• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 32
  • 24
  • 19
  • 18
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 634
  • 634
  • 131
  • 125
  • 106
  • 100
  • 92
  • 82
  • 72
  • 70
  • 64
  • 61
  • 59
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Determining the subcellular localization of a group II p21-activated kinase - PAK6

Unknown Date (has links)
p-21-activated kinase 6 (PAK6) is a serine-threonine protein kinase originally identified as an Androgen Receptor (AR) interacting protein. In current study, we determined the subcellular localization of PAK6 through mutational analysis. We have found that the N-terminal CRIB domain is partly responsible for plasma membrane targeting, the region between amino acid residues #292 to #368 is functionally relevant to plasma membrane localization and that amino acid residues #119 through #190 are responsible for nuclear targeting of PAK6, in addition to a stretch of positively charged N-terminal residues (#2-#11) since mutants lacking this sequence mis-localizes to cytoplasm. In junction forming epithelial cells, PAK6 is demonstrated to co-localize with B-catenin at adherens junctions, suggesting that PAK6 is an activation-dependent event and that PAK6 translocates from plasma membrane to the cytoplasm in response activation via the PKA signal pathway. / by Ciny John. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
372

Clonagem de promotores de cana-de-açúcar e análise do transcriptoma de genótipos segregantes para teor de sacarose / Cloning of sugarcane promoters and transcriptome analysis of genotypes segregating for sugar content

Andrade, Rodrigo Fandiño de 23 November 2012 (has links)
A cana-de-açúcar é uma gramínea com fotossíntese do tipo C4, com capacidade de acumular sacarose nos colmos em quantidades que excedem 50% de seu peso seco, característica única no reino vegetal (Moore, 1995). Sacarose e seu derivado mais importante, etanol, são dois produtos de grande importância mundial. Assim, o teor de sacarose em cana tem fundamental importância no aumento da produtividade dessas duas commodities. O melhoramento clássico parece ter alcançado seu limite, já que incrementos expressivos no teor de sacarose em novas variedades não têm sido observados e tudo aponta para a necessidade de estudos que levem a uma maior compreensão dos mecanismos moleculares associados à produção, transporte e acúmulo de sacarose em cana (Casu et al., 2005; Moore, 1995). Procurar seqüências promotoras de genes de interesse é importante para a obtenção de transgênicos, já que promotores constitutivos não apresentam resultados satisfatórios em cana (Lakshmanan et al., 2005). É também objetivo aqui hibridar mRNA de genótipos de cana-de-açúcar com segregação para acúmulo de sacarose, em uma plataforma customizada de oligos (Agilent), com aproximadamente 44k elementos, que compõe uma representatividade gênica não alcançada em esforços anteriores com microarranjos de cDNA. Genome walking foi a técnica utilizada na obtenção de regiões à montante do primeiro éxon, predito in silico, para três proteínas quinase de interesse, SASGMS11561, SASGMS16343 e SASGMS09047, que se mostraram moduladas em experimentos anteriores de hibridação com amostras segregantes para conteúdo de sacarose. Foi obtido sucesso nos três casos, tendo os fragmentos de DNA sido seqüenciados e oportunamente alinhados à montante dos correspondentes genes ortólogos em sorgo, bem como ao banco ainda em construção de contigs do genoma de cana-de-açúcar, obtidos por shotgun. A plataforma Agilent, com seus 43803 SAS únicos, mostrou-se uma ferramenta muito adequada para as hibridações de genótipos de mais alto Brix contra genótipos de mais baixo Brix. Um total de 569 genes diferencialmente expressos foram obtidos em pelo menos uma das três hibridações realizadas. Um grupo de genes, de diferentes categorias e perfis de modulação, foi validado por PCR em tempo real, obtendo uma taxa de aproximadamente 90%. Apesar do grande número de SAS diferencialmente expressos, por volta de 70% dos mesmos ainda se encontram não categorizados, seja por falta de similaridade de seqüência em bancos de dados de organismos próximos ou pela alta complexidade e esforço prático na cura desse processo de categorização manual. Assim, três fragmentos de seqüências promotoras para três proteínas quinase de interesse foram obtidos e seqüenciados, como parte dos esforços do grupo em formar um catálogo de promotores específicos para cana-de-açúcar. Um grupo de genes foi analisado dos resultados das hibridações por seus papéis relevantes nos processos que levam ao maior teor de sacarose em cana, devidamente corroborados por trabalhos do próprio grupo, bem como de outros / Sugarcane is a C4 plant with the unique characteristic of being capable of accumulating sucrose in its culms in quantities that exceed 50% of its dry weight (Moore, 1995). Sucrose and ethanol are highly valued products in the world of today. Sucrose content is a trait with fundamental importance in the on-going process of increasing productivity of these two sugarcane byproducts. Classic improvement of sugarcane seems to have reached its practical limits, given that it has become increasingly harder to obtain varieties with increased sugar content. This obstacle points towards the necessity of better comprehension of the molecular mechanisms associated to the production, transport and accumulation of sucrose in sugarcane (Casu et al., 2005; Moore, 1995). The search for promoter sequences of genes of interest is crucial for the production of transgenic lines, since the use of constitutive promoters in sugarcane has been highly problematic, leading to unsatisfactory results in most cases (Lakshmanan et al., 2005). Another objective was to hybridize sugarcane genotypes with contrasting sugar content in a customized Agilent oligo platform, containing approximately 44k elements, which signifies the best effort so far regarding gene representativeness. Genome walking was the chosen technique to obtain upstream regions of the first in silico predicted exon of three proteins kinases of interest, SASGMS11561, SASGMS16343 and SASGMS09047, all of them selected from previous hybridization experiments with contrasting sucrose content samples. Success was achieved in all three cases, and the obtained fragments were sequenced and aligned to their respective syntenic region on the sorghum genome as well as on contigs from an increasingly larger bank of genomic sugarcane sequences, from our group, which has been acquired using the shotgun sequencing method. The Agilent platform, with its 43803 unique sugarcane assembled sequences (SAS), has proven valuable as a powerful high scale tool for the hybridization of genotypes with contrasting Brix values (high versus low Brix). A total of 569 differentially expressed genes were obtained from at least one of the three experiments accomplished. A group of genes from different categories and modulation profiles was depicted and validated through real time PCR, with an approximate validation rate of 90%. Although the number of differentially expressed genes is high, around 70% of them is still uncategorized, mostly because of their unique identity and therefore lack of reference organisms to compare with and the high complexity and laboriousness of categorizing them manually. In summary, three promoter fragments from three different protein kinases of interest were obtained and sequenced, as a part of a greater effort to create a sugarcane promoter sequence catalogue. From the hybridization assays, a group of genes were analyzed, due to their putative importance in the processes that lead to a higher sucrose content in sugarcane, also corroborated by previous studies from our group as well as from others.
373

