• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 492
  • 79
  • 40
  • 36
  • 23
  • 10
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 803
  • 803
  • 139
  • 134
  • 133
  • 127
  • 99
  • 79
  • 78
  • 69
  • 61
  • 50
  • 49
  • 48
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Hlavní strukturní protein myšího polyomaviru: interakce s buněčnými strukturami / Major capsid protein of mouse polyomavirus: interaction with cellular structures

Horníková, Lenka January 2012 (has links)
Mouse polyomavirus (MPyV) is small non-enveloped DNA virus. Although this virus has been studied for almost 60 years, it still remains unclear, how can virus transport its genetic information to the cell nucleus. Also, the mechanism of virion morphogenesis is not well understood. First part of this work is focused on endocytic pathway which is used by MPyV for trafficking toward the cell nucleus. Using dominant negative mutant of caveolin-1 we showed that caveolin-1dependent endocytic pathway, described for SV40, is not used by MPyV for productive infection. MPyV is transported to early endosomes. Acidic milieu of endosomes is indispensable for productive infection. Preventing virus localisation into early endosomes (dominant negative mutant of Rab 5 GTPase) or endosomes alkalisation (by ammonium chloride or bafilomycin A1) led to dramatic decrease of virus infectivity. Alkalisation of endosomes entailed retention of MPyV in early endosomes. It indicates that virus is further transported to late endosomes. Finally, we confirmed by FRET that MPyV is in perinuclear space localized into recycling endosomes. Another poor characterized process is virion morphogenesis. To characterize the participation of cellular proteins in virion precursor complexes, nuclear as well as whole-cell lysates of infected cells or...
332

Statistical physics of information processing by cells

Wang, Chinghao 12 July 2019 (has links)
This thesis provides a physics account of the ability of cells to integrate environmental information to make complex decisions, a process commonly known as signaling. It strives to address the following questions: (i) How do cells relate the state of the environment (e.g. presence/absence of specific molecules) to a desired response such as gene expression? (ii) How can cells robustly transfer information? (iii) Is there a biophysical limit to a cells' ability to process information? (iv) Can we use the answers to the above questions to formulate biophysical principles that inform us about the evolution of signaling? Throughout, I borrow techniques from non-equilibrium statistical physics, statistical learning theory, information theory and information geometry to construct biophysical models capable of making quantitative experimental predictions. Finally, I address the connection of energy expenditure and biological efficiency by zeroing in on a process unique to eukaryotic cells-- nuclear transport. The thesis concludes with a discussion of our theory and its implications for synthetic biology.
333

Complexos macromoleculares da via específica de incorporação de selênio de Escherichia coli / Macromolecular assemblies of selenium incorporation specific pathway in Escherichia coli

