• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • Tagged with
  • 23
  • 23
  • 17
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive control of deterministic and stochastic approximation errors in simulations of compressible flow / Contrôle adaptatif des erreurs d'approximation stochastique et déterministe dans la simulation des écoulements compressible

Van Langenhove, Jan Willem 25 October 2017 (has links)
La simulation de systèmes d'ingénierie non linéaire complexes tels que les écoulements de fluide compressibles peut être ciblée pour rendre plus efficace et précise l'approximation d'une quantité spécifique (scalaire) d'intérêt du système. En mettant de côté l'erreur de modélisation et l'incertitude paramétrique, on peut y parvenir en combinant des estimations d'erreurs axées sur des objectifs et des raffinements adaptatifs de maillage spatial anisotrope. A cette fin, un cadre élégant et efficace est celui de l'adaptation dite basé-métrique où une estimation d'erreur a priori est utilisée comme indicateur d’adaptation de maillage. Dans cette thèse on propose une nouvelle extension de cette approche au cas des approximations de système portant une composante stochastique. Dans ce cas, un problème d'optimisation est formulé et résolu pour un meilleur contrôle des sources d'erreurs. Ce problème est posé dans le cadre continu de l'espace de métrique riemannien. Des développements algorithmiques sont également proposés afin de déterminer les sources dominates d’erreur et effectuer l’adaptation dans les espaces physique ou des paramètres incertains. L’approche proposé est testée sur divers problèmes comprenant une entrée de scramjet supersonique soumise à des incertitudes paramétriques géométriques et opérationnelles. Il est démontré que cette approche est capable de bien capturé les singularités dans l’escape stochastique, tout en équilibrant le budget de calcul et les raffinements de maillage dans les deux espaces. / The simulation of complex nonlinear engineering systems such as compressible fluid flows may be targeted to make more efficient and accurate the approximation of a specific (scalar) quantity of interest of the system. Putting aside modeling error and parametric uncertainty, this may be achieved by combining goal-oriented error estimates and adaptive anisotropic spatial mesh refinements. To this end, an elegant and efficient framework is the one of (Riemannian) metric-based adaptation where a goal-based a priori error estimation is used as indicator for adaptivity. This thesis proposes a novel extension of this approach to the case of aforementioned system approximations bearing a stochastic component. In this case, an optimisation problem leading to the best control of the distinct sources of errors is formulated in the continuous framework of the Riemannian metric space. Algorithmic developments are also presented in order to quantify and adaptively adjust the error components in the deterministic and stochastic approximation spaces. The capability of the proposed method is tested on various problems including a supersonic scramjet inlet subject to geometrical and operational parametric uncertainties. It is demonstrated to accurately capture discontinuous features of stochastic compressible flows impacting pressure-related quantities of interest, while balancing computational budget and refinements in both spaces.
12

Modeling and uncertainty quantification in the nonlinear stochastic dynamics of horizontal drillstrings / Modélisation et quantification des incertitudes en dynamique stochastique non linéaire des tubes de forage horizontaux