Neuroprotection during anoxic-stress in Drosophila melanogaster: the role of PKG pathway on protection of function and survival

Unknown Date (has links)
Anoxia is characterized by an absence of oxygen supply to a tissue (Dawson- Scully et al., 2010). Unlike humans, Drosophila melanogaster is an organism that can survive low oxygen levels for hours without showing any pathology (Lutz et al., 2003) Under anoxia, the fruit fly loses locomotive activity, resulting in an anoxic coma (Haddad et al., 1997). In this study we investigate the influence of five variables for anoxic tolerance in adult Drosophila: 1) anoxic environment (gas vs. drowning), 2) anoxia duration, 3) temperature (cold [3ÀC] or room temperature [21ÀC]), 4) age (young 2-9 days and old 35-39 days), and 5) PKG variation. Tolerance to anoxia is measured by the time of recovery and survival of the fruit fly from the anoxic coma. The results from this study show that short stress, low temperature, young age, and low PKG activity increased anoxic tolerance. Our findings will lay the foundation to investigate different variables, genes or pharmacological compounds that can modulate neuronal anoxic tolerance. / by Raquel Benasayag Meszaros. / Thesis (M.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
374

Neuroprotection during acute hyperthermic stress: Role of the PKG pathway in neurons and glia in the protection of neural function in Drosophila melanogaster

