of this class tend to be older; folds of SCOP's `small protein' class follow opposite trends. Usage patterns show that folds with many copies on a genome are generally old, but that old folds do not necessarily have many copies. In addition, longer domains tend to be older and hydrophobic amino acids have high propensities for older folds whereas, polar - but non-charged - amino acids are associated with younger folds. Generally domains with stabilising features tend to be older. We also show that the reliability of fold recognition methods may be assessed using occurrence patterns. We develop a method, that detects false positives by identifying isolated occurrences in a phylogeny of species, and is able to improve genome wide fold recognition assignment sets. We use a structural fragment library to investigate evolutionary links between protein folds. We show that 'older' folds have relatively more such links than 'younger' folds. This correlation becomes stronger for longer fragment lengths suggesting that such links may reflect evolutionary relatedness.
34

Análise da hidrofobicidade na evolução de proteínas /

Silva, Ricardo Hildebrand Theodoro da. January 2009 (has links)
Resumo: Efeito das mutações sobre a estabilidade das proteínas e uma questão crucial na evolução da proteína. Tais efeitos dependem fortemente do car ater hidrofóbico global da proteína. Em um trabalho recente (J. Chem. Phys.125,084904(2006), n os sugerimos dois cenários de enovelamento com consequências distintas ma evolução da proteína. O limite de baixa hidrofobicidade, corresponde ao regime em que ocorre concomitantemente o colapso e a formação da estrutura nativa. Sob estas condições as proteínas são pouco robustas a mutações, o que implica em uma alta homologia entre proteínas de diferentes espécies. O limite de alta hidrofobicidade, corresponde ao regime em que a proteína sofrem um colapso antes do enovelamento, e neste caso as proteínas são mais robustas a proteínas, sugerindo uma menor homologia entre proteínas de diferentes espécies. Neste trabalho, n os estudamos a homologia de quatro proteínas para 41 espécies diferentes, correlacionando as suas homologias com suas hidrofobicidades médias. As proteínas estudadas foram lisozima, citocromo-c, mioglobina e histona H3, utilizando seis escalas hidrofóbicas diferentes. Junto com o cálculo da homologia, foi realizada uma comparação da similaridade estrutural (rmsd). Os resultados con rmam a hipótese acima, indicando que proteínas, em condições de baixa hidrofobicidade, têm baixa variabilidade de sequências e conformações, para alta hidrofobicidade, as proteínas exibem variabilidade de sequências e conformações / Abstract: Efect of mutations on stability of proteins is a crucial issue in protein evolution. Such e ects depend strongly on the overall hydrophobic protein character. In a recent work we suggested two scenarios for folding with distinct protein evolution consequences (J. Chem. Phys.125 084904,2006) Under low hydrophobic conditions proteins collapse concomitantly with the formation of their native state, and are less robust to mutations, which implies higher homology among proteins of di erent species. On the other limit, at high hydrophobicity proteins collapse before folding, and in this case they are more susceptible to mutations, suggesting lower homology among proteins of di erent species. In this work we investigate this conjecture studying the homology of four proteins for 41 di erent species, correlating it with their average hydrophobicity. The proteins studied were lysozyme, cytochrome-c, myoglobin and histone H3, using six di erent hydrophobic scales. Along with the homology calculation, a comparison of structural similarity (rmsd) was also carried out. The results con rm the above hypothesis, indicating that proteins at low hydrophobicity display low variations on sequences and conformations. On other hand, at high hydrophobicity, proteins exhibit high variability on sequences and conformations. Keywords: evolution, protein folding, scenarios of folding, projetabilidade, hydrophobicity, homology of proteins, mutations in proteins / Orientador: Vitor Barbanti Pereira Leite / Coorientador: Jorge Chahine / Banca: Antonio Caliri / Banca: Eduardo Beleza Yamagi / Banca: Luis Paulo Barbour / Banca: Sidnei Jhourado de Carvalho / Doutor
35

Modulace interakcí interleukinů a jejich receptorů / Modulation of interactions between interleukins and their receptors

