Spelling suggestions: "subject:"pythagorean theorem."" "subject:"pythagoreans theorem.""
11 |
The Cauchy-Schwarz inequality : Proofs and applications in various spaces / Cauchy-Schwarz olikhet : Bevis och tillämpningar i olika rumWigren, Thomas January 2015 (has links)
We give some background information about the Cauchy-Schwarz inequality including its history. We then continue by providing a number of proofs for the inequality in its classical form using various proof techniques, including proofs without words. Next we build up the theory of inner product spaces from metric and normed spaces and show applications of the Cauchy-Schwarz inequality in each content, including the triangle inequality, Minkowski's inequality and Hölder's inequality. In the final part we present a few problems with solutions, some proved by the author and some by others.
|
12 |
Revisitando o Teorema de Pitágoras / Revisiting the Pythagorean TheoremRibeiro, Vanessa Vânia Silva Marinho 18 March 2013 (has links)
Made available in DSpace on 2015-03-26T14:00:04Z (GMT). No. of bitstreams: 1
texto completo.pdf: 3212056 bytes, checksum: 62f0b7432d4f49ef25c24f61a158a66d (MD5)
Previous issue date: 2013-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation is devoted to studying the Pythagorean Theorem about various aspects. We begin by tracing a historical about this theorem, and then we present several demonstrations from him, as well as applications and workshops for your teaching. The continuation we present a proposal of activities motivational and creative in the use of this theorem in order to help teachers and arouse interest in students. We finalized this work by presenting an innovative Theorem Primer that should directing the use of labor by mathematics teachers in the classroom. / Esta dissertação é dedicada ao estudo do Teorema de Pitágoras sob vários aspectos. Começamos traçando um histórico deste teorema, e então apresentamos várias demonstrações dele, assim como aplicações e oficinas para o ensino do mesmo. A continuação apresentamos uma proposta de atividades motivacionais e criativas para a utilização deste teorema, a fim de ajudar os professores e despertar o interesse nos estudantes. Concluímos este trabalho com a apresentação de uma inovadora Cartilha do Teorema, a Cartilha Pitagórica, que deverá orientar a utilização do trabalho por professores de Matemática em sala de aula.
|
13 |
Imaginace nekonečna / Imagination of infinitySemerád, Martin January 2011 (has links)
This work deals with a basic question of modern science and it is its indefectibility. Quality of education is reduce to an evaluation of conformity to a common known knowledge and its quantity representation. Seeds of this long process go back to an ancient academia of Gondisapur established in an Arabic world. Author proclaims that the main goal of philosophy is to show, that this is not the only way of thinking and in the same time that the main goal and power of phenomenology is to apply the transcendental epoche to overcame the truth in its regularization shape. The hardcore of modern science is located in the world of mathematics and a lot of thinkers find the Math as a land of pure sureness - the core of this work in an opposite proofs, that in fact nowadays math is all, but the correct way of thinking. The two examples are explicit: the Pythagorean Theorem and the Sum of the geometric row. This work brings a quite new view on the mathematical problem of "the point" and "the nothing" as a border of things. In the second part uses as a frame of its topic the first 18 §§ of the work "Paradoxes of the infinite" by Czech mathematician of German mother tongue Bernard Bolzano. The important idea of this study is a new ontological view on the set of prime numbers.
|
14 |
Teaching for the objectification of the Pythagorean TheoremSpyrou, Panagiotis, Moutsios-Rentzos, Andreas, Triantafyllou, Dimos 09 May 2012 (has links)
This study concerns a teaching design with the purpose to facilitate the students’ objectification of the Pythagorean Theorem. Twelve 14-year old students (N=12) participated in the study before the theorem was introduced to them at school. The design incorporated
ideas from the ‘embodied mind’ framework, history and realistic mathematics, linking ‘embodied verticality’ with ‘perpendicularity’. The qualitative analyses suggested that the participants were led to the conquest of the ‘first level of objectification’ (through numbers)
of the Pythagorean Theorem, showing also evidence of appropriate ‘fore-conceptions’ of the ‘second level of objectification’ (through proof) of the theorem. The triangle the sides of which are associated with the Basic Triple (3,4,5) served as a primary instrument for the
students’ objectification, mainly, by facilitating their ‘generic abstraction’ of the Pythagorean Triples.