Unknown Date (has links)
The human brain functions within a narrow range of temperatures and variations outside of this range incur cellular damage and death and, ultimately, death of the organism. Other organisms, like the poikilotherm Drosophila melanogaster, have adapted mechanisms to maintain brain function over wide ranges in temperature and, if exposed to high temperatures where brain function is no longer supported, these animals enter a protective coma to promote survival of the organism once the acute temperature stress is alleviated. This research characterized the role of different neuronal cell types, including glia, in the protection of brain function during acute hyperthermia, specifically looking at two protective pathways: the heat shock protein (HSP) pathway and the cGMP-dependent protein kinase G (PKG) pathway. Whole animal behavioral assays were used in combination with tissue-specific genetic manipulation of protective pathways to determine the specific cell types sufficient to confer protection of neuronal function during acute hyperthermia. Using the neuromuscular junction (NMJ) preparation, calcium imaging techniques were combined with pharmacological and genetic manipulations to test the hypothesis that alterations in ion channel conductance via endogenous mechanisms regulating the cellular response to high temperature stress alter neuronal function. Expression of foraging RNAi to inhibit PKG expression in neurons or glia demonstrated protection of function during acute hyperthermia measured behaviorally through the extension of locomotor function. This extension of function with the tissue-specific inhibition of PKG was also confirmed at the cellular level using the genetically encoded calcium indicator (GECI), GCaMP3, to image calcium dynamics at the NMJ, where preparations expressing foraging RNAi could continue to elicit changes in calcium dynamics in response to stimulation. Over the course of this study, the mechanism underlying a novel glial calcium wave in the peripheral nervous system was characterized in order to elucidate glia’s role in the protection of neuronal function during acute hyperthermia. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
375

Neuroprotection During Acute Oxidative Stress: Role of the PKG Pathway and Identification of Novel Neuromodulatory Agents Using Drosophila Melanogaster

Unknown Date (has links)
Oxidant stress and injury is inherent in many human diseases such as ischemic vascular and respiratory diseases, heart failure, myocardial infarction, stroke, perinatal and placental insufficiencies, diabetes, cancer, and numerous psychiatric and neurodegenerative disorders. Finding novel therapeutics to combat the deleterious effects of oxidative stress is critical to create better therapeutic strategies for many conditions that have few treatment options. This study used the anoxia-tolerant fruit fly, Drosophila melanogaster, to investigate endogenous cellular protection mechanisms and potential interactions to determine their ability to regulate synaptic functional tolerance and cell survival during acute oxidative stress. The Drosophila larval neuromuscular junction (NMJ) was used to analyze synaptic transmission and specific motor axon contributions. Drosophila Schneider 2 (S2) cells were used to assess viability. Acute oxidative stress was induced using p harmacological paradigms that generate physiologically relevant oxidant species: mitochondrial superoxide production induced by sodium azide (NaN3) and hydroxyl radical formation via hydrogen peroxide (H2O2). A combination of genetic and pharmacological approaches were used to explore the hypothesis that endogenous protection mechanisms control cellular responses to stress by manipulating ion channel conductance and neurotransmission. Furthermore, this study analyzed a group of marine natural products, pseudopterosins, to identify compounds capable of modulating synaptic transmission during acute oxidative stress and potential novel neuromodulatory agents. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
376

Purification and characterization of two members of the protein tyrosine phosphatase family: dual specificity phosphatase PVP and low molecular weight phosphatase WZB

Unknown Date (has links)
by Paula A. Livingston. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web. / Two protein tyrosine phosphatases, dual specificity phosphatase PVP and low molecular weight phosphatase WZB were purified and characterized. PVP was expressed as inclusion bodies and a suitable purification and refolding method was devised. Enzyme kinetics revealed that p-nitrophenylphosphate and (Sb(B-naphthyl phosphate were substrates with KM of 4.0mM and 8.1mM respectively. PVP showed no reactivity towards phosphoserine. Kinetic characterization of WZB showed that only pnitrophenylphosphate was a substrate with no affinity for Ç-naphthyl phosphate and phosphoserine. Optimal conditions for activity with PNPP were found at a pH of 5 with a KM of 1.1mM, kcat of 35.4s-1 and kcat/KM of 32.2s-1mM-1. Inhibition studies showed that phosphate, fluoride, and molybdate were competitive inhibitors with Ki of 3.2mM, 71.7mM, and 50.4(So(BM respectively and hydrogen peroxide abolished activity. Active site mutants of WZB Cys9Ser and Asp115Asn showed no activity.
377

Temporal response of creatine kinase and fibroblast growth factor-21 to high and low repetition resistance training programs

Unknown Date (has links)
The purpose of this study was to examine the acute and temporal response of CK- MM and FGF-21 to 3-day/wk. different repetition-range, volume-equated resistance training programs over 8-weeks in previously trained males. Sixteen trained, college- aged males were counterbalanced into high (DUP-HR) or low (DUP-LR) repetition groups. Subjects performed the squat and bench press 3x/wk. for 8 weeks. Blood samples were collected at various intervals throughout the study. Trained individuals did not elicit significant acute or chronic changes in CK-MM or FGF-21 following training and the lack of change was present in both groups. Additionally, neither biomarker correlated with changes in 1RM strength. There was a very strong correlation between acute mean (r=0.95) and acute percentage change (r=0.97) increase from pre training to post training in week #1. Additionally, a moderate correlation in percentage change was observed (r=0.59) of both biomarkers from pre training to 48 hours post training in week #2. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
378

