291 |
Interações de sistemas físicos com aplicações em óptica e informação quântica / Interactions of physical systems with applications in quantum optics and quantum informationSilva, Fernando Luis Semião da 23 March 2006 (has links)
Orientador: Antonio Vidiella Barranco / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica "Gleb Wataghin" / Made available in DSpace on 2018-08-06T16:53:55Z (GMT). No. of bitstreams: 1
Silva_FernandoLuisSemiaoda_D.pdf: 1615501 bytes, checksum: 370145b0056b0b8da7cf94fb9d01bc25 (MD5)
Previous issue date: 2006 / Resumo: A presente tese é dedicada à utilização de conhecidos sistemas quânticos em aplicações de interesse em óptica e informação quântica. Motivados pelos recentes avanços experimentais em sistemas formados por íons aprisionados interagindo com lasers e na eletrodinâmica quântica de cavidades, nós focamos grande parte de nossas propostas nestes sistemas. Mais especificamente, nós estudamos a interação de íons e campos quantizados na chamada eletrodinâmica quântica de cavidades com íons aprisionados. Neste contexto, iniciamos nossos trabalhos com uma proposta de geração de superposições mesoscópicas no movimento do íon. Uma vez que tais superposições são muito sensíveis à decoerência, incluímos perdas na cavidade para tratar uma situação mais realista. Através da observação de quantum jumps, ou fóton-contagens fora da cavidade, mostramos um esquema de geração de estados com características quânticas muito similares aos encontrados no caso da cavidade ideal, sem perdas. Neste aspecto, encontramos um modo de usar a dissipação a nosso favor, fato de grande interesse experimental devido às imperfeições dos espelhos reais. Apresentamos também uma proposta de implementação de uma interação do tipo Kerr em íons como uma alternativa ao uso de cristais não-lineares que apresentam baixíssima eficiência para esse tipo de efeito. Essa proposta abre novas possibilidades para o uso de íons em medidas não demolidoras e computação quântica. Nossos estudos na área de eletrodinâmica quântica com íons aprisionados terminam com a análise dos efeitos do movimento do íon na dinâmica das transições multi-fotônicas. Esse é um estudo mais fundamental e está relacionado com o entendimento da interação da radiação com a matéria. Na última parte desta tese são apresentados resultados sobre o uso de sistemas de muitos corpos para a distribuição de informação quântica. O objetivo de se estudar estes sistemas mais complexos é a busca de implementação de protocolos quânticos em larga escala. Neste sentido, poderíamos pensar numa cadeia de osciladores harmônicos acoplados como ocorre em sistemas típicos da física da matéria condensada. Em particular, nós estudamos como aumentar a eficiência na transmissão de emaranhamento nestas cadeias. Propusemos um esquema que funciona como um tipo de quantum data bus, ou ônibus quântico para transportar e distribuir emaranhamento com alta eficiência / Abstract: This thesis is concerned with the use of firmly established quantum systems for applications in quantum optics and quantum information. Having been driven by recent experimental advances in laser-manipulated trapped ions and cavity quantum electrodynamics, we concentrated more on proposals to be implemented in those systems. Being more specific, we have studied the interaction between trapped ions and quantized fields in the so-called cavity quantum electrodynamics with trapped ions. In this context, we began with a proposal to generate mesoscopic superpositions in the motion of the ion. Since these superpositions are extremely sensitive to decoherence, we have included cavity losses in order to make the situation slightly more realistic. We showed that the observation of quantum jumps, or photon detection outside the cavity, would generate quantum states with properties close to that generated in the ideal lossless case. In spite of the normally destructive effect of dissipation, we found a way to use it in our favor which turns out to be of great experimental importance due to always present mirror imperfections. We also showed how to mimic cross-Kerr nonlinearities in the cavity-ion system as a feasible alternative to the use of nonlinear crystals whose intensity of that non-linearity is too weak. This proposal opens up new possibilities for the use of trapped ions in non-demolition measurements and quantum computing. We finish our work in cavity electrodynamics with trapped ions with the study of the effect of the ionic motion on the dynamics of multiphotonic transitions. This is a more fundamental issue