|
15 |
Uma abordagem para a construção de triângulos e do Teorema de Pitágoras mediada pelo software SuperLogo / An approach to the construction of triangles and Pythagorean Theorem mediated by SuperLogo softwareGonçalves, Mariana Dias 18 October 2014 (has links)
Made available in DSpace on 2016-04-27T16:57:32Z (GMT). No. of bitstreams: 1
Mariana Dias Goncalves.pdf: 2451301 bytes, checksum: 5cf507f4102f5eb10d5837316c7d19e1 (MD5)
Previous issue date: 2014-10-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study aims to analyze a sequence of activities for students of the 8th grade of Elementary School II mediated by the use of SuperLogo software. This teaching sequence has been proposed to develop students‟ learning of the Pythagorean theorem by geometric constructions in the search of a knowledge grounded in reflection, not in the repetition. Preliminary studies, from the literature review, allowed the elaboration of the following research question: How does the development of an educational strategy based on the creation of didactic situations, using the SuperLogo software, can contribute to building meaningful learning related to geometric constructions? The proposed research, a qualitative study, has considered the Theory of Didactical Situations and the conception of didactic contract, both authored by Brousseau (1997), and Theory of Meaningful Learning of Ausubel (2002). With regard to the technological support, have been studied works of Oliveira (2013), Levy (1993), Borba and Villarreal (2005) and Tikhomirov (1981). The analysis of the protocols and discussions of the subjects during the field survey revealed that the proposed activities provoked thoughts about some topics in plane geometry, and permitted the discovery and consolidation of the Pythagorean Theorem. This experiment revealed the advantage of the approach taken towards the construction of a meaningful learning from a new configuration of the didactic contract, rather than the reproduction of routes in teaching geometric constructions / Este trabalho tem como objetivo analisar uma sequência de atividades desenvolvidas para alunos do 8º ano do Ensino Fundamental II, mediada pelo uso do software SuperLogo. Esta sequência didática visava que os sujeitos construíssem uma aprendizagem do Teorema de Pitágoras, a partir de construções geométricas, na busca por um saber menos reprodutor e mais autônomo. Os estudos preliminares realizados a partir da revisão bibliográfica permitiram a elaboração de uma problematização em torno da seguinte questão de pesquisa: De que forma uma estratégia pedagógica baseada na criação de situações didáticas, com uso do software SuperLogo, pode concorrer para a construção de aprendizagens significativas relacionadas às construções geométricas? A investigação proposta, de caráter qualitativo, apoiou-se na Teoria das Situações Didáticas e na concepção de contrato didático, ambas de Brousseau (1997), e na Teoria da Aprendizagem Significativa de Ausubel (2002). No que diz respeito ao aporte tecnológico, foram considerados os trabalhos de Oliveira (2013), Lévy (1993), Borba e Villarreal (2005) e Tikhomirov (1981). A análise dos protocolos e das discussões dos sujeitos durante a pesquisa de campo revelou que as atividades propostas provocaram reflexões a respeito de alguns tópicos da Geometria plana, além de permitirem a descoberta e consolidação do Teorema de Pitágoras. Essa experimentação permitiu constatar a vantagem do enfoque adotado, no sentido da construção de uma aprendizagem significativa a partir de uma nova configuração do contrato didático, ao contrário da reprodução de roteiros no ensino de construções geométricas
|
16 |
Um estudo sobre argumentação e prova envolvendo o teorema de PitágorasFerreira Filho, José Leôncio 22 October 2007 (has links)
Made available in DSpace on 2016-04-27T16:58:32Z (GMT). No. of bitstreams: 1
Jose Leoncio Ferreira Filho.pdf: 2032198 bytes, checksum: 0ada51c2121b08cde3b22d4e8cf267c8 (MD5)
Previous issue date: 2007-10-22 / Secretaria da Educação do Estado de São Paulo / The National Curriculum Parameters (Brazil, 1998), acknowledge and
recommend that the Mathematics syllabus should necessarily cover activities
and experiences which enable learners to develop and effectively communicate
with valid mathematical argumentation. However, there is consensus among
Mathematics Education researchers, in several countries, as to the inherent
difficulties of teaching and learning proof.