Combined targeting of mTOR and the microtubule in hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third most common cause of cancer-related deaths. Systemic therapies are the main treatment options for HCC patients with advanced disease (∼ 80% of all cases). However, only very moderate clinical responses are achieved with most of the conventional therapies. Thus, more effective therapeutic strategies are much needed. The PI3K/Akt/mTOR signaling pathway, which plays a critical role in controlling cell proliferation and survival, is aberrantly activated in ∼ 45% HCC, suggesting it to be a potential target for HCC treatment. Moreover, emerging evidences indicate that activation of the PI3K/Akt/mTOR pathway may be associated with resistance to many cytotoxic chemotherapies, including microtubule targeting agents. In this study, by gene expression profiling and gene ontology analysis, "microtubule-related cellular assembly" was identified to be the major biological/functional process involved in HCC development, suggesting that microtubule is also an important therapeutic target for HCC. With these understandings, it is hypothesize in this thesis that combined targeting of a key component ofthe PI3K/Akt/mTOR pathway, namely the mammalian target of rapamycin (mTOR) and the microtubule would be an effective therapeutic strategy for HCC. The objectives of the thesis are to examine the therapeutic potential of microtubule targeting, mTOR targeting, and combined targeting of the microtubule and mTOR in both in vitro and in vivo models of HCC. / In summary, the PI3K/Akt/mTOR pathway and the microtubule represent promising therapeutic targets for HCC treatment. The findings from this thesis offer a rationale for combining mTOR inhibitors with microtubule targeting agents for effective HCC treatment. / In the second part, the effect of mTOR inhibition, either alone or in combination with an additional microtubule targeting agent (vinblastine) was investigated in HCC. Temsirolimus, an mTOR inhibitor, suppressed HCC cell proliferation in as early as 24 hrs with an IC50 of 1.27+/-0.06muM (Huh7), 8.77+/-0.76muM (HepG2), and 52.95+/-17.14muM (Hep3B). Vinblastine (1nM) alone caused 30--50% growth inhibition in 3 HCC cell lines. In these HCC cell lines, it was found that temsirolimus/vinblastine combination resulted in an additive to synergistic effect (when compared to single agents alone) with maximum growth inhibition of 80--90% as early as 24 hrs upon treatment. This marked growth inhibition was accompanied with cell cycle arrest at both G1 and G2/M phases, and PARP cleavage (a hallmark for apoptosis). Moreover, the combination specifically caused concerted down-regulation of several important anti-apoptotic and survival proteins (survivin, Bcl-2 and Mcl-1), which was not observed in single agent treatments. It was hypothesized that inhibition of these key anti-apoptotic/survival proteins may represent a novel mechanistic action of this highly effective combination approach of dual targeting of mTOR and microtubule by temsirolimus/vinblastine in HCC cells. Indeed, transient over-expression of each of these genes (survivin, Bcl-2 or Mcl-1) in HCC cells did partially rescue the growth inhibitory effect of the temsirolimus/vinblastine combination. More importantly, this novel combination significantly suppressed the growth of HCC xenografts in nude mice (when compared with single agents alone). / In the third part, the anti-tumor effect of another mTOR inhibitor everolimus in combination with microtubule targeting agents, vinblastine and patupilone (a microtubule-stabilizing agent), was investigated in HCC cells. Everolimus/vinblastine combination resulted in an additive to synergistic effect accompanied with cell cycle arrest at both G1 and G2/M phases, and PARP cleavage. The combination also caused concerted down-regulation of anti-apoptotic and survival proteins (survivin, Bel-2 and Mel-1) as observed with the temsirolimus/vinblastine combination. However, everolimus only moderately enhanced the sensitivity of patupilone for reasons unknown. / Taxanes are the major chemotherapeutic agents that target the microtubule. In the first part of the thesis, the anti-tumor activity of two taxanes, paclitaxel and docetaxel (which are known to stabilize microtubules) was examined and compared with doxorubicin (a DNA intercalating agent). Across all three HCC cell lines tested, it was found that the microtubule targeting agents, taxanes, were more efficacious than doxorubicin. This supports the initial finding that microtubule assembly process is functionally important in HCC. Recent studies demonstrated that using nanoparticles for drug delivery can greatly enhance therapeutic efficacy and reduce side-effects. Therefore, the nanoparticle albumin-bound (nab)-paclitaxel was employed to further evaluate the therapeutic efficacy of such a delivery strategy in HCC models. In all three HCC cell lines tested, nab-paclitaxel was found to be the most effective agent, with an average IC50 value of 0.16--10.42nM, when compared to non-conjugated taxanes (paclitaxel, docetaxel) and doxorubicin. In vitro analysis showed that nab-paclitaxel was able to induce cell cycle arrest at G2/M phase and apoptosis in HCC cells. In vivo study demonstrated that nab-paclitaxel readily inhibited the growth of HCC xenografts with lower toxicity when compared to paclitaxel, docetaxel and doxorubicin. Moreover, specific silencing of a key regulatory protein for microtubule dynamics, Stathmin 1, by siRNA significantly enhanced the effect of nab-paclitaxel in HCC cells, resulting in synergistic growth inhibition in vitro. / Zhou, Qian. / Advisers: Winnie Yeo; Vivian Lui; Nathalie Wong. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 148-164). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
379

