Spelling suggestions: "subject:"pseudoinverse"" "subject:"pseudoinversa""
11 |
Method for Improving the Efficiency of Image Super-Resolution Algorithms Based on Kalman FiltersDobson, William Keith 01 December 2009 (has links)
The Kalman Filter has many applications in control and signal processing but may also be used to reconstruct a higher resolution image from a sequence of lower resolution images (or frames). If the sequence of low resolution frames is recorded by a moving camera or sensor, where the motion can be accurately modeled, then the Kalman filter may be used to update pixels within a higher resolution frame to achieve a more detailed result. This thesis outlines current methods of implementing this algorithm on a scene of interest and introduces possible improvements for the speed and efficiency of this method by use of block operations on the low resolution frames. The effects of noise on camera motion and various blur models are examined using experimental data to illustrate the differences between the methods discussed.
|
12 |
Novo método de mapeamento de espaços de cor através de redes neurais artificiais especializadas / New method for mapping color spaces using specialized artificial neural networksBarcellos, Robson 24 August 2011 (has links)
Este trabalho apresenta uma nova metodologia para mapeamento no espaço de cor colorimétrico CIEXYZ, dos valores de triestímulo obtidos em um espaço de cor não colorimétrico definido pelas curvas de sensibilidade de um sensor eletrônico. A inovação do método proposto é realizar o mapeamento através de três redes neurais artificiais sendo que cada uma é especializada em mapear cores com um determinado triestímulo dominante. É feita a comparação dos resultados do mapeamento com vários trabalhos publicados sobre mapeamento de um espaço de cor em outro usando diversas técnicas. Os resultados mostram a eficiência do método proposto e permitem sua utilização em equipamentos para medir cores, incrementando sua precisão. / This work presents a new method for mapping a non colorimetric color space defined by the sensitivity curves of an electronic color sensor to the colorimetric color space CIEXYZ. The novelty of the proposed method is to perform the mapping by a set of three artificial neural networks, each one specialized in mapping colors with a specific dominant tristimulus. The results are compared with the ones obtained in published works about the mapping of color spaces, using several methods. The results of the method proposed in this work show that it is efficient and it can be used in equipments for measuring colors, improving its precision. Read more
|
13 |
Novo método de mapeamento de espaços de cor através de redes neurais artificiais especializadas / New method for mapping color spaces using specialized artificial neural networksRobson Barcellos 24 August 2011 (has links)
Este trabalho apresenta uma nova metodologia para mapeamento no espaço de cor colorimétrico CIEXYZ, dos valores de triestímulo obtidos em um espaço de cor não colorimétrico definido pelas curvas de sensibilidade de um sensor eletrônico. A inovação do método proposto é realizar o mapeamento através de três redes neurais artificiais sendo que cada uma é especializada em mapear cores com um determinado triestímulo dominante. É feita a comparação dos resultados do mapeamento com vários trabalhos publicados sobre mapeamento de um espaço de cor em outro usando diversas técnicas. Os resultados mostram a eficiência do método proposto e permitem sua utilização em equipamentos para medir cores, incrementando sua precisão. / This work presents a new method for mapping a non colorimetric color space defined by the sensitivity curves of an electronic color sensor to the colorimetric color space CIEXYZ. The novelty of the proposed method is to perform the mapping by a set of three artificial neural networks, each one specialized in mapping colors with a specific dominant tristimulus. The results are compared with the ones obtained in published works about the mapping of color spaces, using several methods. The results of the method proposed in this work show that it is efficient and it can be used in equipments for measuring colors, improving its precision. Read more
|
14 |
Simulation of Complex Sound Radiation Patterns from Truck Components using Monopole Clusters / Simulering av komplexa ljudstrålningsmönster från lastbilskomponenter med hjälp av monopolklusterCalen, Titus, Wang, Xiaomo January 2023 (has links)
Pass-by noise testing is an important step in vehicle design and regulation compliance. Finite element analysis simulations have been used to cut costs on prototyping and testing, but the high computational cost of simulating surface vibrations from complex geometries and the resulting airborne noise propagation is making the switch to digital twin methods not viable. This paper aims at investigating the use of equivalent source methods as an alternative to the before mentioned simulations. Through the use of a simple 2D model, the difficulties such as ill-conditioning of the transfer matrix and the required regularisation techniques such as TSVD and the Tikhonov L-curve method are tested and then applied to a mesh of a 3D engine model. Source and pressure field errors are measured and their origins are explained. A heavy