Serrão, Vitor Hugo Balasco 14 February 2013 (has links)
A existência de uma maior variedade de aminoácidos codificados pelo código genético tem estimado estudos sobre os mecanismos de síntese, reconhecimento e incorporação desses resíduos nas cadeias polipeptídicas nascentes. Um exemplo é a via de incorporação de selenocisteína evento cotraducional dirigido pelo códon UGA. Em bactérias, essa via conta com uma complexa maquinaria molecular composta por: Selenocisteína Sintase (SelA), Fator de Elongação Específico de Reconhecimento (SelB), Selenofosfato Sintetase (SelD), tRNA específico (SelC ou tRNAsec), sequência específica no mRNA (Sequência de Inserção de Selenocisteínas - SECIS) e Aminoacil tRNA Sintetase (aaRS). Pelo fato do selênio ter uma toxicidade elevada em ambientes celulares, é fundamental a compreensão do mecanismo catalítico e razão estequiométrica na formação dos complexos da via na etapa de incorporação junto ao tRNAsec, bem como sua caracterização estrutural foram os objetivos deste trabalho. A proteína SelA foi expressa e purificada para utilização em análises envolvendo microscopia de força atômica, microscopia eletrônica de transmissão com contraste negativo e em gelo vítreo foram realizadas nos complexos SelA e SelA-tRNAsec, visando obter um modelo estrutural e a razão estequiométrica dos complexos. A fim de compreender o mecanismo de passagem do selênio, ensaios de anisotropia de fluorescência e de microcalorimetria, corroborados pelas análises de troca de hidrogênio-deutério acoplado a espectrometria de massa e espectroscopia de infravermelho, elucidaram a formação e estequiometria do complexo ternário SelAtRNA sec-SelD. Tentativas de cristalização e análises cristalográficas também foram realizadas, no entanto, sem sucesso. Com os resultados obtidos foi possível propor que o reconhecimento de SelD e, consequentemente, a entrega do selenofosfato, seja uma etapa crucial da via de incorporação de selenocisteínas. / The existence of a greate variety of amino acids encoded by the genetic code has stimulated the study of the mechanisms of synthesis, recognition and incorporation of these residues in the nascent polypeptide chains. An example of genetic code expansion is the selenocysteine incorporation pathway an event cotraducional by the UGA codon. In bacteria, this pathway has a complex molecular machinery comprised: Selenocysteine Synthase (SelA), Specific Elongation Factor (SelB), Selenophosphate Synthetase (SelD), tRNA-specific (SelC or tRNAsec), Specific mRNA Sequence (SElenocysteine Insertion Sequence - SECIS) and Aminoacyl tRNA Synthetase (aaRS). Because selenium has high toxicity in cellular environments; it is essential for cell survival the association of this compound with proteins, in this case, selenoprotens and the associated proteins involved in the selenocysteine synthesis. Therfore the understanding of the catalytic mechanism, stoichiometric ratio, protein complex formation with the tRNAsec, and its structural characterization were the objectives of this work. The SelA protein was expressed and purified to used in analyzes involving atomic force microscopy, transmission electron microscopy with negative stain and in vitreous ice were performed in the complex SelA and SelA-tRNAsec in order to obtain a structural model of the complex and the stoichiometric ratio of its components. To study the selenium association with protein of the synthesis pathway, fluorescence anisotropy assays and isothermal titration calorimetry corroborated by the analysis hydrogen-deuterium exchange coupled to mass spectrometry and infrared spectroscopy were employed.Crystallization attempts were made and preliminary crystallographic analyzes were also performed, however, so far unsuccessfuly. The results obtained were possible to develop the hypothesis about the SelD recognition and, consenquently, the selenophosphate delivery, a crucial stage of the selenocysteine incorporation pathway.
334

Two Wavelength High Intensity Irradiation for Effective Crosslinking of DNA to Protein

Guler, Emine 09 April 2004 (has links)
Protein-DNA crosslinking is an important method to study protein-DNA interactions. Crosslinking by short pulsed UV lasers is a potentially powerful tool that results in efficient crosslinking, apparently by a two photon process. However, the major problem in using UV laser crosslinking is that the conditions which lead to high crosslinking efficiency also result in high DNA damage. Previously, it has been shown that a combination of femtosecond laser pulses at two different wavelengths, in the UV (266 nm) and the visible range (400 nm), increases the effective crosslinking yield (i.e. higher crosslinking yields with reduced DNA damage). This new strategy has the advantage that the intensity of the UV pulse for the first excitation step can be kept low, leading to lower UV-induced DNA damage and the second pulse at a visible wavelength can provide enough energy for the UV excited bases to cross their ionization threshold without damaging the DNA. The objective of this thesis project was to develop a novel UV laser cross-linking technique that would permit higher effective crosslinking yields with the commonly used pulses in the nanosecond (ns) range. To serve this purpose we tried to extend the two-wavelength femto second laser irradiation approach to longer duration pulses. We chose MBP-PIF3 protein and its target G-box DNA motif as a model system. Before ultraviolet irradiation of the protein-DNA complexes in vitro, the specific binding interaction of purified MBP-PIF3 protein with the G-box DNA motif was studied by Electrophoretic Mobility Shift Assay (EMSA). We irradiated the PIF3/DNA complexes with different laser systems (i.e. Nd:YAG and Dye lasers) and their combinations. We were expecting to see that the combination of UV laser pulses (260nm) with longer wavelength dye laser pulses (480nm) will produce higher effective crosslink yields relative to the yield from the UV pulses alone.
335