Dissecting the oncogenic function of a novel androgen receptor-dependent direct target, cell cycle-related kinase (ccrk), in hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Hepatocellular carcmoma (HCC) is the third most common cause of cancer-related deaths worldwide, with a gender prevalence observed in men. Recent studies have suggested that elevated activity of the androgen axis is one major host factor underlying this disparity between genders. The androgen receptor (AR) mediates function of androgen in vital developmental and oncogenic pathways by binding to genomic androgen response elements, which influence the transcription of downstream target genes. AR is overexpressed in 60-80% of human HCCs. Genetic studies further established the pivotal role ofAR in hepatocarcinogenesis, where liver-specific knockout of AR significantly reduced tumorigenicity in carcinogen- and HBV-induced HCC mouse models. However, AR-inducedhepatocarcinogenesis is far from fully understood, in part because little is known about the identity and role of direct AR-dependent targeted genes in hepatocytes. / In this study, we used genome-wide location and functional analyses to identify a critical mediator of AR signaling, cell cycle-related kinase (CCRK), in driving beta-cateninl T-cell factor (TCF)-dependent hepatocarcinogenesis. Using chromatin immunoprecipitation followed by promoter array analysis of AR-overexpressing HCC cell lines, we found a number of cell cycle-related genes that are likely under the direct modulation of AR. Cell cycle-related kinase (CCRK), previously shown to promote glioblastoma tumorigenesis, was found to be the most significantly-bound AR target ( p<0.0001). CCRK was directly up-regulated by ligand-activated AR through promoter binding and required for AR-induced G1-S cell cycle progression because (1) CCRK overexpression attenuated cell cycle blockage by AR knockdown and (2) CCRK inhibition counteracted AR-mediated cell cycle progression. Ectopic CCRK expression induced immortalized liver cell proliferation, malignant transformation and tumor formation in immunodeficient mice, whereas CCRK inhibition decreased HCC cell growth in vitro and in vivo. These functional assays demonstrated that CCRK is a potential oncogene in HCC. Mechanistically, CCRK activated beta-catenin/TCF-dependent transcription through phosphorylation of glycogen synthase kinase-3beta and induced the expressions of beta-catenin target genes, cyclin D1 (CCND1) and epidermal growth factor receptor (EGFR). Inhibition of beta-catenin/TCF signaling attenuated CCRK-induced cell cycle progression, colony formation and tumorigenicity. Conversely, HCC cell growth inhibition by CCRK knockdown was rescued by constitutively active beta-catenin or TCF. In agreement with these findings, activation of the AR/CCRK/beta-catenin axis was frequently observed in primary HCCs. More importantly, CCRK over-expression was correlated with tumor staging and poor overall survival in a cohort ofhuman HCC tissues. / Together, our data reveal a new cascade for AR function in hepatocarcinogenesis via the activation of beta-catenin/TCF signaling. This study also reveals that CCRK is a novel focal link between two prominent signaling pathways vital for HCC growth and thus represents a new therapeutic target for HCC treatment. / Feng, Hai. / Adviser: Sung Jao Yiu. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 161-177). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
380

The signaling pathway mediating the proliferative action of TNF-α in C6 glioma cells.