Barbosa Da Cunha Junior, Americo 11 March 2015 (has links)
Prospection de pétrole utilise un équipement appelé tube de forage pour forer le sol jusqu'au le niveau du réservoir. Cet équipement est une longue colonne rotative, composée par une série de tiges de forage interconnectées et les équipements auxiliaires. La dynamique de cette colonne est très complexe parce que dans des conditions opérationnelles normales, elle est soumise à des vibrations longitudinales, latérales et de torsion, qui présentent un couplage non linéaire. En outre, cette structure est soumise à effets de frottement et à des chocs dûs aux contacts mécaniques entre les paires tête de forage/sol et tube de forage/sol. Ce travail présente un modèle mécanique-mathématique pour analyser un tube de forage en configuration horizontale. Ce modèle utilise la théorie des poutres qui utilise l'inertie de rotation, la déformation de cisaillement et le couplage non linéaire entre les trois mécanismes de vibration. Les équations du modèle sont discrétisées par la méthode des éléments finis. Les incertitudes des paramètres du modèle d'interaction tête de forage/sol sont prises en compte par l'approche probabiliste paramétrique, et les distributions de probabilité des paramètres aléatoires sont construits par le principe du maximum d'entropie. Des simulations numériques sont réalisées afin de caractériser le comportement dynamique non linéaire de la structure, et en particulier, de l'outil de forage. Des phénomènes dynamiques non linéaires par nature, comme le slick-slip et le bit-bounce, sont observés dans les simulations, ainsi que les chocs. Une analyse spectrale montre étonnamment que les phénomènes slick-slip et bit-bounce résultent du mécanisme de vibration latérale, et ce phénomène de choc vient de la vibration de torsion. Cherchant à améliorer l'efficacité de l'opération de forage, un problème d'optimisation qui cherche à maximiser la vitesse de pénétration de la colonne dans le sol, sur ses limites structurelles, est proposé et résolu / Oil prospecting uses an equipment called drillstring to drill the soil until the reservoir level. This equipment is a long column under rotation, composed by a sequence of connected drill-pipes and auxiliary equipment. The dynamics of this column is very complex because, under normal operational conditions, it is subjected to longitudinal, lateral, and torsional vibrations, which presents a nonlinear coupling. Also, this structure is subjected to friction and shocks effects due to the mechanical contacts between the pairs drill-bit/soil and drill-pipes/borehole. This work presents a mechanical-mathematical model to analyze a drillstring in horizontal configuration. This model uses a beam theory which accounts rotatory inertia, shear deformation, and the nonlinear coupling between three mechanisms of vibration. The model equations are discretized using the finite element method. The uncertainties in bit-rock interaction model parameters are taken into account through a parametric probabilistic approach, and the random parameters probability distributions are constructed by means of maximum entropy principle. Numerical simulations are conducted in order to characterize the nonlinear dynamic behavior of the structure, specially, the drill-bit. Dynamical phenomena inherently nonlinear, such as slick-slip and bit-bounce, are observed in the simulations, as well as shocks. A spectral analysis shows, surprisingly, that slick-slip and bit-bounce phenomena result from the lateral vibration mechanism, and that shock phenomena comes from the torsional vibration. Seeking to increase the efficiency of the drilling process, an optimization problem that aims to maximize the rate of penetration of the column into the soil, respecting its structural limits, is proposed and solved
13

Multilevel model reduction for uncertainty quantification in computational structural dynamics / Réduction de modèle multi-niveau pour la quantification des incertitudes en dynamique numérique des structures