that is related to the understanding of matter-field interaction. In the last part of this thesis, we present results on the use of many-body systems for quantum information distribution. It was our goal to study more complex systems for the implementation of quantum protocols in large scale. In this sense, one could think of a chain of coupled harmonic oscillators as commonly found in condensed matter physics. Particularly, we dealt with the efficiency of entanglement transmission through the chain, trying to improve it. We ended up with a scheme which acts as a quantum data bus able to transport and distribute entanglement around quite efficiently / Doutorado / Física / Doutor em Ciências
|
292 |
Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures / Vers l'optique intégrée à l'échelle nanométrique : couplage plasmon-émetteur dans des structures plasmoniquesRahbany, Nancy 25 March 2016 (has links)
L'objectif de ce travail de thèse est d'étudier le couplage plasmon-émetteur dans des structures plasmoniques hybrides, visant à renforcer l’interaction lumière-matière à l'échelle nanométrique. Contrairement aux cavités optiques dont le volume de modes est limité par la diffraction, les cavités plasmoniques offrent un unique avantage d’efficacité du confinement sub-longueur d'onde. Cela peut conduire à l’accroissement de la fluorescence des émetteurs placés dans leur voisinage. Pour cela, nous proposons comme dispositif de focalisation une structure intégrée d’un réseau annulaire avec des nanoantennes afin de garantir une meilleure efficacité. Ce dispositif bénéficie du couplage entre des plasmons polaritons de surface (SPP) qui se propagent à partir du réseau et des plasmons localisés de surface (LSP) localisés aux niveaux des nanoantennes afin de parvenir à une augmentation de champ plus élevée. Nous présentons une étude de caractérisation de la plate-forme plasmonique constitué du réseau de diffraction métallique annulaire, d’une nanoantenne en étoile, et la structure intégrée réseau/nanoantenne. Nous montrons comment cette structure peut conduire à une plus grande émission des molécules de colorants ainsi que de centre SiV du diamant. La combinaison du confinement sub-longueur d'onde des LSP et l'énergie élevé des SPP dans notre structure conduit à une focalisation précise qui peut être mis en œuvre pour étudier le couplage plasmon-émetteur dans les régimes de couplage faibles et forts / There is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
|
293 |
Autopsy of a quantum electrical current / Autopsie d'un courant électrique quantiqueRoussel, Benjamin 15 December 2017 (has links)
Les expériences de physique quantique ont atteint un niveau de contrôle permettant de préparer avec précision l'état quantique de nombreux systèmes physiques. Cela a mené à la naissance de l'optique quantique électronique, un sujet émergent qui vise à préparer, manipuler et caractériser l'état de courants électriques contenant quelques excitations électroniques se propageant dans un conducteur quantique ballistique. Ceci est un défi conséquent qui se heurte à la difficulté de caractériser un état quantique à N corps.Le sujet de cette thèse sera le développement de méthodes de traitement du signal quantique permettant d'accéder à une connaissance partielle d'un tel état pour des courants électriques quantiques. Une première méthode consiste à les analyser à nombre d'excitations fixé au travers des cohérences électroniques. Pour cela, nous élaborons une analyse de la cohérence à un électron en termes d'atomes de signaux électroniques. En combinant cela au protocole de tomographie par interférometrie HOM, nous présentons la première autopsie, fonction d'onde par fonction d'onde, d'un courant électrique quantique.Une autre approche consiste à examiner des indicateurs sondant directement l'état à N corps. Nous étudions le rayonnement émis par un conducteur quantique ainsi que la décohérence électronique d'une excitation à un électron. Ensuite nous analysons la distribution de probabilité de la chaleur dissipée par un système quantique mésoscopique. Dans ce cadre, nous développons une théorie de l'effet Joule en régime quantique et à explorons comment celle-ci pourrait permettre de sonder l'état à N corps / Quantum physics experiments have reached a level of precision and control that allows quantum state engineering for many systems. This has led to the birth of electron quantum optics, an emerging field which aims at generating, manipulating and characterizing quantum electrical currents built from few-electron excitations propagating