January 2001 (has links)
by Ho Wai Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 207-243). / Abstracts in English and Chinese. / Title --- p.i / Abstract --- p.ii / 摘要 --- p.v / Acknowledgements --- p.viii / Table of Contents --- p.x / List of Abbreviations --- p.xviii / List of Figures --- p.xxiv / List of Tables --- p.xxix / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Traumatic brain injury --- p.1 / Chapter 1.2 --- Ceils of the nervous system: glia --- p.1 / Chapter 1.2.1 --- Astroglia - / Chapter 1.2.1.1 --- Molecular markers of astroglia --- p.3 / Chapter 1.2.1.2 --- Functions of astroglia --- p.3 / Chapter 1.2.2 --- Oligodendrocyte --- p.5 / Chapter 1.2.2.1 --- Molecular markers of oligodendrocyte --- p.6 / Chapter 1.2.2.2 --- Functions of oligodendrocyte --- p.6 / Chapter 1.2.3 --- Microglia --- p.7 / Chapter 1.2.3.1 --- Molecular markers of microglia --- p.7 / Chapter 1.2.3.2 --- Functions of microglia --- p.8 / Chapter 1.3 --- Cytokine and brain injury --- p.8 / Chapter 1.4 --- Tumor necrosis factor alpha (TNF-α) --- p.9 / Chapter 1.5 --- TNF-α receptor --- p.10 / Chapter 1.6 --- Biological activities of TNF-α --- p.11 / Chapter 1.7 --- Signaling mechanism --- p.13 / Chapter 1.7.1 --- Protein kinase C --- p.13 / Chapter 1.7.2 --- Protein kinase A --- p.14 / Chapter 1.7.3 --- p38 mitogen-activated protein kinase (p38 MAPK) --- p.15 / Chapter 1.7.3.1 --- Biological activities of p38 MAPK --- p.18 / Chapter 1.7.4 --- Inducible nitric oxide synthase (iNOS) --- p.20 / Chapter 1.7.5 --- cAMP responsive element binding protein (CREB) --- p.21 / Chapter 1.7.6 --- Transcription factor c-fos --- p.23 / Chapter 1.7.7 --- Nuclear factor kappa-B (NF-kB) --- p.24 / Chapter 1.8 --- "Brain injury, astrogliosis and scar formation" --- p.26 / Chapter 1.9 --- β-adrenergic receptor (β-AR) --- p.28 / Chapter 1.9.1 --- Functions of β-AR in astrocytes --- p.29 / Chapter 1.10 --- Why do we use C6 glioma cell? --- p.31 / Chapter 1.11 --- Fluorescent differential display (FDD) --- p.34 / Chapter 1.12 --- Aims and Scopes of this project --- p.36 / Chapter Chapter 2 --- MATERIALS AND METHODS / Chapter 2.1 --- Material --- p.40 / Chapter 2.1.1 --- Cell line --- p.40 / Chapter 2.1.2 --- Cell culture reagents --- p.40 / Chapter 2.1.2.1 --- Complete Dulbecco's modified Eagle medium (CDMEM) --- p.40 / Chapter 2.1.2.2 --- Rosewell Park Memorial Institute (RPMI) medium --- p.41 / Chapter 2.1.2.3 --- Phosphate buffered saline (PBS) --- p.41 / Chapter 2.1.3 --- Recombinant cytokines --- p.41 / Chapter 2.1.4 --- Chemicals for signal transduction study --- p.42 / Chapter 2.1.4.1 --- Modulators of p38 mitogen-activated protein kinase (p38 MAPK) --- p.42 / Chapter 2.1.4.2 --- Modulators of protein kinase C (PKC) --- p.42 / Chapter 2.1.4.3 --- Modulators of protein kinase A (PKA) --- p.42 / Chapter 2.1.4.4 --- β-Adrenergic agonist and antagonist --- p.43 / Chapter 2.1.5 --- Antibodies --- p.44 / Chapter 2.1.5.1 --- Anti-p38 mitogen-activated protein kinase (p38 MAPK) antibody --- p.44 / Chapter 2.1.5.2 --- Anti-phosporylation p38 mitogen-activated protein kinase (p-p38 MAPK) antibody --- p.44 / Chapter 2.1.5.3 --- Antibody conjugates --- p.44 / Chapter 2.1.6 --- Reagents for RNA isolation --- p.45 / Chapter 2.1.7 --- Reagents for DNase I treatment --- p.45 / Chapter 2.1.8 --- Reagents for reverse transcription of mRNA and fluorescent PCR amplification --- p.45 / Chapter 2.1.9 --- Reagents for fluorescent differential display --- p.46 / Chapter 2.1.10 --- Materials for excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.1.11 --- Reagents for reamplification of differentially expressed cDNA fragments --- p.46 / Chapter 2.1.12 --- Reagents