Defining the role of cytosolic iron-sulfur cluster assembly targeting complex in identification of iron-sulfur cluster proteins

Vo, Amanda T. 07 November 2018 (has links)
Iron sulfur (FeS) clusters are ubiquitous cofactors required for numerous fundamental biochemical processes, including DNA replication and repair, transcription, and translation. In the cell, these metallocofactors require a dedicated protein pathway for assembly. The Cytosolic Iron Sulfur Cluster Assembly (CIA) pathway is conserved across higher-level eukaryotes and is responsible for building and inserting these cofactors into the FeS proteins that need them. A major unsolved problem in the FeS cluster biogenesis field is how so many diverse FeS proteins are identified for cluster insertion. Several studies have identified a multiprotein complex containing Cia1, Cia2, and Met18 as the CIA targeting complex responsible for FeS cluster recognition and target maturation. The CIA targeting complex has been shown to associate with an FeS cluster protein, Nar1. Nar1 is a CIA factor that plays an unknown role in cluster transfer. Little information is known about the structure of the CIA targeting complex its mechanism of FeS cluster protein recognition. In this thesis, I investigate the architecture of the CIA targeting complex as well as the role each subunit plays in identification of apo-proteins and iron-sulfur cluster insertion. Previous proteomic and cell biological studies from the Lill lab propose that the CIA targeting complex exists as a mixture of discrete complexes in vivo. Each of these complexes is responsible for recognizing a distinct subset of targets. Herein, we utilize affinity co-purification and size exclusion chromatography investigate connectivity of the targeting complex, identify stable subcomplexes, and define their roles in recognizing our two model targets Rad3 and Leu1. We determine the CIA targeting complex contains one Met18, two Cia1, and four Cia2 polypepides. This complex is required to recognize Leu1. Our experiments reveal the formation of the stable subcomplexes Cia1-Cia2 and Met18-Cia2, which is sufficient to identify to Rad3. We also interrogate the role of Nar1 in binding to targets and cluster transfer, excluding the model that it acts as an adapter for cluster transfer. Furthermore, using site directed mutagenesis, combined with our co-purification and in vivo assays, we map the key interfaces required to form the targeting complex and investigate how their mutations impacts CIA function in vivo. We identify the binding site of Cia1 on Cia2, as well as the general region in which Cia2 binds to Met18. Through these experiments, we shed light on the role these subunits of CIA targeting complex and Nar1 play in FeS target recognition and FeS cluster transfer.
336

Molecular Basis for the Recognition of the Regulatory Stem-loop Structures in Eukaryotic Messenger RNAs

Tan, Dazhi January 2014 (has links)
Apart from carrying genetic information, RNAs also act as effectors of cellular processes through folding into intricate secondary and tertiary structures. The ubiquitous RNA structures in eukaryotic mRNAs, in collaboration with specific RNA-binding proteins, control many aspects of the post-transcriptional regulation of gene expression. However, the molecular bases for the recognition of these mRNA structures by their protein partners remain poorly understood due to the lack of structural information. This dissertation presents our structural studies on two protein-RNA complexes that both include regulatory mRNA stem-loop structures. We first describe the crystal structure of a ternary complex including the highly conserved human histone mRNA stem-loop (SL), the stem-loop binding protein (SLBP) and the 3′ to 5′ exonuclease 3′hExo. This structure identifies a single sequence-specific interaction between the SL and SLBP, and the mostly shape-dependent RNA-recognition mode by both proteins. In addition to explaining the large body of biochemical and biophysical data on this complex accumulated over the last two decades, we also for the first time elucidate the induced-fit mechanism underlying the cooperativity between SLBP and 3′hExo. We next shift our focus to a class of less conserved mRNA stem-loop structures named constitutive decay elements (CDE). The RNA-binding ROQ domain of Roquin recognizes the various CDEs and mediates the decay of CDE-containing mRNAs, which predominantly encode proteins responsible for inflammation and autoimmunity. Structural and biochemical studies of the ROQ domain in complex with two different CDE RNAs unexpectedly reveal two distinct RNA binding sites on this protein, one recognizing CDE stem-loops and the other binding to double-stranded RNAs. The stuctures are also in agreement with the versatility of Roquin and have opened up new avenues to investigating its functions in modulating the stability of target mRNAs.
337

