• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 6
  • 1
  • Tagged with
  • 49
  • 22
  • 21
  • 21
  • 20
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Klassische und Quantendynamik periodisch getriebener, chaotischer Streusysteme

Henseler, Michael 23 July 1999 (has links)
No description available.
32

Eigenfunctions in chaotic quantum systems

Bäcker, Arnd 12 June 2008 (has links)
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted.
33

Mesoscopic wave phenomena in electronic and optical ring structures / Mesoskopische Wellenphänomene in elektronischen und optischen Ringstrukturen

Hentschel, Martina 14 November 2001 (has links) (PDF)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
34

Flooding of Regular Phase Space Islands by Chaotic States

Bittrich, Lars 10 December 2010 (has links) (PDF)
We investigate systems with a mixed phase space, where regular and chaotic dynamics coexist. Classically, regions with regular motion, the regular islands, are dynamically not connected to regions with chaotic motion, the chaotic sea. Typically, this is also reflected in the quantum properties, where eigenstates either concentrate on the regular or the chaotic regions. However, it was shown that quantum mechanically, due to the tunneling process, a coupling is induced and flooding of regular islands may occur. This happens when the Heisenberg time, the time needed to resolve the discrete spectrum, is larger than the tunneling time from the regular region to the chaotic sea. In this case the regular eigenstates disappear. We study this effect by the time evolution of wave packets initially started in the chaotic sea and find increasing probability in the regular island. Using random matrix models a quantitative prediction is derived. We find excellent agreement with numerical data obtained for quantum maps and billiards systems. For open systems we investigate the phenomenon of flooding and disappearance of regular states, where the escape time occurs as an additional time scale. We discuss the reappearance of regular states in the case of strongly opened systems. This is demonstrated numerically for quantum maps and experimentally for a mushroom shaped microwave resonator. The reappearance of regular states is explained qualitatively by a matrix model. / Untersucht werden Systeme mit gemischtem Phasenraum, in denen sowohl reguläre als auch chaotische Dynamik auftritt. In der klassischen Mechanik sind Gebiete regulärer Bewegung, die sogenannten regulären Inseln, dynamisch nicht mit den Gebieten chaotischer Bewegung, der chaotischen See, verbunden. Dieses Verhalten spiegelt sich typischerweise auch in den quantenmechanischen Eigenschaften wider, so dass Eigenfunktionen entweder auf chaotischen oder regulären Gebieten konzentriert sind. Es wurde jedoch gezeigt, dass aufgrund des Tunneleffektes eine Kopplung auftritt und reguläre Inseln geflutet werden können. Dies geschieht wenn die Heisenbergzeit, das heißt die Zeit die das System benötigt, um das diskrete Spektrum aufzulösen, größer als die Tunnelzeit vom Regulären ins Chaotische ist, wobei reguläre Eigenzustände verschwinden. Dieser Effekt wird über eine Zeitentwicklung von Wellenpaketen, die in der chaotischen See gestartet werden, untersucht. Es kommt zu einer ansteigenden Wahrscheinlichkeit in der regulären Insel. Mithilfe von Zufallsmatrixmodellen wird eine quantitative Vorhersage abgeleitet, welche die numerischen Daten von Quantenabbildungen und Billardsystemen hervorragend beschreibt. Der Effekt des Flutens und das Verschwinden regulärer Zustände wird ebenfalls mit offenen Systemen untersucht. Hier tritt die Fluchtzeit als zusätzliche Zeitskala auf. Das Wiederkehren regulärer Zustände im Falle stark geöffneter Systeme wird qualitativ mithilfe eines Matrixmodells erklärt und numerisch für Quantenabbildungen sowie experimentell für einen pilzförmigen Mikrowellenresonator belegt.
35

Dissipation in Mikrowellenbillards "Exceptional Points" und Symmetriebrechung /

Dembowski, Christian. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
36

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems

Schönwetter, Moritz 17 January 2017 (has links) (PDF)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems. In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields. In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems. There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
37

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems

Schönwetter, Moritz 17 January 2017 (has links)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems. In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields. In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems. There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
38

Phase-space structure of resonance eigenfunctions for chaotic systems with escape