for subcloning of reamplified cDNA fragments --- p.47 / Chapter 2.1.13 --- Reagents for purification of plasmid DNA from recombinant clones --- p.47 / Chapter 2.1.14 --- Reagents for DNA sequencing of differentially expressed cDNA fragments --- p.47 / Chapter 2.1.15 --- Reagents for reverse transcription-polymerase chain reaction (RT-PCR) --- p.48 / Chapter 2.1.16 --- Reagents for electrophoresis --- p.50 / Chapter 2.1.17 --- Reagents and buffers for Western blot --- p.50 / Chapter 2.1.18 --- Other chemicals and reagents --- p.50 / Chapter 2.2 --- Maintenance of rat C6 glioma cell line --- p.51 / Chapter 2.3 --- RNA isolation --- p.52 / Chapter 2.3.1 --- Measurement of RNA yield --- p.53 / Chapter 2.4 --- DNase I treatment --- p.53 / Chapter 2.5 --- Reverse transcription of mRNA and fluorescent PCR amplification --- p.54 / Chapter 2.6 --- Fluorescent differentia display --- p.55 / Chapter 2.7 --- Excision of differentially expressed cDNA fragments --- p.59 / Chapter 2.8 --- Reamplification of differentially expressed cDNA fragments --- p.59 / Chapter 2.9 --- Subcloning of reamplified cDNA fragments --- p.60 / Chapter 2.10 --- Purification of plasmid DNA from recombinant clones --- p.63 / Chapter 2.11 --- DNA sequencing of differentially expressed cDNA fragments --- p.64 / Chapter 2.12 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.66 / Chapter 2.13 --- Western bolt analysis --- p.67 / Chapter Chapter 3 --- RESULTS / Chapter 3.1 --- DNase I treatment --- p.71 / Chapter 3.2 --- FDD RT-PCR and band excision --- p.71 / Chapter 3.3 --- Reamplification of excised cDNA fragments --- p.74 / Chapter 3.4 --- Subcloning of reamplified cDNA fragments --- p.77 / Chapter 3.5 --- DNA sequencing of subcloned cDNA fragments --- p.77 / Chapter 3.6 --- Confirmation of the differentially expressed cDNA fragments by RT-PCR and Western blotting --- p.84 / Chapter 3.6.1 --- Effects of TNF-α on p38a mitogen protein kinase (p38 α MAPK) --- p.84 / Chapter 3.6.2 --- Effects of TNF-α on p38 a MAPK and p-p38 α MAPK protein level --- p.86 / Chapter 3.7 --- Effects of TNF-α on p38 MAPK --- p.88 / Chapter 3.7.1 --- "Effects of TNF-α on p38 α, β,γ andδ MAPK" --- p.88 / Chapter 3.7.2 --- Role of TNF-receptor (TNF-R) subtype in the TNF-α-induced p3 8 MAPK expression in C6 cells --- p.89 / Chapter 3.7.3 --- The signaling system mediating TNF-α-induced p38 a MAPK expression in C6 cells --- p.92 / Chapter 3.7.3.1 --- The involvement of PKC in TNF-α-induced p38 MAPK expression in C6 cells --- p.92 / Chapter 3.7.3.2 --- The involvement of PKC in TNF-α-induced p38 MAPK expression in C6 cells --- p.98 / Chapter 3.7.4 --- The relationship between p38 MAPK and β-adrenergic mechanisms in C6 cells --- p.99 / Chapter 3.7.4.1 --- Effects of isoproterenol and propanol on p38 MAPK mRNA levels in C6 cells --- p.103 / Chapter 3.7.4.2 --- Effects of β1-agonist and -antagonist on p38 MAPK mRNA levels in C6 cells --- p.106 / Chapter 3.7.4.3 --- Effects of β2-agonist and -antagonist on p38 MAPK mRNA levels in C6 cells --- p.107 / Chapter 3.8 --- The relationship between p3 8 MAPK and inducible nitric oxide synthase (iNOS) expression --- p.113 / Chapter 3.8.1 --- Effects of TNF-α on the iNOS expression in C6 cells --- p.113 / Chapter 3.8.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced iNOS expression in C6 cells --- p.115 / Chapter 3.8.3 --- The signaling system mediating TNF-α-induced iNOS expression in C6 cells --- p.115 / Chapter 3.8.3.1 --- The involvement of p38 MAPK in the TNF-α-induced iNOS expression in C6 cells --- p.117 / Chapter 3.8.3.2 --- The involvement of PKA in the TNF-α-induced iNOS expression in C6 cells --- p.119 / Chapter 3.9 --- The relationship between p38 MAPK and cAMP-responsive element binding protein (CREB) expression --- p.120 / Chapter 3.9.1 --- Effects of TNF-α on the CREB expression in C6 cells --- p.120 / Chapter 3.9.