emphasis is put on the model geometry as a source of error. Finally, rules of thumb based on the regularisation balance and the wavelength dependent pressure sampling positions are formulated in order to achieve usable results. / Bullerprovning vid passage är ett viktigt steg i fordonsdesign och regelefterlevnad. Simuleringar med finita elementanalyser har använts för att minska kostnaderna för prototypframtagning och provning, men de höga beräkningskostnaderna för att simulera ytvibrationer från komplexa geometrier och den resulterande luftburna bullerspridningen gör att övergången till digitala tvillingmetoder inte är genomförbar. Denna uppsats syftar till att undersöka användningen av ekvivalenta källmetoder som ett alternativ till de tidigare nämnda simuleringarna. Genom att använda en enkel 2D-modell testas svårigheterna som dålig konditionering av överföringsmatrisen och de nödvändiga regulariseringsteknikerna som TSVD och Tikhonov L-kurvmetoden och tillämpas sedan på ett nät av en 3D-motormodell. Käll- och tryckfältsfel mäts och deras ursprung förklaras. Stor vikt läggs vid modellgeometrin som en felkälla. Slutligen formuleras tumregler baserade på regulariseringsbalansen och de våglängdsberoende tryckprovtagningspositionerna för att uppnå användbara resultat. Read more
|
15 |
Transformation de Aluthge et vecteurs extrémaux / Aluthge Transform and Extremal VectorsVerliat, Jérôme 21 December 2010 (has links)
Cette thèse s'articule autour de deux thèmes : une transformation de B(H) introduite par Aluthge et la méthode d'Ansari-Enflo. La première partie fait l'objet de l'étude de la transformation d’Aluthge qui a eu un impact important ces dernières années en théorie des opérateurs. Des résultats optimaux sur la stabilité d'un certain nombre de classes d'opérateurs, telles que la classe des isométries partielles et les classes associées au comportement asymptotique d'un opérateur, sont fournis. Nous étudions également l'évolution d'invariants opératoriels, tels que le polynôme minimal, la fonction minimum, l'ascente et la descente, sous l'action de la transformation ; nous comparons plus précisément les suites des noyaux et images relatives aux itérés d'un opérateur et de sa transformée de Aluthge. La deuxième partie est l'occasion d'étudier la théorie d'Ansari-Enflo, qui a permis de gros progrès pour le problème du sous-espace hyper-invariant. Nous développons plus particulièrement la notion fondatrice de la méthode, celle de vecteur extrémal. La localisation et une nouvelle caractérisation de ces vecteurs sont données. Leur régularité et leur robustesse, au regard de différents paramètres, sont éprouvées. Enfin, nous comparons les vecteurs extrémaux d'un shift à poids et ceux associés à sa transformée d’Aluthge. Cette étude aboutit à la construction d'une suite de vecteurs extrémaux associés aux itérés de la transformation d’Aluthge, pour laquelle certaines propriétés sont mises en évidence. / This thesis is based on two topics : a transformation of B(H) introduced by Aluthge and the Ansari-Enflo method. In the first part, we study the Aluthge transformation which really had an impact on operator theory in the past ten years. Some optimal results about stability for several operators classes, such as isometries class and classes of operators defined by their asymptotic behaviour, are given. We also study changes generated by Aluthge transform about some usual tools in operator theory like minimum polynomial, minimum function, ascent and descent ; precisely, we compare iterated kernels and iterated ranges sequences related to an operator and to its Aluthge transform. The second part is devoted to the study of the Ansari-Enflo theory, which allowed to make progress in the hyper-invariant subspace problem. We develop the notion of extremal vectors which is the fundamental point of the theory. We clarify their spatial localization and a new caracterisation for these vectors is given. Regularity and robustness with regard to different parameters are tried and tested. Finally, we compare extremal vectors associated with weighted shifts and the one corresponding to their Aluthge transform. This study leads to build a sequence of extremal vectors associated with the iterated Aluthge transform, for which we highlight several properties. Read more
|
16 |
Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse / Block methods adapted to structured matrices and calculation of the pseudo-inverseArchid, Atika 27 April 2013 (has links)
Nous nous intéressons dans cette thèse, à l'étude de certaines méthodes numériques de type krylov dans le cas symplectique, en utilisant la technique de blocs. Ces méthodes, contrairement aux méthodes classiques, permettent à la matrice réduite de conserver la structure Hamiltonienne ou anti-Hamiltonienne ou encore symplectique d'une matrice donnée. Parmi ces méthodes, nous nous sommes intéressés à la méthodes d'Arnoldi symplectique par bloc que nous appelons aussi bloc J-Arnoldi. Notre but essentiel est d’étudier cette méthode de façon théorique et numérique, sur la nouvelle structure du K-module libre ℝ²nx²s avec K = ℝ²sx²s où s ≪ n désigne la taille des blocs utilisés. Un deuxième objectif est de chercher une approximation de l'epérateur exp(A)V, nous étudions en particulier le cas où A est une matrice réelle Hamiltonnienne