Nepokojová, Tereza January 2020 (has links)
Scaffolds are proteins with high conformational stability, allowing us to implement multiple mutations into specific parts of the protein. Even with these mutations, the structural integrity of the protein is maintained as well as its physical-chemical properties. These mutations give the specific scaffold new properties. In most cases it is the binding specificity towards previously chosen target. The biggest advantages of scaffolds are their small size, stability, low-cost manufacturing, and easiness of preparation. Scaffold utilized in this thesis is unique for having two binging surfaces designed on which it can be mutated. Each of those two surfaces can be separately mutated to develop a binging site for two different proteins. In our case these mutations led to binding two nonidentical receptors of a human cytokine. Mutations are made with a use of yeast display, one of the methods of directed evolution. The main focus of this thesis is changing an expression system of the binding proteins from the yeast system to a bacterial one, their production and purification followed by characterization of those binding proteins using biophysical methods. These methods were used to evaluate structural and thermal stability, and binding affinity to both receptors of the beforementioned binding proteins....
36

Biofyzikální charakterizace proteinových knihoven z různých repertoárů aminokyselin / Biophysical characterization of protein libraries composed of different amino acid repertoires

Neuwirthová, Tereza January 2020 (has links)
This study is part of a project which aims to understand evolution of genetic code together with structural and functional analysis of prebiotic proteins. The repertoire of amino acids in the first proteins was probably developing in time and it influenced the development of structure and function of today's proteins. First amino acid alphabet was apparently only half of the size of present alphabet, which contains twenty amino acids. These ten amino acids were probably prebiotically available from endogenous and exogenous sources. This work includes cell-free expression and purification of two randomized protein libraries (containing approximately 1011 variants) with various amino acid composition and following comparison of their propensity to form secondary (using circular dichroism) and tertiary (using proteolytical analysis of sequences) structures. First library contains only ten probably prebiotically available amino acids; second library contains all twenty amino acids in today's genetic code. This project could help us understand benefits of genetic code expansion in terms of developing structure in protein sequences. The whole research could theoretically contribute a few basic questions not only in the fields of protein evolution but also in areas of synthetic biology or protein...
37

Directed Evolution of Glutathione Transferases with Altered Substrate Selectivity Profiles : A Laboratory Evolution Study Shedding Light on the Multidimensional Nature of Epistasis

Zhang, Wei January 2011 (has links)
Directed evolution is generally regarded as a useful approach in protein engineering. By subjecting members of a mutant library to the power of Darwinian evolution, desired protein properties are obtained. Numerous reports have appeared in the literature showing the success of tailoring proteins for various applications by this method. Is it a one-way track that protein practitioners can only learn from nature to enable more efficient protein engineering? A structure-and-mechanism-based approach, supplemented with the use of reduced amino acid alphabets, was proposed as a general means for semi-rational enzyme engineering. Using human GST A2-2*E, the most active human enzyme in the bioactivation of azathioprine, as a parental enzyme to test this approach, a L107G/L108D/F222H triple-point mutant of GST A2-2*E (thereafter designated as GDH) was discovered with 70-fold increased activity, approaching the upper limit of specific activity of the GST scaffold. The approach was further experimentally verified to be more successful than intuitively choosing active-site residues in proximity to the bound substrate for the improvement of enzyme performance. By constructing all intermediates along all putative mutational paths leading from GST A2-2*E to mutant GDH and assaying them with nine alternative substrates, the fitness landscapes were found to be “rugged” in differential fashions in substrate-activity space. The multidimensional fitness landscapes stemming from functional promiscuity can lead to alternative outcomes with enzymes optimized for other features than the selectable markers that were relevant at the origin of the evolutionary process. The results in this thesis suggest that in this manner an evolutionary response to changing environmental conditions can readily be mounted. In summary, the thesis demonstrates the attractive features of the structure-and-mechanism-based semi-rational directed evolution approach for optimizing enzyme performance. Moreover, the results gained from the studies show that laboratory evolution may refine our understanding of evolutionary process in nature.
38