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced CREB expression in C6 cells --- p.124 / Chapter 3.9.3 --- The signaling system mediating TNF-α-induced CREB expression in C6 cells --- p.126 / Chapter 3.9.3.1 --- The involvement of p38 MAPK in the TNF-α-induced CREB expression in C6 cells --- p.126 / Chapter 3.9.3.2 --- The involvement of PKC in the TNF-α-induced CREB expression in C6 cells --- p.128 / Chapter 3.9.3.3 --- The involvement of PKA in TNF-α-induced CREB expression in C6 cells --- p.129 / Chapter 3.9.4 --- The relationship between CREB and β-adrenergic mechanisms in C6 cells --- p.136 / Chapter 3.9.4.1 --- Effects of isoproterenol and propanol on CREB mRNA levels in C6 cells --- p.136 / Chapter 3.9.4.2 --- Effects of β1-agonist and -antagonist on CREB mRNA levels in C6 cells --- p.139 / Chapter 3.9.4.3 --- Effects of (32-agonist and -antagonist on CREB mRNA levels in C6 cells --- p.142 / Chapter 3.10 --- The relationship between p38 MAPK and transcription factor c-fos expression --- p.146 / Chapter 3.10.1 --- Effects of TNF-α on the c-fos expression in C6 cells --- p.146 / Chapter 3.10.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced c-fos expression in C6 cells --- p.146 / Chapter 3.10.3 --- The signaling system mediating TNF-α-induced c-fos expression in C6 cells --- p.149 / Chapter 3.10.3.1 --- The involvement of p38 MAPK in the TNF-α-induced c-fos expression in C6 cells --- p.149 / Chapter 3.10.3.2 --- The involvement of PKC in the TNF-α-induced c-fos expression in C6 cells --- p.151 / Chapter 3.10.3.3 --- The involvement of PKA in TNF-α-induced c-fos expression in C6 cells --- p.154 / Chapter 3.10.4 --- The relationship between c-fos and β-adrenergic mechanisms in C6 cells --- p.157 / Chapter 3.10.4.1 --- Effects of isoproterenol and propanolol on c-fos mRNA levels in C6 cells --- p.157 / Chapter 3.10.4.2 --- Effects of β1-agonist and -antagonist on c-fos mRNA levels in C6 cells --- p.160 / Chapter 3.10.4.3 --- Effects of β2-agonist and -antagonist on c-fos mRNA levels in C6 cells --- p.164 / Chapter 3.11 --- The relationship between p38 MAPK and transcription factor NF-kB expression --- p.168 / Chapter 3.11.1 --- Effects of TNF-α on the NF-kB expression in C6 cells --- p.168 / Chapter 3.11.2 --- Role of TNF-receptors (TNF-R) subtypes in the TNF-α- induced NF-kB expression in C6 cells --- p.168 / Chapter 3.11.3 --- The signaling system mediating TNF-α-induced NF-kB expression in C6 cells --- p.171 / Chapter 3.11.3.1 --- The involvement of p38 MAPK in the TNF-α-induced NF-kB expression in C6 cells --- p.171 / Chapter 3.11.3.2 --- The involvement of PKC in the TNF-α-induced NF-kB expression in C6 cells --- p.173 / Chapter Chapter 4 --- DISCUSSION AND CONCLUSION / Chapter 4.1 --- Effects of tumor-necrosis factor-alpha (TNF-α) on C6 cell proliferations --- p.176 / Chapter 4.2 --- The Signaling System Involved in TNF-α-Induced p38 MAPK Expression in C6 cells --- p.178 / Chapter 4.3 --- The Signaling System Involved in TNF-α-Induced iNOS Expression in C6 cells --- p.184 / Chapter 4.4 --- The Signaling System Involved in TNF-α-Induced CREB Expression in C6 cells --- p.186 / Chapter 4.5 --- The Signaling System Involved in TNF-α-Induced c-fos Expressionin in C6 cells --- p.190 / Chapter 4.6 --- The Signaling System Involved in TNF-α-Induced NF-kB Expression in C6 cells --- p.193 / Chapter 4.7 --- Conclusions --- p.195 / Chapter 4.8 --- Possible application / References

Page generated in 0.0796 seconds