Winning the cellular lottery: how proteins reach and recognize targets in DNA

Redding, Sy Eugene January 2015 (has links)
Many aspects of biology depend on the ability of DNA-binding proteins to locate specific binding sites within the genome. This search process is required at the beginning of all site-specific protein-DNA interactions, and has the potential to act as the first stage of biological regulation. Given the difficulty of pinpointing a small region of DNA, within even simple genomes, it is expected that proteins are adapted to use specialized mechanisms, collectively referred to as facilitated diffusion [Berg et al., 1981], to effectively reduce the dimensionality of their searches, and rapidly find their targets. Here, we use a combination of nanofabricated microfluidic devices and single-molecule microscopy to determine whether facilitated diffusion contributes to all DNA target searches. We investigate promoter binding by E. coli RNA polymerase, foreign DNA recognition by CRISPR-Cas complexes, and Rad51’s homology search during recombination. In each example, we observe that the target searches proceed without extensive use of facilitated diffusion; rather, consideration of these non-facilitated target searches reveals an alternative search strategy. We show that instead of reducing the dimensionality of their searches, these proteins, reduce search complexity by minimizing unproductive interactions with DNA, thereby increase the probability of locating a specific DNA target.
338

Engineering Biomolecular Interfaces for Applications in Biotechnology

Bulutoglu, Beyza January 2017 (has links)
Protein interactions occurring through biomolecular interfaces play an important role in the circle of life. These interactions are responsible for cellular function, including RNA transcription, protein translation, cell division and cell death among many others. There are different types of interactions based on the strength and the duration of the association. Transient interactions govern most steps of the cellular metabolism, where the associations between two or more molecules are responsive to environmental cues. Among the participants of transient interactions, intrinsically disordered proteins are employed in signaling and other regulatory events within the cell. These proteins exhibit allosteric regulation and gain secondary structure when they bind other proteins or small molecules. In this doctoral thesis work, the biochemical and biophysical principals governing protein associations are investigated and using protein engineering tools, novel biomolecular interfaces are engineered, with potential applications in different areas of biotechnology. The first part of the thesis (Chapter 2) focuses on the investigation of supramolecular enzyme association among tricarboxylic acid cycle enzymes, specifically between citrate synthase and mitochondrial malate dehydrogenase. In this study, the interactions between these enzymes are examined, both among their natural and synthetically produced recombinant versions. In addition, mutational analysis of the amino acid residues at the complex interface was performed to explore the importance of the positively charged patch connecting the active sites of the enzymes. It was discovered that the channeling of the negatively charged intermediate is severely impaired upon mutation of surface residues contributing to the electrostatic channeling. This work provides an important insight into understanding the coupled reaction-transport systems and metabolon formation in general. In addition, it constitutes a great example for substrate channeling in leaky systems, which are relevant to most biological processes. The next section of the thesis (Chapter 3) focuses on an intrinsically disordered peptide, the β-roll. This