within ballistic quantum conductors. This is challenging since it is generically impossible in practice to fully characterize the many-body state of a beam containing indistinguishable electrons. The thesis presents new quantum signal processing approaches for accessing, at least partially, to the quantum many-body state of quantum electrical currents.A first approach is to access such a state at few-particle levels through electronic coherences. We will thus present a new representation of single-electron coherence in terms of electronic "atoms of signal". Combining this signal processing algorithm to HOM tomography enables us to present the first autopsy, wavefunction by wavefunction, of an experimental electrical quantum current. Another method is to look for indicators giving information directly at the many-body level. We will investigate the radiation emitted by a quantum conductor and address the problem of decoherence of a general single-electron excitation. Finally, we will look at the heat deposited by a mesoscopic quantum system, leading to a quantum version of Joule heating and discuss how it gives an insight on the many-body state of the electron fluid
|
294 |
Optical nanofibers interfacing cold toms. A tool for quantum optics / Des nanofibres optiques comme interface entre lumière guidée et atomes froids. Un outil pour l'optique quantiqueGouraud, Baptiste 11 February 2016 (has links)
Cette thèse a consisté à mettre en place une nouvelle expérience utilisant des atomes froids en interaction avec la lumière guidée par une nanofibre optique. Nous avons tout d'abord développé un banc de fabrication de nanofibres. En chauffant et étirant une fibre optique commerciale, on obtient un cylindre de silice de 400 nm de diamètre. La lumière guidée dans ces nanofibres est fortement focalisée sur toute la longueur de la fibre et exhibe de forts champs évanescents, ce qui permet d'obtenir une grande profondeur optique avec un faible nombre d'atomes. Après avoir inséré une nanofibre au milieu d'un nuage d'atomes, nous avons observé le phénomène de lumière lente dans les conditions de transparence électromagnétiquement induite. Nous avons aussi stoppé la lumière guidée et mémorisé l'information qu'elle contenait. Nous avons montré que ce protocole de mémoire optique fonctionne pour des impulsions lumineuses contenant moins d'un photon en moyenne. Ce système pourra donc être utilisé comme une mémoire quantique, un outil essentiel pour les futurs réseaux de communication quantique. Enfin, nous avons piégé les atomes dans un réseau optique au voisinage de la nanofibre grâce à de la lumière guidée par celle-ci. Par rapport à notre première série d'expériences, le nuage ainsi obtenu a un temps de vie plus long (25 ms) et interagit plus fortement avec la lumière guidée (OD ~ 100). Ce nouveau système devrait permettre d'implémenter efficacement d'autres protocoles d'optique quantique, comme la génération de photons uniques et l'intrication de deux ensembles atomiques distants. / We built a new experiment using cold atoms interacting with the light guided by an optical nanofiber. We first developed a nanofiber manufacturing bench. By heating and stretching a commercial optical fiber, a silica cylinder of 400 nm diameter is obtained. The light guided in these nanofibers is strongly focused over the whole length and exhibits strong evanescent fields. We then prepared a vacuum chamber and the laser system necessary for the manipulation of cold atoms. After inserting a nanofiber amid a cloud of cold atoms, we observed the phenomenon of slow light under the conditions of electromagnetically induced transparency: the light guided by the fiber is slowed down to a speed 3000 times smaller than its usual speed. We also stored the light guided by an optical fiber. After several microseconds, the information stored as a collective atomic excitation could be retrieved in the fiber. We have shown that this optical memory works for light pulses containing less than one photon on average. This system may therefore be used as a quantum memory, an essential tool for future quantum communication networks. Finally, we trapped atoms in an array in the vicinity of the nanofiber thanks to the light guided by the latter. Compared to our first set of experiments, the resulting cloud has a longer lifetime (25 ms) and interacts more strongly with the guided light (OD ~ 100). This new system should allow to efficiently implement other quantum optics protocols, such as the generation of single photons, or the entanglement of two remote atomic ensembles.