Mechanisms of evolutionary innovation in mammalian genes

Toll i Riera, Macarena, 1984- 28 March 2012 (has links)
Actualment, degut a la disponibilitat d’un gran nombre de genomes seqüenciats, el camp de la genòmica comparativa està experimentant grans avenços. Ara són possibles una àmplia gama d’estudis que fins fa poc eren inimaginables. En aquesta tesi hem volgut estudiar les innovacions evolutives en els genomes de mamífers. Hem escollit centrar l’estudi en mamífers degut a que els seus genomes tenen bona qualitat i hi ha més informació disponible, a més el fet d’incloure l’espècie humana afegeix interès. Ens hem centrat en tres qüestions interessants en el camp de l’evolució. Primer hem volgut determinar quina és la fracció de gens ortòlegs de mamífers que presenten desviacions específiques de llinatge en les tasses evolutives. Hem obtingut que al voltant del 25% dels gens tenen evidencies d’haver estat sotmesos a acceleracions i deceleracions específiques de branca. Hem trobat que sorprenentment, els gens accelerats normalment no solapen amb els gens amb evidencia de selecció positiva, demostrant que els tests emprats per detectar selecció positiva són massa conservadors. En segon lloc, hem aprofundit en quins són els determinants de l’evolució proteica, centrant-nos en l’edat d’origen i en les característiques estructurals. Per estudiar-ho hem utilitzat tant dominis com estructures proteiques i principalment hem trobat que l’edat d’origen és un dels determinants més importants. Finalment, hem investigat les característiques i els mecanismes d’origen d’un grup de gens molt joves: els gens específics de primats. Hem trobat que els gens específics de primats evolucionen ràpid, són curts i específics de teixit. Pel que fa al seu mecanisme d’origen, al voltant d’un 53% dels gens presenten evidencies d’haver-se originat a través de l’exaptació de transposons, 24% a partir de duplicacions parcials o totals i sorprenentment, 5.5% de novo a partir de regions no codificants de mamífers. / With the availability of a high number of sequenced genomes the comparative genomics field has experienced a great advance. A wide range of studies that some years ago were unconceivable are now possible. In this thesis we aimed to study evolutionary innovations in mammalian genomes. We chose to centre our studies in mammalian species because at that moment were the genomes with higher quality and also more additional information was available for them, and of course, the inclusion of human species added a point of interest. We wished to give insights into three exciting questions in the field of evolution. First we wanted to assess which is the fraction of mammalian orthologous genes that present lineage-specific deviations in the rate of evolution. We obtained that around 25% of the genes had evidence of accelerations and decelerations specific of a branch and, surprisingly, accelerated cases did not usually overlap with cases of genes experiencing positive selection, showing that tests to detect positive selection are excessively conservative. Secondly, we wanted to deepen into the determinants driving protein evolution, centering on age of origin and structural characteristics. We used protein domains and structures to study them and we mainly found that age of origin seems to be one of the most important determinants. And finally, we investigated the characteristics and mechanisms of origin of a group of very young genes: primate-specific genes. We report that primate-specific genes evolve fast, are short and highly tissue specific. Regarding their mechanism of origin, about 53% of them showed evidence of transposable elements exaptation, 24% of partial or total duplication and surprisingly 5.5% of de novo origination from mammalian noncoding regions.
39