This research is inserted in the AprovaME project, in the Mathematics
Education area at PUC-SP, which has as one of its goals to foster debate over
the teaching and learning of proof in Mathematics.
The objective of the present study was to investigate the involvement of
first-year students at high school in processes of conjecture and proof
construction, aiming to answer the following research question: what difficulties
do students present when faced with argumentation and proof situations
involving the Pythagorean Theorem?
In order to answer the research question, we adopted some elements
from the didactic engineering as the research methodology. A teaching
sequence was then elaborated with questions on argumentation and proof
involving the Pythagorean Theorem and applied to students from a private school
in a countryside city in the State of Sao Paulo.
The work by Robert (1998) and Duval (2002) contributed to the conception
of activities, and the ones by Balacheff (1988), to the analysis of the types of
proof from the students.
The production from the students, at the end of the activities, show that
the teaching sequence conceived to produce argumentation and proof
advantaged the passing of a step where validations are predominantly empirical
into another step, in which validation takes on a deductive character.
Other studies approaching different mathematics topics and which treat
teaching and learning of proof have become more and more needed for
understanding the complexity surrounding this process / Os Parâmetros Curriculares Nacionais (Brasil, 1998) reconhecem e
orientam, que o currículo de Matemática deve necessariamente contemplar
atividades e experiências que possibilitem aos aprendizes o desenvolvimento e
a comunicação efetiva de argumentos matematicamente válidos. Mas há
consenso entre os pesquisadores da Educação Matemática, em diversos países,
quanto às dificuldades inerentes ao ensino e à aprendizagem de prova.
Esta pesquisa está inserida no projeto AprovaME na área da Educação
Matemática da PUC-SP, que tem entre seus objetivos, o de contribuir para o
debate sobre o ensino e aprendizagem de prova em Matemática.
O objetivo do presente trabalho foi investigar o envolvimento de alunos da
1ª.série do Ensino Médio em processos de construção de conjeturas e provas, a
fim de responder à seguinte questão de pesquisa: que dificuldades apresentam
os alunos diante de situações de argumentação e prova envolvendo o teorema
de Pitágoras?
Para responder à questão de pesquisa, adotamos como metodologia de
pesquisa alguns elementos da engenharia didática. Uma seqüência de ensino foi
elaborada com questões sobre argumentação e prova, envolvendo o teorema de
Pitágoras e aplicada a alunos de uma escola particular do interior do Estado de
São Paulo.
Os trabalhos de Robert (1998) e Duval (2002) contribuíram para a
concepção das atividades e os de Balacheff (1988) para a análise dos tipos de
provas dos alunos.
As produções dos alunos ao final das atividades mostram que uma
seqüência de ensino concebida para produzir argumentações e provas
favoreceu a passagem de uma etapa onde as validações são
predominantemente empíricas para uma outra etapa onde as validações são
dedutivas.