|
295 |
Optical Hybrid Quantum Information processing / Approche hybride du traitement quantique de l'informationLe Jeannic, Hanna 14 December 2016 (has links)
Approche hybride du traitement quantique de l'information La dualité onde-particule a conduit à deux façons d'encoder l'information quantique, les approches continues et discrètes. L'approche hybride a récemment émergé, et consiste à utiliser les concepts et boites à outils des deux approches, afin de venir à bout des limitations intrinsèques à chaque champ. Dans ce travail de thèse, nous allons dans une première partie utiliser des protocoles hybrides de façon à générer des états quantiques non-gaussiens de la lumière. A l'aide d'oscillateurs paramétriques optiques, et de détecteur de photons supraconducteurs, nous pouvons générer des photons uniques extrêmement purs très efficacement, ainsi que des états chats de Schrödinger, qui permettent d'encoder l'information en variables continues. Nous montrons également en quoi des opérations de variables continues peuvent aider cette génération. La méthode utilisée, basée sur la génération " d'états-noyaux " rend en outre ces états plus robustes à la décohérence. Dans une seconde partie, dans le contexte d'un réseau hétérogène, basé sur différents encodages, relier de façon quantique les deux mondes, nécessite l'existence d'intrication hybride de la lumière. Nous introduisons la notion d'intrication hybride, entre des états continus et discrets, et nous en montrons une première application qui est la génération à distance de bit quantique continu. Nous implémentons ainsi également une plateforme polyvalente permettant la génération d'états " micro-macro " intriqués. / In quantum information science and technology, two traditionally-separated ways of encoding information coexist -the continuous and the discrete approaches, resulting from the wave-particle duality of light. The first one is based on quadrature components, while the second one involves single photons. The recent optical hybrid approach aims at using both discrete and continuous concepts and toolboxes to overcome the intrinsic limitations of each field. In this PhD work, first, we use hybrid protocols in order to realize the quantum state engineering of various non-Gaussian states of light. Based on optical parametric oscillators and highly-efficient superconducting-nanowire single-photon detectors, we demonstrate the realization of a high-brightness single-photon source and the quantum state engineering of large optical Schrödinger cat states, which can be used as a continuous-variable qubit. We show how continuous-variable operations such as squeezing can help in this generation. This method based on so-called core states also enables to generate cat states that are more robust to decoherence. Second, in the context of heterogeneous networks based on both encodings, bridging the two worlds by a quantum link requires hybrid entanglement of light. We introduce optical hybrid entanglement between qubits and qutrits of continuous and discrete types, and demonstrate as a first application the remote state preparation of continuous-variable qubits. Our experiment is also a versatile platform to study squeezing-induced micro-macro entanglement.
|
296 |
The application of spontaneous parametric downconversion to develop tools for validating photonic quantum information technologiesThomas, Peter James January 2010 (has links)
This portfolio of work contributes to the remit of the National Physical Laboratory (NPL) to develop the underpinning expertise and tools for validating nascent and future optical quantum technologies based on the discrete and quantum properties of photons. This requirement overlaps with the requirement to provide validation for devices operating in the photon-counting regime. A common theme running through the portfolio is photon pairs generated through spontaneous parametric downconversion (SPDC). A Hong-Ou-Mandel (HOM) interferometer sourced with visible wavelength photon pairs from an SPDC process in beta-barium borate (BBO) was designed, built and characterised. The visibility of the HOM interference is dependent on the indistinguishability of the interfering photons, but is also influenced by imperfections of the interferometer; therefore an investigation was carried out to quantify the effects of the interferometer imperfections on the measured visibility so that the true photon indistinguishability could be measured with a quantified uncertainty. A bright source of correlated pair photons in the telecoms band based upon a pump enhanced SPDC process in periodically-poled potassium titanyl phosphate (PPKTP) was designed, built and characterised. From the characterisation measurements the source brightness was estimated to be 6.2×10⁴ pairs/ s/ mw pump. The photon pairs were further characterised through their incorporation as a source in a HOM interference experiment. The developed correlated photon pair source was at the heart of a novel scheme for the generation of polarisation entangled photon pairs, for which the design, build and characterisation work is presented. The source was demonstrated to produce two of the four maximally entangled Bell states with quantum interference visibilities of around 0.95. The generated states were also shown to break a form of Bell's inequality by around six standard deviations. The polarisation entangled photon pair source was originally built at the University of St Andrews and was later transferred to the NPL where it will extend NPL's capabilities to this key spectral region. Finally a study was carried out to investigate the possibility of a wavelength tuneable device for the absolute measurement of single photon detector quantum efficiencies based upon an established SPDC technique.