Ezvan, Olivier 23 September 2016 (has links)
Ce travail de recherche présente une extension de la construction classique des modèles réduits (ROMs) obtenus par analyse modale, en dynamique numérique des structures linéaires. Cette extension est basée sur une stratégie de projection multi-niveau, pour l'analyse dynamique des structures complexes en présence d'incertitudes. De nos jours, il est admis qu'en dynamique des structures, la prévision sur une large bande de fréquence obtenue à l'aide d'un modèle éléments finis doit être améliorée en tenant compte des incertitudes de modèle induites par les erreurs de modélisation, dont le rôle croît avec la fréquence. Dans un tel contexte, l'approche probabiliste non-paramétrique des incertitudes est utilisée, laquelle requiert l'introduction d'un ROM. Par conséquent, ces deux aspects, évolution fréquentielle des niveaux d'incertitudes et réduction de modèle, nous conduisent à considérer le développement d'un ROM multi-niveau, pour lequel les niveaux d'incertitudes dans chaque partie de la bande de fréquence peuvent être adaptés. Dans cette thèse, on s'intéresse à l'analyse dynamique de structures complexes caractérisées par la présence de plusieurs niveaux structuraux, par exemple avec un squelette rigide qui supporte diverses sous-parties flexibles. Pour de telles structures, il est possible d'avoir, en plus des modes élastiques habituels dont les déplacements associés au squelette sont globaux, l'apparition de nombreux modes élastiques locaux, qui correspondent à des vibrations prédominantes des sous-parties flexibles. Pour ces structures complexes, la densité modale est susceptible d'augmenter fortement dès les basses fréquences (BF), conduisant, via la méthode d'analyse modale, à des ROMs de grande dimension (avec potentiellement des milliers de modes élastiques en BF). De plus, de tels ROMs peuvent manquer de robustesse vis-à-vis des incertitudes, en raison des nombreux déplacements locaux qui sont très sensibles aux incertitudes. Il convient de noter qu'au contraire des déplacements globaux de grande longueur d'onde caractérisant la bande BF, les déplacements locaux associés aux sous-parties flexibles de la structure, qui peuvent alors apparaître dès la bande BF, sont caractérisés par de courtes longueurs d'onde, similairement au comportement dans la bande hautes fréquences (HF). Par conséquent, pour les structures complexes considérées, les trois régimes vibratoires BF, MF et HF se recouvrent, et de nombreux modes élastiques locaux sont entremêlés avec les modes élastiques globaux habituels. Cela implique deux difficultés majeures, concernant la quantification des incertitudes d'une part et le coût numérique d'autre part. L'objectif de cette thèse est alors double. Premièrement, fournir un ROM stochastique multi-niveau qui est capable de rendre compte de la variabilité hétérogène introduite par le recouvrement des trois régimes vibratoires. Deuxièmement, fournir un ROM prédictif de dimension réduite par rapport à celui de l'analyse modale. Une méthode générale est présentée pour la construction d'un ROM multi-niveau, basée sur trois bases réduites (ROBs) dont les déplacements correspondent à l'un ou l'autre des régimes vibratoires BF, MF ou HF (associés à des déplacements de type BF, de type MF ou bien de type HF). Ces ROBs sont obtenues via une méthode de filtrage utilisant des fonctions de forme globales pour l'énergie cinétique (par opposition aux fonctions de forme locales des éléments finis). L'implémentation de l'approche probabiliste non-paramétrique dans le ROM multi-niveau permet d'obtenir un ROM stochastique multi-niveau avec lequel il est possible d'attribuer un niveau d'incertitude spécifique à chaque ROB. L'application présentée est relative à une automobile, pour laquelle le ROM stochastique multi-niveau est identifié par rapport à des mesures expérimentales. Le ROM proposé permet d'obtenir une dimension réduite ainsi qu'une prévision améliorée, en comparaison avec un ROM stochastique classique / This work deals with an extension of the classical construction of reduced-order models (ROMs) that are obtained through modal analysis in computational linear structural dynamics. It is based on a multilevel projection strategy and devoted to complex structures with uncertainties. Nowadays, it is well recognized that the predictions in structural dynamics over a broad frequency band by using a finite element model must be improved in taking into account the model uncertainties induced by the modeling errors, for which the role increases with the frequency. In such a framework, the nonparametric probabilistic approach of uncertainties is used, which requires the introduction of a ROM. Consequently, these two aspects, frequency-evolution of the uncertainties and reduced-order modeling, lead us to consider the development of a multilevel ROM in computational structural dynamics, which has the capability to adapt the level of uncertainties to each part of the frequency band. In this thesis, we are interested in the dynamical analysis of complex structures in a broad frequency band. By complex structure is intended a structure with complex geometry, constituted of heterogeneous materials and more specifically, characterized by the presence of several structural levels, for instance, a structure that is made up of a stiff main part embedding various flexible sub-parts. For such structures, it is possible having, in addition to the usual global-displacements elastic modes associated with the stiff skeleton, the apparition of numerous local elastic modes, which correspond to predominant vibrations of the flexible sub-parts. For such complex structures, the modal density may substantially increase as soon as low frequencies, leading to high-dimension ROMs with the modal analysis method (with potentially thousands of elastic modes in low frequencies). In addition, such ROMs may suffer from a lack of robustness with respect to uncertainty, because of the presence of the numerous local displacements, which are known to be very sensitive to uncertainties. It should be noted that in contrast to the usual long-wavelength global displacements of the low-frequency (LF) band, the local displacements associated with the structural sub-levels, which can then also appear in the LF band, are characterized by short wavelengths, similarly to high-frequency (HF) displacements. As a result, for the complex structures considered, there is an overlap of the three vibration regimes, LF, MF, and HF, and numerous local elastic modes are intertwined with the usual global elastic modes. This implies two major difficulties, pertaining to uncertainty quantification and to computational efficiency. The objective of this thesis is thus double. First, to provide a multilevel stochastic ROM that is able to take into account the heterogeneous variability introduced by the overlap of the three vibration regimes. Second, to provide a predictive ROM whose dimension is decreased with respect to the classical ROM of the modal analysis method. A general method is presented for the construction of a multilevel ROM, based on three orthogonal reduced-order bases (ROBs) whose displacements are either LF-, MF-, or HF-type displacements (associated with the overlapping LF, MF, and HF vibration regimes). The construction of these ROBs relies on a filtering strategy that is based on the introduction of global shape functions for the kinetic energy (in contrast to the local shape functions of the finite elements). Implementing the nonparametric probabilistic approach in the multilevel ROM allows each type of displacements to be affected by a particular level of uncertainties. The method is applied to a car, for which the multilevel stochastic ROM is identified with respect to experiments, solving a statistical inverse problem. The proposed ROM allows for obtaining a decreased dimension as well as an improved prediction with respect to a classical stochastic ROM
14