Outros trabalhos abordando diferentes tópicos de matemática e que
tratem do ensino e aprendizagem da prova tornam-se cada vez mais
necessários para compreender a complexidade desse processo
|
17 |
O teorema de Pitágoras no oitavo ano do ensino fundamentalStegani, Ozilde Peter 23 May 2014 (has links)
Made available in DSpace on 2016-06-02T20:29:26Z (GMT). No. of bitstreams: 1
6029.pdf: 25766994 bytes, checksum: cfaba0f2589004cda853d07a65fa78fe (MD5)
Previous issue date: 2014-05-23 / Financiadora de Estudos e Projetos / In this paper we reflect on a group of eight lessons applied in the eighth year of elementary school. In these classes, we treat the Pythagorean Theorem, seeking to justify this outcome appropriate to the student s eighth grade elementary school mode. We were interested in seeking justifications with historical content, to rescue, to the extent possible, a part of the history of the Pythagorean Theorem. We take care to seek a mathematical justification for each procedure adopted to develop pedagogical activities. Throughout the text brushing been several suggestions for improving the finished product, though it kept almost entirely in Appendix 1. Also critical to our work interweave throughout the text, seeking both personal growth as offering the opportunity for a better match of the final product to whom this is of interest. At the end we suggest some current applications of the Pythagorean Theorem. Finished the job in the classroom involving the class with the game of dominoes, adapted to the content studied, trying to leave a better final impression on the students. We describe the construction of pedagogical object, the math worked during such construction and finally its application in the classroom. We make four appendices. In the first present the final product. In the second we seek to exemplify the student s work. In the third and fourth work building Pythagorean triangles. / Neste trabalho procuramos refletir sobre um grupo de oito aulas aplicadas no oitavo ano do Ensino Fundamental. Nestas aulas, tratamos do Teorema de Pitágoras, buscando justificar este resultado de modo adequado ao aluno do oitavo ano do Ensino Fundamental. Foi de nosso interesse buscar justificativas com um teor histórico, de modo a resgatar, na medida do possível, uma parte da história do Teorema de Pitágoras. Tomamos o cuidado de buscar uma justificativa matemática para o cada procedimento pedagógico adotado ao desenvolver as atividades. Durante todo o texto fomos pincelando várias sugestões para melhorar o produto final, se bem que o mantivemos quase que totalmente no Apêndice 1. Também entremeamos críticas ao nosso trabalho durante todo o texto, buscando tanto um crescimento pessoal quanto ofertando a oportunidade de uma melhor adequação do produto final a quem este for de interesse. Ao final sugerimos algumas aplicações atuais do Teorema de Pitágoras. Terminamos o trabalho em sala de aula envolvendo a classe com o jogo de dominó, adaptado ao conteúdo estudado, buscando deixar uma melhor impressão final nos alunos. Descrevemos a construção deste objeto pedagógico, a matemática trabalhada durante tal construção e por último sua aplicação com em aula. Confeccionamos quatro apêndices. No primeiro apresentamos o produto final. No segundo buscamos exemplificar os trabalhos dos alunos. No terceiro e quarto trabalhamos a construção de triângulos pitagóricos.
|
18 |
Teorema de Pitágoras, aplicações de demonstrações em sala de aulaTartaglia Filho, Leonardo 26 October 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-02-16T11:55:02Z
No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T19:38:10Z (GMT) No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-03-14T19:38:19Z (GMT) No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5) / Made available in DSpace on 2017-03-14T19:48:08Z (GMT). No. of bitstreams: 1
DissLTF.pdf: 7687528 bytes, checksum: 21db8089b37d9b1d1cbb6276365f0436 (MD5)
Previous issue date: 2016-10-26 / Não recebi financiamento / [ENG]The official curriculum of the state of São Paulo in their spiral character, discusses the
Pythagorean Theorem as one of their learning situations for the 9th year of elementary
school, and on top of that content, contextualizes the topic in several other opportunities
in high school, one of the most common theories in the Euclidean geometry. The work
contributes in the creation of skills and competencies necessary for the understanding of
geometry, which is apparent or not the figure of the right triangle, with the aim of
providing tools for students to build knowledge necessary in order to find solutions to
the problems posed by notebook student, which is the basic curriculum for all students
of the state of São Paulo school. The activities, as workshops and activity sheets,
proposed by the developer of this dissertation were applied to 35 students of the 9th
grade of elementary school of the State School Pedro Bento Alves, located in central city
of Arandu, state of São Paulo, which has in its framework students 800 students, divided
shapeless way in 22 classrooms. Through the activity sheets, the author made the draft
statements for the Pythagorean Theorem through manual labor, which believes it has a
more significant effect to the students. The results were analyzed and compared with
the assumptions previously raised during the preparation and creation of the
dissertation, and the Didactic Engineering as the main research methodology and data
analysis. Proposals classes had a good development because students behaved as
protagonists of actions, being motivated and participative during the execution of
activities. Students reached the proposed objectives, understanding that the material
developed provided a different routine, as it has been applied, and thus conclude that
the leaves of activities will be useful to all teachers who want to develop them in their
classes, adapting -the as reality, performance and utilization of their students.