peptide is isolated from the Block V repeats-in-toxin (RTX) domain of adenylate cyclase from Bordetella pertussis. It is disordered in the absence of calcium and it folds into a β-roll secondary structure composed of two parallel β-sheet faces upon binding to calcium ions. This way, the peptide can transition between its unfolded state and the β-roll structure in a reversible way. We have utilized the allosteric regulation of this domain as a tool to engineer new protein interfaces. In its folded state, the peptide has two faces, serving as binding surfaces available for interaction with other proteins. Our work involved the alteration of the residues, which form these faces upon calcium binding, via combinatorial protein design techniques. The potential of this peptide is evaluated as a cross-linking domain for hydrogel formation. By rationally engineering the two faces of the folded β-roll to contain leucine residues, we have created hydrophobic interfaces, serving as environmentally-responsive cross-linking domains. When there is no calcium, the β-roll domains remain unstructured, delocalizing the leucine rich patches. After calcium binding, the β-rolls fold and the leucine rich faces are exposed creating a hydrophobic driving force for self-assembly. This way, we showed that the β-roll peptide can function as a biomaterials building block capable of proteinaceous hydrogel formation, only in the presence of calcium. The next study (Chapter 4) demonstrates the utilization of this peptide as an alternative scaffold for biomolecular recognition applications. A library of mutant β-rolls was constructed by randomizing the amino acid residues on one of the β-sheet forming faces. Mutant peptides demonstrating an affinity for hen egg white lysozyme were selected, which was chosen as a model target molecule. The thermodynamic parameters of the interactions between the β-roll mutants and the lysozyme were quantified. Upon performing further protein engineering (e.g. concatenation of the single mutants on the DNA level), a mutant with mid-nanomolar affinity was identified. Affinity chromatography experiments showed that this mutant was capable of capturing the target, in the presence of calcium. The captured target was easily released upon removal of the calcium ions. The reversibility of the calcium binding allowed the engineered molecular interface to be controllable. Throughout this study, the β-roll peptide was explored as an allosterically-regulated protein switch for on/off biomolecular recognition, which can be mediated by simply changing the calcium concentration, allowing control over the binding behavior between molecules. The last part of the thesis (Chapter 5) expands on the calcium dependent network formation study. A hydrogel construct was genetically built by fusing the cross-linking β-roll domain and the lysozyme binding β-roll mutant, resulting in a smart biomaterial with dual-functionality. The network-assembly and target capture functions of this construct were tested by various assays including hydrogel erosion experiments. This allosterically-regulated biomaterial exhibited promising results, where calcium-dependent lysozyme entrapment within the assembled network and lysozyme capture on the hydrogel surface were demonstrated. The work presented in this thesis demonstrates different approaches to understand and engineer molecular interfaces in both natural and recombinant systems. In the future, these approaches and the knowledge gained from these studies can be further built upon for different biotechnological applications and can also be applied to other synthetic systems.
339

Inhibition d'interactions protéine-protéine par des foldamères mixtes oligoamide/olugourée / Protein-protein interactions inhibition by mixed oligoamide/oligourea foldamers