Modeling and uncertainty quantification in the nonlinear stochastic dynamics of horizontal drillstrings / Modélisation et quantification des incertitudes en dynamique stochastique non linéaire des tubes de forage horizontaux

Barbosa Da Cunha Junior, Americo 11 March 2015 (has links)
Prospection de pétrole utilise un équipement appelé tube de forage pour forer le sol jusqu'au le niveau du réservoir. Cet équipement est une longue colonne rotative, composée par une série de tiges de forage interconnectées et les équipements auxiliaires. La dynamique de cette colonne est très complexe parce que dans des conditions opérationnelles normales, elle est soumise à des vibrations longitudinales, latérales et de torsion, qui présentent un couplage non linéaire. En outre, cette structure est soumise à effets de frottement et à des chocs dûs aux contacts mécaniques entre les paires tête de forage/sol et tube de forage/sol. Ce travail présente un modèle mécanique-mathématique pour analyser un tube de forage en configuration horizontale. Ce modèle utilise la théorie des poutres qui utilise l'inertie de rotation, la déformation de cisaillement et le couplage non linéaire entre les trois mécanismes de vibration. Les équations du modèle sont discrétisées par la méthode des éléments finis. Les incertitudes des paramètres du modèle d'interaction tête de forage/sol sont prises en compte par l'approche probabiliste paramétrique, et les distributions de probabilité des paramètres aléatoires sont construits par le principe du maximum d'entropie. Des simulations numériques sont réalisées afin de caractériser le comportement dynamique non linéaire de la structure, et en particulier, de l'outil de forage. Des phénomènes dynamiques non linéaires par nature, comme le slick-slip et le bit-bounce, sont observés dans les simulations, ainsi que les chocs. Une analyse spectrale montre étonnamment que les phénomènes slick-slip et bit-bounce résultent du mécanisme de vibration latérale, et ce phénomène de choc vient de la vibration de torsion. Cherchant à améliorer l'efficacité de l'opération de forage, un problème d'optimisation qui cherche à maximiser la vitesse de pénétration de la colonne dans le sol, sur ses limites structurelles, est proposé et résolu / Oil prospecting uses an equipment called drillstring to drill the soil until the reservoir level. This equipment is a long column under rotation, composed by a sequence of connected drill-pipes and auxiliary equipment. The dynamics of this column is very complex because, under normal operational conditions, it is subjected to longitudinal, lateral, and torsional vibrations, which presents a nonlinear coupling. Also, this structure is subjected to friction and shocks effects due to the mechanical contacts between the pairs drill-bit/soil and drill-pipes/borehole. This work presents a mechanical-mathematical model to analyze a drillstring in horizontal configuration. This model uses a beam theory which accounts rotatory inertia, shear deformation, and the nonlinear coupling between three mechanisms of vibration. The model equations are discretized using the finite element method. The uncertainties in bit-rock interaction model parameters are taken into account through a parametric probabilistic approach, and the random parameters probability distributions are constructed by means of maximum entropy principle. Numerical simulations are conducted in order to characterize the nonlinear dynamic behavior of the structure, specially, the drill-bit. Dynamical phenomena inherently nonlinear, such as slick-slip and bit-bounce, are observed in the simulations, as well as shocks. A spectral analysis shows, surprisingly, that slick-slip and bit-bounce phenomena result from the lateral vibration mechanism, and that shock phenomena comes from the torsional vibration. Seeking to increase the efficiency of the drilling process, an optimization problem that aims to maximize the rate of penetration of the column into the soil, respecting its structural limits, is proposed and solved
15

Inversion cinématique progressive linéaire de la source sismique et ses perspectives dans la quantification des incertitudes associées / Progressive linear kinematic source inversion method and its perspectives towards the uncertainty quantification.