Evolution and function of cellulase genes in Australian freshwater crayfish

Crawford, Allison Clare January 2006 (has links)
The most abundant organic compound produced by plants is cellulose, however it has long been accepted that animals do not secrete the hydrolytic enzymes required for its degradation, but rely instead on cellulases produced by symbiotic microbes. The recent discovery of an endogenous cDNA transcript encoding a putative GHF9 endoglucanase in the parastacid crayfish Cherax quadricarinatus (Byrne et al., 1999) suggests that similar cellulase genes may have been inherited by a range of crustacean taxa. In this study, the evolutionary history of the C. quadricarinatus endoglucanase gene and the presence of additional GHF9 genes in other decapod species were investigated. The activity of endoglucanase and endoxylanase enzymes within several cultured decapod species were also compared. The evolutionary history of the C. quadricarinatus endoglucanase gene was assessed by comparing intron/exon structure with that of other invertebrate and plant GHF9 genes. The coding region of the gene was found to be interrupted by eleven introns ranging in size from 102-902 bp, the position of which was largely conserved in both termite and abalone GHF9 genes. These structural similarities suggest GHF9 genes in crustaceans and other invertebrate taxa share a common ancestry. In addition, two introns were observed to share similar positions in plant GHF9 genes, which indicates this enzyme class may have been present in ancient eukaryote organisms. The presence of GHF9 genes in C. quadricarinatus and various other decapod species was then explored via degenerate primer PCR. Two distinct GHF9 gene fragments were determined for C. quadricarinatus and several other Cherax and Euastacus parastacid freshwater crayfish species, and a single GHF9 gene fragment was also determined for the palaemonid freshwater prawn Macrobrachium lar. Phylogenetic analyses of these fragments confirmed the presence of two endoglucanase genes within the Parastacidae, termed EG-1 and EG-2. The duplication event that produced these two genes appears to have occurred prior to the evolution of freshwater crayfish. In addition, EG-2 genes appear to have duplicated more recently within the Cherax lineage. The presence of multiple GHF9 endoglucanase enzymes within the digestive tract of some decapod species may enable more efficient processing of cellulose substrates present in dietary plant material. Endoglucanase and endoxylanase enzyme activities were compared in several parastacid crayfish and penaeid prawn species using dye-linked substrates. Endoglucanase activity levels were higher in crayfish compared with prawn species, which corresponds with the known dietary preferences of these taxa. Endoglucanase temperature and pH profiles were found to be very similar for all species examined, with optimum activity occurring at 60°C and pH 5.0. These results suggest endoglucanase activity in penaeid prawns may also be derived from endogenous sources. Additional in vitro studies further demonstrated crayfish and prawn species liberate comparable amounts of glucose from carboxymethyl-cellulose, which indicates both taxa may utilise cellulose substrates as a source of energy. Endoxylanase temperature and pH profiles were also similar for all crayfish species examined, with optimal activity occurring at 50°C and pH 5.0. These results suggest xylanase activity in crayfish may originate from endogenous enzymes, although it is unclear whether this activity is derived from GHF9 enzymes or a different xylanase enzyme class. In contrast, no endoxylanase activity was detected in the three prawn species examined. Together, these findings suggest a wide range of decapod crustacean species may possess endogenous GHF9 endoglucanase genes and enzymes. Endoglucanases may be secreted by various decapod species in order to digest soluble or amorphous cellulose substrates present in consumed plant material. Further biochemical studies may confirm the presence and functional attributes of additional endoglucanase genes and enzymes in decapods, which may ultimately assist in the design of optimal plant based crustacean aquaculture feeds.
40

Molekulární evoluce meiózy u diploidů a tetraploidů druhu Arabidopsis arenosa / Molecular evolution of meiosis in diploids and tetraploids of Arabidopsis arenosa

Holcová, Magdalena January 2017 (has links)
Meiosis is functionally conserved across eukaryotes, thus not expected to vary considerably among different species, and even less so among lineages within a species. However, recent studies showed that this is not necessarily the case in Arabidopsis arenosa. Genome scanning identified an excess differentiation in meiosis genes between A. arenosa diploids and tetraploids, interpreted as meiosis adaptation to the whole genome duplication in tetraploids and differentiation was also found between two diploid lineages. Thus, I present a population-based analysis of positive selection acting on meiosis proteins across multiple lineages of A. arenosa. I showed that meiosis proteins were under positive selection in all diploid lineages, mainly in the Pannonian and South-eastern Carpathian lineage. The evidence for positive selection in diploid lineages suggested differential pathways of meiosis adaptations in the species, probably reflecting the necessity to adapt to local environments, among all to temperature. The highest enrichment of amino acid substitutions (AASs) under positive selection was identified in tetraploids, in consistence with previous genome-scan results. As several interacting meiosis proteins were under positive selection in the same A. arenosa lineage, I hypothesize that the close...

Page generated in 0.0655 seconds