Cussol, Léonie 18 December 2018 (has links)
Les interactions protéine–protéine (IPP) jouent un rôle primordial dans les processus physiologiques. L’inhibition de ces interactions ouvre la voie à la conception de nouvelles molécules à visée thérapeutique. Les structures secondaires en hélice α sont fréquemment impliquées dans les interactions entre protéines auxquelles elles peuvent contribuer de manière significative. La conception de molécules, mimant ce motif de reconnaissance et pouvant interagir avec la protéine cible tout en inhibant la reconnaissance avec le partenaire naturel, représente une voie innovante pour trouver de nouveaux candidats médicaments. Les oligomères d’urée aliphatique, une classe de foldamères qui adoptent une structure secondaire en hélice bien définie et proche de l’hélice α, ont été proposés comme mimes d’hélice α pour inhiber les IPP. Au cours de cette thèse, nous nous sommes d’abord intéressés à la conception de foldamères d’oligourée et de chimères oligoamide/oligourée pour cibler des surfaces de protéine. Nous avons sélectionné le récepteur nucléaire de la vitamine D (VDR) comme modèle d’étude en raison de son intérêt thérapeutique, et des connaissances structurales disponibles. Les protéines partenaires de VDR (coactivateurs) interagissant via une courte région structurée en hélice α, nos recherches ont portés sur des mimes d’hélices inspirés des séquences de coactivateurs. Dans une seconde partie, nous nous sommes intéressés à la génération et à l’étude de dimères covalents de foldamères, qui pourraient être utilisés pour couvrir des surfaces d’interaction plus larges. En effet, les interactions protéine-protéine montrent souvent un mode d’interaction plus complexe qu’une simple hélice, faisant intervenir des structures tertiaires et quaternaires de type coiled coils, qui peuvent aussi servir de point de départ pour la conception de nouvelles classes d’inhibiteurs. / Protein-protein interactions (PPI) have a key role in physiological processes. The inhibition of these PPI may lead to new therapeutic strategies. Secondary structures in α-helix are frequently involved in protein interactions where they may contribute significantly to binding. Designing molecules which mimic the helical motif for protein surface recognition and inhibition of the natural partner represents an innovative path to discover new drug candidates. Aliphatic urea oligomers, a class of foldamers that adopt a well-defined H-bonded helical secondary structure with good similarity to the α-helix have been proposed as possible α-helix mimics to inhibit protein-protein interactions. The first part of this PhD project was dedicated to the design and synthesis of oligoureas and oligourea/α-peptide chimeras for specific protein surface recognition. We have selected the vitamin D receptor as a potential target, mainly because (i) it is therapeutically relevant; (ii) its protein partner (coactivators) interact through a short region which adopts an α-helical structure upon binding and (iii) structures at atomic resolution were available to enable the design of effective mimetics. In the second part, we investigated methods to generate foldamer covalent dimers that could potentially be used to cover larger interaction surfaces. The rationale is that the binding interface is often more complex than a single helix and may involve tertiary and quaternary structures such as coiled coils which in turns may also serve as a basis for the design of new classes of inhibitors.
340

NMR approaches to understanding intramolecular and intermolecular interactions in proteins

Panova, Stanislava January 2017 (has links)
Inhibition of the intrinsically disordered proteins (IDP) is a recognized issue in drug research. Standard approaches, based on key-lock model, cannot be used in the absence of rigid structure and defined active site. Here a basic helix-loop-helix leucine zipper (bHLHZip) domain of c-Myc was studied, which is intrinsically disordered and prone to aggregation. Chemical denaturation of proteins is a widely accepted technique to study protein folding, but here this methodology was applied to IDP, observing its effect on the structural ensemble of c-Myc by NMR spectroscopy. Nonlinear chemical shift changes indicated cooperative unfolding of the helical structure of the part of the leucine zipper domain in parallel with the melting of the N-terminal helix. Paramagnetic relaxation enhancement (PRE) was used to probe long-range structure and revealed presence of long-range contacts. The following search for inhibitors can be directed to the search for ligands, locking c-Myc in its more compact conformation. Protein self-association is a problem typical for IDPs and intrinsic process for all proteins at high concentrations. It leads to increased viscosity, gelation and possible precipitation, which cause problems in protein manufacturing, stability and delivery. If protein drugs require high dosing, special approaches are needed. At high concentrations proteins experience conditions close to the crystal state, therefore interactions in solution could potentially coincide with crystal lattice contacts. A range of diverse methods is used to study this process, but the complexity of the mechanism makes it hard to build a reliable model. Here, the self-association of streptococcal Protein G (PrtG) was studied using Nuclear Magnetic Resonance (NMR) spectroscopy in solution. The properties of protein-protein interactions at high concentration, up to ~ 160 mg/ml, were studied at residue-level resolution. Residue specific information on protein dynamics was obtained using 15N relaxation measurements. The experiments were carried out at multiple concentrations. Variation in the rotational correlation time over these concentrations showed changes in the protein dynamics, which indicated weak protein-protein interactions occurring in solution. Pulsed-field gradient NMR spectroscopy was used to monitor translational diffusion coefficients in order to estimate the degree of protein self-association. Oligomer formation was also monitored by looking at variations in 1H and 15N amide chemical shifts. Better understanding of protein self-association mechanisms under different conditions could assist in developing methods to reduce the level of reversible protein self-association in solution at high protein concentrations.

Page generated in 0.1631 seconds