Sanchez Reyes, Hugo Samuel 28 October 2019 (has links)
La caractérisation des tremblements de terre est un domaine de recherche primordial en sismologie, où l'objectif final est de fournir des estimations précises d'attributs de la source sismique. Dans ce domaine, certaines questions émergent, par exemple : quand un tremblement de terre s’est-il produit? quelle était sa taille? ou quelle était son évolution dans le temps et l'espace? On pourrait se poser d'autres questions plus complexes comme: pourquoi le tremblement s'est produit? quand sera le prochain dans une certaine région? Afin de répondre aux premières questions, une représentation physique du phénomène est nécessaire. La construction de ce modèle est l'objectif scientifique de ce travail doctoral qui est réalisé dans le cadre de la modélisation cinématique. Pour effectuer cette caractérisation, les modèles cinématiques de la source sismique sont un des outils utilisés par les sismologues. Il s’agit de comprendre la source sismique comme une dislocation en propagation sur la géométrie d’une faille active. Les modèles de sources cinématiques sont une représentation physique de l’histoire temporelle et spatiale d’une telle rupture en propagation. Cette modélisation est dite approche cinématique car les histoires de la rupture inférées par ce type de technique sont obtenues sans tenir compte des forces qui causent l'origine du séisme.Dans cette thèse, je présente une nouvelle méthode d'inversion cinématique capable d'assimiler, hiérarchiquement en temps, les traces de données à travers des fenêtres de temps évolutives. Cette formulation relie la fonction de taux de glissement et les sismogrammes observés, en préservant la positivité de cette fonction et la causalité quand on parcourt l'espace de modèles. Cette approche, profite de la structure creuse de l’histoire spatio-temporelle de la rupture sismique ainsi que de la causalité entre la rupture et chaque enregistrement différé par l'opérateur. Cet opérateur de propagation des ondes connu, est différent pour chaque station. Cette formulation progressive, à la fois sur l’espace de données et sur l’espace de modèle, requiert des hypothèses modérées sur les fonctions de taux de glissement attendues, ainsi que des stratégies de préconditionnement sur le gradient local estimé pour chaque paramètre du taux de glissement. Ces hypothèses sont basées sur de simples modèles physiques de rupture attendus. Les applications réussies de cette méthode aux cas synthétiques (Source Inversion Validation Exercise project) et aux données réelles du séisme de Kumamoto 2016 (Mw=7.0), ont permis d’illustrer les avantages de cette approche alternative d’une inversion cinématique linéaire de la source sismique.L’objectif sous-jacent de cette nouvelle formulation sera la quantification des incertitudes d’un tel modèle. Afin de mettre en évidence les propriétés clés prises en compte dans cette approche linéaire, dans ce travail, j'explore l'application de la stratégie bayésienne connue comme Hamiltonian Monte Carlo (HMC). Cette méthode semble être l’une des possibles stratégies qui peut être appliquée à ce problème linéaire sur-paramétré. Les résultats montrent qu’elle est compatible avec la stratégie linéaire dans le domaine temporel présentée ici. Grâce à une estimation efficace du gradient local de la fonction coût, on peut explorer rapidement l'espace de grande dimension des solutions possibles, tandis que la linéarité est préservée. Dans ce travail, j'explore la performance de la stratégie HMC traitant des cas synthétiques simples, afin de permettre une meilleure compréhension de tous les concepts et ajustements nécessaires pour une exploration correcte de l'espace de modèles probables. Les résultats de cette investigation préliminaire sont encourageants et ouvrent une nouvelle façon d'aborder le problème de la modélisation de la reconstruction cinématique de la source sismique, ainsi, que de l’évaluation des incertitudes associées. / The earthquake characterization is a fundamental research field in seismology, which final goal is to provide accurate estimations of earthquake attributes. In this study field, various questions may rise such as the following ones: when and where did an earthquake happen? How large was it? What is its evolution in space and time? In addition, more challenging questions can be addressed such as the following ones: why did it occur? What is the next one in a given area? In order to progress in the first list of questions, a physical description, or model, of the event is necessary. The investigation of such model (or image) is the scientific topic I investigate during my PhD in the framework of kinematic source models. Understanding the seismic source as a propagating dislocation that occurs across a given geometry of an active fault, the kinematic source models are the physical representations of the time and space history of such rupture propagation. Such physical representation is said to be a kinematic approach because the inferred rupture histories are obtained without taking into account the forces that might cause the origin of the dislocation.In this PhD dissertation, I present a new hierarchical time kinematic source inversion method able to assimilate data traces through evolutive time windows. A linear time-domain formulation relates the slip-rate function and seismograms, preserving the positivity of this function and the causality when spanning the model space: taking benefit of the time-space sparsity of the rupture model evolution is as essential as considering the causality between rupture and each record delayed by the known propagator operator different for each station. This progressive approach, both on the data space and on the model space, does require mild assumptions on prior slip-rate functions or preconditioning strategies on the slip-rate local gradient estimations. These assumptions are based on simple physical expected rupture models. Successful applications of this method to a well-known benchmark (Source Inversion Validation Exercise 1) and to the recorded data of the 2016 Kumamoto mainshock (Mw=7.0) illustrate the advantages of this alternative approach of a linear kinematic source inversion.The underlying target of this new formulation will be the future uncertainty quantification of such model reconstruction. In order to achieve this goal, as well as to highlight key properties considered in this linear time-domain approach, I explore the Hamiltonian Monte Carlo (HMC) stochastic Bayesian framework, which appears to be one of the possible and very promising strategies that can be applied to this stabilized over-parametrized optimization of a linear forward problem to assess the uncertainties on kinematic source inversions. The HMC technique shows to be compatible with the linear time-domain strategy here presented. This technique, thanks to an efficient estimation of the local gradient of the misfit function, appears to be able to rapidly explore the high-dimensional space of probable solutions, while the linearity between unknowns and observables is preserved. In this work, I investigate the performance of the HMC strategy dealing with simple synthetic cases with almost perfect illumination, in order to provide a better understanding of all the concepts and required tunning to achieve a correct exploration of the model space. The results from this preliminary investigation are promising and open a new way of tackling the kinematic source reconstruction problem and the assessment of the associated uncertainties.
16