et anti-symétrique de taille 2n x 2n et V est une matrice rectangulaire ortho-symplectique de taille 2n x 2s sur le sous-espace de Krylov par blocs Km(A,V) = blockspan {V,AV,...,Am-1V}, en conservant la structure de la matrice V. Cette approximation permet de résoudre plusieurs problèmes issus des équations différentielles dépendants d'un paramètre (EDP) et des systèmes d'équations différentielles ordinaires (EDO). Nous présentons également une méthode de Lanczos symplectique par bloc, que nous nommons bloc J-Lanczos. Cette méthode permet de réduire une matrice structurée sous la forme J-tridiagonale par bloc. Nous proposons des algorithmes basés sur deux types de normalisation : la factorisation S R et la factorisation Rj R. Dans une dernière partie, nous proposons un algorithme qui généralise la méthode de Greville afin de déterminer la pseudo inverse de Moore-Penros bloc de lignes par bloc de lignes d'une matrice rectangulaire de manière itérative. Nous proposons un algorithme qui utilise la technique de bloc. Pour toutes ces méthodes, nous proposons des exemples numériques qui montrent l'efficacité de nos approches. / We study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples. Read more
|
17 |
A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision and Machine LearningVasilescu, M. Alex O. 09 June 2014 (has links)
This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recognition. Natural images result from the multifactor interaction between the imaging process, the scene illumination, and the scene geometry. We assert that a principled mathematical approach to disentangling and explicitly representing these causal factors, which are essential to image formation, is through numerical multilinear algebra, the algebra of higher-order tensors.
Our new image modeling framework is based on(i) a multilinear generalization of principal components analysis (PCA), (ii) a novel multilinear generalization of independent components analysis (ICA), and (iii) a multilinear projection for use in recognition that maps images to the multiple causal factor spaces associated with their formation. Multilinear PCA employs a tensor extension of the conventional matrix singular value decomposition (SVD), known as the M-mode SVD, while our multilinear ICA method involves an analogous M-mode ICA algorithm.
As applications of our tensor framework, we tackle important problems in computer graphics, computer vision, and pattern recognition; in particular, (i) image-based rendering, specifically introducing the multilinear synthesis of images of textured surfaces under varying view and illumination conditions, a new technique that we call
``TensorTextures'', as well as (ii) the multilinear analysis and recognition of facial images under variable face shape, view, and illumination conditions, a new technique that we call ``TensorFaces''. In developing these applications, we introduce a multilinear image-based rendering algorithm and a multilinear appearance-based recognition algorithm. As a final, non-image-based application of our framework, we consider the analysis, synthesis and recognition of human motion data using multilinear methods, introducing a new technique that we call ``Human Motion Signatures''. Read more
|
18 |
A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision and Machine LearningVasilescu, M. Alex O. 09 June 2014 (has links)
This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recognition. Natural images result from the multifactor interaction between the imaging process, the scene illumination, and the scene geometry. We assert that a principled mathematical approach to disentangling and explicitly representing these causal factors, which are essential to image formation, is through numerical multilinear algebra, the algebra of higher-order tensors.
Our new image modeling framework is based on(i) a multilinear generalization of principal components analysis (PCA), (ii) a novel multilinear generalization of independent components analysis (ICA), and (iii) a multilinear projection for use in recognition that maps images to the multiple causal factor spaces associated with their formation. Multilinear PCA employs a tensor extension of the conventional matrix singular value decomposition (SVD), known as the M-mode SVD, while our multilinear ICA method involves an analogous M-mode ICA algorithm.
As applications of our tensor framework, we tackle important problems in computer graphics, computer vision, and pattern recognition; in particular, (i) image-based rendering, specifically introducing the multilinear synthesis of images of textured surfaces under varying view and illumination conditions, a new technique that we call
``TensorTextures'', as well as (ii) the multilinear analysis and recognition of facial images under variable face shape, view, and illumination conditions, a new technique that we call ``TensorFaces''. In developing these applications, we introduce a multilinear image-based rendering algorithm and a multilinear appearance-based recognition algorithm. As a final, non-image-based application of our framework, we consider the analysis, synthesis and recognition of human motion data using multilinear methods, introducing a new technique that we call ``Human Motion Signatures''. Read more
|
Page generated in 0.0544 seconds