|
297 |
Limites quantiques dans les mesures de distance à l'aide de peignes de fréquences / Quantum limits in range-finding measurements with optical frequency combsJian, Pu 03 March 2014 (has links)
Dans de nombreux domaines de la physique, la mesure de la position d'un objet dans l'espace-temps est faite par échange d'impulsions lumineuses. Dans cette thèse, nous étudions les limites quantiques dans l'estimation d'un paramètre à l'aide de la lumière, et nous nous intéressons à ces limites dans une mesure de distance à l'aide de peignes de fréquences optiques. Dans un premier temps, nous étudions les limites générales d'une estimation de paramètre données par la limite de Cramér-Rao quantique. En particulier, nous présentons la limite de sensibilité dans une estimation faite à l'aide d'états Gaussiens multimodes et démontrons qu'il est possible d'atteindre la limite théorique à l'aide d'un montage expérimental simple. Dans un deuxième temps, nous appliquons cette limite au problème de positionnement dans l'espace-temps à l'aide de peignes de fréquence. Dans un environnement contrôlé tel que le vide, nous montrons que la sensibilité optimale dépasse celle d'un montage interférométrique ou de temps de vol et peut être obtenue à l'aide de techniques de mise en forme d'impulsion. Nous démontrons expérimentalement la limite quantique standard dans une mesure de distance. Dans un dernier temps, nous étudions comment ce protocole optimal est affecté lorsque la dispersion de l'environnement, par exemple dans l'air, entre en jeu. Nous montrons que la perte d'exactitude due aux fluctuations de l'environnement peut être compensée au prix d'une diminution de la précision. Nous présentons un protocole expérimental pour une mesure en temps réel d'une distance insensible aux perturbations atmosphériques. / In many fields of physics, the determination of the space-time position of an object is performed at high levels of accuracy and precision by the exchange of light pulses. In this thesis, we investigate the quantum limits in a parameter estimation scheme using light in a practical point of view, and we study how these limits apply in a range-finding scheme using optical frequency combs. In a first part, we study the quantum limits in a general parameter estimation problem by the means of the quantum Cramér-Rao bound. We focus on schemes involving multimode Gaussian states and derive the limits of sensitivity in the estimation of any parameter encoded in such states. We show that a simple experimental setup allows to optimally measure the parameter carried by the light. In a second part, we study how these limits apply in a range-finding protocol using optical frequency combs. In a well-controlled environment such as vacuum, we show that there exists an optimal scheme, requiring pulse shaping techniques, which sensitivity is better than the usual phase interferometry and time-of-flight measurements. We present experimental results that exhibits the standard quantum limit in space-time positioning. In the last part, we study the limitations introduced to this optimal scheme when the environment is weakly dispersive, like in air. We demonstrate that the loss of accuracy caused by such environmental fluctuations can be compensated at the expense of a reduced sensitivity. We propose an experimental scheme that allows to perform a real-time ranging measurement immune from atmospheric perturbations, without any knowledge of the values of the environmental parameters.