Propagation d’incertitudes à travers des modèles dynamiques d’assemblages de structures mécaniques / Uncertainty propagation through dynamic models of assemblies of mechanical structures

Daouk, Sami 15 November 2016 (has links)
Lors de l'étude du comportement des systèmes mécaniques, les modèles mathématiques et les paramètres structuraux sont généralement considérés déterministes. Néanmoins, le retour d'expérience montre que ces éléments sont souvent incertains, dû à une variabilité naturelle ou manque de connaissance. La quantification de la qualité et la fiabilité du modèle numérique d'un assemblage industriel reste alors une question majeure en dynamique basse-fréquence. L'objectif de cette thèse est d'améliorer le dimensionnement vibratoire des assemblages boulonnés par la mise en place d'un modèle dynamique de connecteur prenant en compte différents types et sources d'incertitudes sur des paramètres de raideur, de manière simple, efficace et exploitable dans un contexte industriel. Ces travaux s'inscrivent dans le cadre du projet SICODYN, piloté par EDF R&D, visant à caractériser et quantifier les incertitudes sur le comportement dynamique des assemblages industriels boulonnés sous les aspects numérique et expérimental. Des études comparatives de plusieurs méthodes numériques de propagation d'incertitudes montrent l'avantage de l'utilisation de la théorie des méconnaissances. Une caractérisation expérimentale des incertitudes dans les structures boulonnées est réalisée sur un banc d'essai dynamique et sur un assemblage industriel. La propagation de plusieurs faibles et fortes incertitudes à travers différents modèles dynamiques d’assemblages mécaniques permet d'aboutir à l’évaluation de l'efficacité de la théorie des méconnaissances et son applicabilité en milieu industriel. / When studying the behaviour of mechanical systems, mathematical models and structural parameters are usually considered deterministic. Return on experience shows however that these elements are uncertain in most cases, due to natural variability or lack of knowledge. Therefore, quantifying the quality and reliability of the numerical model of an industrial assembly remains a major question in low-frequency dynamics. The purpose of this thesis is to improve the vibratory design of bolted assemblies through setting up a dynamic connector model that takes account of different types and sources of uncertainty on stiffness parameters, in a simple, efficient and exploitable in industrial context. This work has been carried out in the framework of the SICODYN project, led by EDF R&D, that aims to characterise and quantify, numerically and experimentally, the uncertainties in the dynamic behaviour of bolted industrial assemblies. Comparative studies of several numerical methods of uncertainty propagation demonstrate the advantage of using the Lack-Of-Knowledge theory. An experimental characterisation of uncertainties in bolted structures is performed on a dynamic test rig and on an industrial assembly. The propagation of many small and large uncertainties through different dynamic models of mechanical assemblies leads to the assessment of the efficiency of the Lack-Of-Knowledge theory and its applicability in an industrial environment.
17