Clauß, Konstantin 16 June 2020 (has links)
Physical systems are usually not closed and insight about their internal structure is experimentally derived by scattering. This is efficiently described by resonance eigenfunctions of non-Hermitian quantum systems with a corresponding classical dynamics that allows for the escape of particles. For the phase-space distribution of resonance eigenfunctions in chaotic systems with partial and full escape we obtain a universal description of their semiclassical limit in terms of classical conditional invariant measures with the same decay rate. For partial escape, we introduce a family of conditionally invariant measures with arbitrary decay rates based on the hyperbolic dynamics and the natural measures of forward and backward dynamics. These measures explain the multifractal phase-space structure of resonance eigenfunctions and their dependence on the decay rate. Additionally, for the nontrivial limit of full escape we motivate the hypothesis that resonance eigenfunctions are described by conditionally invariant measures that are uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. Overall we confirm quantum-to-classical correspondence for the phase-space densities, for their fractal dimensions, and by evaluating their Jensen–Shannon distance in a generic chaotic map with partial and full escape, respectively. / Typische physikalische Systeme sind nicht geschlossen, sodass ihre innere Struktur mit Hilfe von Streuexperimenten untersucht werden kann. Diese werden mit Hilfe einer nicht-Hermiteschen Quantendynamik und deren Resonanzeigenzuständen beschrieben. Die dabei zugrunde liegende klassische Dynamik berücksichtigt den Verlust von Teilchen. Für die semiklassische Phasenraumverteilung solcher Resonanzeigenzustände in chaotischen Systemen mit partieller und voller Öffnung entwickeln wir eine universelle Beschreibung mittels bedingt invarianter Maße gleicher Zerfallsrate. Für partiellen Zerfall stellen wir eine Familie bedingt invarianter Maße mit beliebiger Zerfallsrate vor, welche auf der hyperbolischen Dynamik und den natürlichen Maßen der vorwärts gerichteten und der invertierten Dynamik aufbauen. Diese Maße erklären die multifraktale Phasenraumstruktur der Resonanzzustände und deren Abhängigkeit von der Zerfallsrate. Darüber hinaus motivieren wir für den nicht trivialen Grenzfall voll geöffneter Systeme die Hypothese, dass Resonanzeigenzustände durch ein bedingt invariantes Maß beschrieben werden, welches gleichverteilt auf solchen Mengen ist, die den gleichen zeitlichen Abstand zum quantenunscharfen chaotischen Sattel haben. Insgesamt bestätigen wir die quantenklassische Korrespondenz für die Phasenraumdichten, deren fraktale Dimensionen und durch Auswertung ihres Jensen–Shannon Abstandes in einer generischen chaotischen Abbildung sowohl für partielle als auch für volle Öffnung.
39

Dynamical Tunneling and its Application to Spectral Statistics

Löck, Steffen 11 December 2014 (has links)
Tunneling is a central result of quantum mechanics. It allows quantum particles to enter regions which are inaccessible by classical dynamics. Consequences of the tunneling process are most relevant. For example it causes the alpha-decay of radioactive nuclei and it is argued that proton tunneling is decisive for the emergence of DNA mutations. The theoretical prediction of corresponding tunneling rates is explained in standard textbooks on quantum mechanics for regular systems. Typical physical systems such as atoms or molecules, however, also show chaotic motion. Here the calculation of tunneling rates is more demanding. In this text a selection of articles on the prediction of tunneling rates in systems which allow for regular and chaotic motion is summarized. The presented approach is then used to explain consequences of tunneling on the quantum spectrum, such as the universal power-law behavior of small energy spacings and the flooding of regular states.
40

Classical and quantum investigations of four-dimensional maps with a mixed phase space

Richter, Martin 15 October 2012 (has links) (PDF)
Für das Verständnis einer Vielzahl von Problemen von der Himmelsmechanik bis hin zur Beschreibung von Molekülen spielen Systeme mit mehr als zwei Freiheitsgraden eine entscheidende Rolle. Aufgrund der Dimensionalität gestaltet sich ein Verständnis dieser Systeme jedoch deutlich schwieriger als bei Systemen mit zwei oder weniger Freiheitsgraden. Die vorliegende Arbeit soll zum besseren Verständnis der klassischen und quantenmechanischen Eigenschaften getriebener Systeme mit zwei Freiheitsgraden beitragen. Hierzu werden dreidimensionale Schnitte durch den Phasenraum von 4D Abbildungen betrachtet. Anhand dreier Beispiele, deren Phasenräume zunehmend kompliziert sind, werden diese 3D Schnitte vorgestellt und untersucht. In einer sich anschließenden quantenmechanischen Untersuchung gehen wir auf zwei wichtige Aspekte ein. Zum einen untersuchen wir die quantenmechanischen Signaturen des klassischen "Arnold Webs". Es wird darauf eingegangen, wie die Quantenmechanik dieses Netz im semiklassischen Limes auflösen kann. Darüberhinaus widmen wir uns dem wichtigen Aspekt quantenmechanischer Kopplungen klassisch getrennter Phasenraumgebiete anhand der Untersuchung dynamischer Tunnelraten. Für diese wenden wir sowohl den in der Literatur bekannten "fictitious integrable system approach" als auch die Theorie des resonanz-unterstützen Tunnelns auf 4D Abbildungen an. / Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

Page generated in 0.0464 seconds