|
298 |
Estudo da dinâmica de sistemas quânticos compostos sob a influência de ambientes externos / Study of the dynamics of composite quantum systems under the influence of external environmentsDeçordi, Gustavo Lázero, 1986- 05 December 2016 (has links)
Orientador: Antonio Vidiella Barranco / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T02:56:15Z (GMT). No. of bitstreams: 1
Decordi_GustavoLazero_D.pdf: 2456755 bytes, checksum: 42a17eacb2e1a86e81888e48272ed08e (MD5)
Previous issue date: 2016 / Resumo: Estudamos nesta tese, sistemas quânticos compostos sob a influência de ambientes externos. Na primeira parte do trabalho, investigamos um sistema de dois qubits interagentes, estando um deles isolado e o outro acoplado a um banho térmico. Analisamos os efeitos da temperatura do banho sobre a dinâmica do sistema de dois qubits. Com essa finalidade, empregamos dois modelos distintos da interação sistema-ambiente: i) um modelo microscópico, no qual a equação mestra é obtida levando-se em conta o acoplamento entre os qubits na dedução do termo dissipativo, ii) um modelo fenomenológico, no qual o termo dissipativo é simplesmente adicionado ao termo unitário da equação de evolução do operador densidade. Obtemos soluções analíticas para os modelos, o que permitiu estudá-los em um intervalo considerável do acoplamento entre os qubits. Dedicamos a segunda parte do trabalho ao estudo de um sistema quântico em particular acoplado a um pequeno ambiente. Neste contexto, resolvemos exatamente o modelo da interação radiação-matéria conhecido como modelo de Tavis-Cummings a dois átomos. De posse das soluções, obtidas em circunstâncias bastante gerais e até então não encontradas na literatura, investigamos os efeitos oriundos da interação de um pequeno ambiente (átomo em estado de mistura estatística) sobre a dinâmica do subsistema composto pelo outro átomo acoplado ao modo do campo eletromagnético. Nós mostramos que propriedades não-clássicas associadas ao sistema principal podem ser significativamente degradadas pela ação do ambiente quando o átomo 2 está acoplado de maneira resonante ao campo. Encontramos que o comportamento não-clássico do sistema pode ser restaurado a medida que dessintonizamos o campo da frequência de transição do átomo 2, o ambiente / Abstract: We study in this thesis composite quantum systems under the influence of external environments. In the first part of this work, we investigate a two qubit interacting system having one of them isolated and the other coupled to a thermal bath. We analyze the effect of the temperature of the bath on the dynamics of the two qubit system. In order to do that, we consider two different models of system-reservoir interaction: i) a "microscopic" model, in which the master equation is derived taking into account the interaction between the two subsystems (qubits), ii) a "phenomenological" approach, in which the master equation consists of a dissipative term added to the unitary evolution term. We show that in the strong coupling regime between the subsystems (qubits), the expected thermal equilibrium steady state for the two-qubit system naturally arises in the framework of the microscopic model, while in the phenomenological approach it is obtained a steady state density operator which is not correct. Furthermore, the differences are even more profound in the weak coupling regime, when the models give rise to opposite behaviors with regard to the linear entropy of qubit 1. At the context of quantum systems coupled to environments with few degrees of freedom, we solve analytically the matter-radiation interaction model known as two atom Tavis-Cummings Model. With the solutions at hand, achieved in general circumstances until the present not found in literature, in which the constituent atoms may be coupled with different strengths to the field and also have different frequency detunings, we study the effects that arise from the interaction of a small environment (atom in a statistical mixture state) with the other atom coupled to an oscillator (cavity mode). We show that nonclassical features associated to the main system may be significantly degraded by the action of the small environment, if atom 2 is resonantly coupled to the field. We also demonstrate that the nonclassical behaviour of the system may be restored if we detune the field from the transition frequency of atom 2, the environment / Doutorado / Física / Doutor em Ciências / 899872/2011 / CAPES
|
299 |
COMPUTATIONAL DESIGN AND EXPERIMENTAL VALIDATION OF DIAMOND-BASED QUANTUM EMITTERSOluseye Akomolede (11706230) 15 November 2021 (has links)
<p>The enhancement of the emission from nitrogen vacancy color
centers will help facilitate advancements in quantum information technology. To
this end, the reduction of the excited state lifetimes of NVs as well as the
design of devices which support electroluminescence of nitrogen vacancies, as
well as the broadband enhancement of the emission from these centers is of
great importance.</p>
<p> </p>
<p>In this study, we create diamond thin films containing
nitrogen vacancy color centers using salt-assisted ultrasonic disaggregation
techniques and electrophoretic deposition. These films are implanted with xenon
atoms and the resulting structures are characterized optically. We report a
reduction in the bulk emission lifetime of nitrogen vacancy color centers of
two orders of magnitude. A coupled-mode theory approach is used to analyze the
emission from the xenon-doped nanodiamond species. It is determined that the
lifetime reduction occurs due to coupling between nitrogen vacancy color
centers and xenon color centers within the diamond lattice.</p>
<p> </p>
<p>A diamond field effect transistor is investigated via
simulations utilizing Sentaurus TCAD software. The device is scaled by three
orders of magnitude from previous experiments involving the same structure.