Data assimilation and uncertainty quantification in cardiovascular biomechanics / Assimilation de données et quantification des incertitudes en biomécanique cardiovasculaire

Lal, Rajnesh 14 June 2017 (has links)
Les simulations numériques des écoulements sanguins cardiovasculaires peuvent combler d’importantes lacunes dans les capacités actuelles de traitement clinique. En effet, elles offrent des moyens non invasifs pour quantifier l’hémodynamique dans le cœur et les principaux vaisseaux sanguins chez les patients atteints de maladies cardiovasculaires. Ainsi, elles permettent de recouvrer les caractéristiques des écoulements sanguins qui ne peuvent pas être obtenues directement à partir de l’imagerie médicale. Dans ce sens, des simulations personnalisées utilisant des informations propres aux patients aideraient à une prévision individualisée des risques. Nous pourrions en effet, disposer des informations clés sur la progression éventuelle d’une maladie ou détecter de possibles anomalies physiologiques. Les modèles numériques peuvent fournir également des moyens pour concevoir et tester de nouveaux dispositifs médicaux et peuvent être utilisés comme outils prédictifs pour la planification de traitement chirurgical personnalisé. Ils aideront ainsi à la prise de décision clinique. Cependant, une difficulté dans cette approche est que, pour être fiables, les simulations prédictives spécifiques aux patients nécessitent une assimilation efficace de leurs données médicales. Ceci nécessite la solution d’un problème hémodynamique inverse, où les paramètres du modèle sont incertains et sont estimés à l’aide des techniques d’assimilation de données.Dans cette thèse, le problème inverse pour l’estimation des paramètres est résolu par une méthode d’assimilation de données basée sur un filtre de Kalman d’ensemble (EnKF). Connaissant les incertitudes sur les mesures, un tel filtre permet la quantification des incertitudes liées aux paramètres estimés. Un algorithme d’estimation de paramètres, basé sur un filtre de Kalman d’ensemble, est proposé dans cette thèse pour des calculs hémodynamiques spécifiques à un patient, dans un réseau artériel schématique et à partir de mesures cliniques incertaines. La méthodologie est validée à travers plusieurs scenarii in silico utilisant des données synthétiques. La performance de l’algorithme d’estimation de paramètres est également évaluée sur des données expérimentales pour plusieurs réseaux artériels et dans un cas provenant d’un banc d’essai in vitro et des données cliniques réelles d’un volontaire (cas spécifique du patient). Le but principal de cette thèse est l’analyse hémodynamique spécifique du patient dans le polygone de Willis, appelé aussi cercle artériel du cerveau. Les propriétés hémodynamiques communes, comme celles de la paroi artérielle (module de Young, épaisseur de la paroi et coefficient viscoélastique), et les paramètres des conditions aux limites (coefficients de réflexion et paramètres du modèle de Windkessel) sont estimés. Il est également démontré qu’un modèle appelé compartiment d’ordre réduit (ou modèle dimension zéro) permet une estimation simple et fiable des caractéristiques du flux sanguin dans le polygone de Willis. De plus, il est ressorti que les simulations avec les paramètres estimés capturent les formes attendues pour les ondes de pression et de débit aux emplacements prescrits par le clinicien. / Cardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. They offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. Patient-specific simulations (incorporating data unique to the individual) enable individualised risk prediction, provide key insights into disease progression and/or abnormal physiologic detection. They also provide means to systematically design and test new medical devices, and are used as predictive tools to surgical and personalize treatment planning and, thus aid in clinical decision-making. Patient-specific predictive simulations require effective assimilation of medical data for reliable simulated predictions. This is usually achieved by the solution of an inverse hemodynamic problem, where uncertain model parameters are estimated using the techniques for merging data and numerical models known as data assimilation methods.In this thesis, the inverse problem is solved through a data assimilation method using an ensemble Kalman filter (EnKF) for parameter estimation. By using an ensemble Kalman filter, the solution also comes with a quantification of the uncertainties for the estimated parameters. An ensemble Kalman filter-based parameter estimation algorithm is proposed for patient-specific hemodynamic computations in a schematic arterial network from uncertain clinical measurements. Several in silico scenarii (using synthetic data) are considered to investigate the efficiency of the parameter estimation algorithm using EnKF. The usefulness of the parameter estimation algorithm is also assessed using experimental data from an in vitro test rig and actual real clinical data from a volunteer (patient-specific case). The proposed algorithm is evaluated on arterial networks which include single arteries, cases of bifurcation, a simple human arterial network and a complex arterial network including the circle of Willis.The ultimate aim is to perform patient-specific hemodynamic analysis in the network of the circle of Willis. Common hemodynamic properties (parameters), like arterial wall properties (Young’s modulus, wall thickness, and viscoelastic coefficient) and terminal boundary parameters (reflection coefficient and Windkessel model parameters) are estimated as the solution to an inverse problem using time series pressure values and blood flow rate as measurements. It is also demonstrated that a proper reduced order zero-dimensional compartment model can lead to a simple and reliable estimation of blood flow features in the circle of Willis. The simulations with the estimated parameters capture target pressure or flow rate waveforms at given specific locations.
18