The work contributed greatly to the professional development of the author, since
rethink strategies and pursue new activities through research, raised the level of
knowledge on the subject, which provided new practices in the classroom. / O currículo oficial do estado de São Paulo em seu caráter espiral, aborda o Teorema de
Pitágoras como uma de suas situações de aprendizagem para o 9° ano do ensino
fundamental, e em cima desse conteúdo, contextualiza o tema em diversas outras
oportunidades no ensino médio, sendo uma das teorias mais frequentes na parte da
geometria euclidiana. O trabalho contribui na criação de habilidades e competências
necessárias para a interpretação da geometria, que tem aparente ou não a figura do
triângulo retângulo, com o objetivo de dar ferramentas para que o aluno construa
conhecimentos necessários, a fim de encontrar soluções aos problemas propostos pelo
caderno do aluno, que é a base curricular para todos os estudantes da rede estadual de
ensino paulista. As atividades, em forma de oficinas e folhas de atividades, propostas
pelo desenvolvedor dessa dissertação, foram aplicadas para 35 alunos do 9° ano do
ensino fundamental da Escola Estadual Pedro Bento Alves, situada na região central da
cidade de Arandu, estado de São Paulo, a qual tem em seu quadro discente 800 alunos,
divididos de maneira disforme em 22 salas de aula. Nas folhas de atividades o autor fez a
proposta de demonstrações para o Teorema de Pitágoras através do trabalho manual,
que acredita ter efeito mais significativo para os alunos. Os resultados foram analisados e
comparados com as hipóteses levantadas previamente durante a fase de preparação e
criação da dissertação, tendo a Engenharia Didática como metodologia principal de
investigação e análise dos dados. As aulas propostas tiveram um bom desenvolvimento,
pois os alunos se portaram como protagonistas das ações, mostrando-se motivados e
participativos durante a execução das atividades. Os alunos atingiram os objetivos
propostos, entendendo que o material desenvolvido proporcionava uma rotina
diferenciada, na forma com que foi aplicado, e com isso concluo que as folhas de
atividades poderão ser úteis a todos os professores que queiram desenvolvê-las em suas
aulas, adaptando-as conforme realidade, rendimento e aproveitamento de seus alunos.
O trabalho contribuiu muito para o desenvolvimento profissional do autor, uma vez que
repensar estratégias e buscar novas atividades através de pesquisas, elevou o nível de
conhecimento sobre o tema, que propiciou novas práticas em sala de aula.
|
19 |
Analýza řešení úloh 2. kola 56. ročníku MO v Jihočeském kraji / The problem solutions analysis of the 2nd round of 56th year MO in South BohemiaVELC, Radovan January 2009 (has links)
The purpose of this thesis is the analysis of the 2nd round of the mathematical olympiad, including the statistics of the success rate of the students in particular problems, analysis of their procedures and error analysis. This thesis should serve as a survey of the problems of 56th year of MO and as a study text for the mathematical olympiad participants.
|
20 |
Didaktické přístupy k výuce některých témat v matematice na základní škole v řeči učitelů / Didactic approaches to the teaching of some mathematical topics at the primary school in teachers ́ diskurseVencovská, Jaroslava January 2017 (has links)
The aim of the thesis was through a new analysis of interviews with teachers of mathematics, to describe didactic practices used by teachers while teaching selected topics (namely, proportions, linear equations, divisibility, percent, symmetry, Pythagorean theorem ) and compare them with the practices reported in textbooks and other literature. First, teaching methods, teaching forms and the mechanism of concept development by M. Hejný are given. Based on the analysis of more than thirty interview, it was found that teachers use the usual didactic practices but also create their own methods and procedures. These methods and techniques are provided for each critical issue separately in the fourth chapter of the thesis. Furthermore, the content analysis of selected textbooks is given for each topic. Identified practices of teachers which they use in their teaching practice, form the result of my work.
|
Page generated in 0.059 seconds