Transport characteristics are obtained from simulation results. We confirm the
existence of a decreasing saturation voltage with a decrease in gate length in
the diamond field effect transistor. Further investigation into the device’s
viability as a quantum emitter is conducted. </p>
<p> </p>
<p>The design of a single photon source utilizing plasmonic
structures to enhance emission from nitrogen vacancy color centers is proposed.
The plasmonic structure is investigated to extract operating parameters and to
quantify the optical coupling and propagation characteristics for various
physical dimensions</p>
<p> </p>
The design of a plasmonic device which features
both electroluminescence via nitrogen vacancy color centers and their
enhancement via plasmonic effects is numerically simulated. The device features
large Purcell enhancement factor and good photon emission rate. In summary,
this work paves the way towards the advancement of the nitrogen vacancy color center
as a stable source of room temperature photons for quantum information
applications.
|
300 |
Single photon generation and manipulation with semiconductor quantum dot devices / Génération et manipulation de photons uniques avec boîtes quantiques semi-conductricesDe Santis, Lorenzo 07 March 2018 (has links)
Les phénomènes quantiques les plus fondamentaux comme la cohérence quantique et l’intrication sont aujourd'hui explorés pour réaliser de nouvelles technologies. C'est le domaine des technologies quantiques, qui promettent de révolutionner le calcul, la communication et la métrologie. En encodant l'information dans les systèmes quantiques, il serait possible de résoudre des problèmes inaccessibles aux ordinateurs classiques, de garantir une sécurité absolue dans les communications et de développer des capteurs dépassant les limites classiques de précision. Les photons uniques, en tant que vecteurs d'information quantique, ont acquis un rôle central dans ce domaine, car ils peuvent être manipulés facilement et être utilisés pour mettre en œuvre de nombreux protocoles quantiques. Pour cela, il est essentiel de développer des interfaces très efficaces entre les photons et les systèmes quantiques matériels, tels les atomes uniques, une fonctionnalité fondamentale à la fois pour la génération et la manipulation des photons. La réalisation de tels systèmes dans l'état solide permettrait de fabriquer des dispositifs quantiques intégrés et à large échelle. Dans ce travail de thèse, nous étudions l'interface lumière-matière réalisée par une boîte quantique unique, utilisée comme un atome artificiel, couplée de façon déterministe à une cavité de type micropilier. Un tel dispositif s'avère être un émetteur et un récepteur efficace de photons uniques, et il est utilisé ici pour implémenter des fonctionnalités quantiques de base. Tout d'abord, sous une excitation optique résonante, nous montrons comment nos composants sont des sources très brillantes de photons uniques. L’accélération de l'émission spontanée de la boîte quantique dans la cavité et le contrôle électrique de la structure permettent de générer des photons très indiscernables avec une très haute brillance. Cette nouvelle génération de sources de photons uniques peut être utilisée pour générer des états de photons intriqués en chemin appelés états NOON. Ces états intriqués sont des ressources importantes pour la détection de phase optique, mais leur caractérisation optique a été peu étudiée jusqu’à présent. Nous présentons une nouvelle méthode de tomographie pour caractériser les états de NOON encodés en chemin et implémentons expérimentalement cette méthode dans le cas de deux photons. Enfin, nous étudions le comportement de nos composants comme filtres non-linéaires de lumière. L'interface optimale entre la lumière et la boîte quantique permet l'observation d'une réponse optique non-linéaire au niveau d'un seul photon incident. Cet effet est utilisé pour démontrer le filtrage des états Fock à un seul photon à partir d’impulsions classiques incidentes. Ceci ouvre la voie à la réalisation efficace d’interactions effectives entre deux photons dans un système à l’état solide, une étape fondamentale pour surmonter les limitations dues au fonctionnement probabilistes des portes optiques linéaires. / Quantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication.
|
Page generated in 0.0345 seconds