Analyse numérique d'équations aux dérivées aléatoires, applications à l'hydrogéologie

Charrier, Julia 12 July 2011 (has links) (PDF)
Ce travail présente quelques résultats concernant des méthodes numériques déterministes et probabilistes pour des équations aux dérivées partielles à coefficients aléatoires, avec des applications à l'hydrogéologie. On s'intéresse tout d'abord à l'équation d'écoulement dans un milieu poreux en régime stationnaire avec un coefficient de perméabilité lognormal homogène, incluant le cas d'une fonction de covariance peu régulière. On établit des estimations aux sens fort et faible de l'erreur commise sur la solution en tronquant le développement de Karhunen-Loève du coefficient. Puis on établit des estimations d'erreurs éléments finis dont on déduit une extension de l'estimation d'erreur existante pour la méthode de collocation stochastique, ainsi qu'une estimation d'erreur pour une méthode de Monte-Carlo multi-niveaux. On s'intéresse enfin au couplage de l'équation d'écoulement considérée précédemment avec une équation d'advection-diffusion, dans le cas d'incertitudes importantes et d'une faible longueur de corrélation. On propose l'analyse numérique d'une méthode numérique pour calculer la vitesse moyenne à laquelle la zone contaminée par un polluant s'étend. Il s'agit d'une méthode de Monte-Carlo combinant une méthode d'élements finis pour l'équation d'écoulement et un schéma d'Euler pour l'équation différentielle stochastique associée à l'équation d'advection-diffusion, vue comme une équation de Fokker-Planck.
19

Custom supply chain engineering : modeling and risk management : application to the customs / Ingénierie de la chaîne logistique douanière : modélisation et gestion de risques : application au cas des douanes

Hammadi, Lamia 10 December 2018 (has links)
La sécurité, la sûreté et l’efficacité de la chaîne logistique internationale revêtent une importance capitale pour le gouvernement, pour ses intérêts financiers et économiques et pour la sécurité de ses résidents. À cet égard, la société est confrontée à des multiples menaces, telles que le trafic illicite de drogues, d’armes ou autre type de contrebande, ainsi que la contrefaçon et la fraude commerciale. Pour contrer (détecter, prévenir, enquêter et atténuer) ces menaces, le rôle des douanes se pose en tant que gardiens du commerce international et acteurs principaux de la sécurisation de la chaîne logistique internationale. Les douanes interviennent à tous les stades de l'acheminement des marchandises ; toutes les transactions en provenance ou à destination des pays doivent être traitées par leurs services douaniers. Dans un tel environnement, les douanes deviennent un élément essentiel de la chaîne logistique. Nous adoptons ce point de vue, avec un accent particulier sur les opérations douanières et, pour souligner cet objectif, nous appelons cette analyse "chaîne logistique douanière". Dans cette thèse, nous avons tout d’abord mis en place le concept de chaîne logistique douanière, en identifiant les acteurs et les liens structurels entre eux, puis en établissant la cartographie des processus, l’approche d’intégration et le modèle de mesure de performance du concept proposé. Deuxièmement, nous développons une nouvelle approche de gestion de risques dans la chaîne logistique douanière basée sur une approche qualitative. Une telle approche conduit à identifier les classes de risques et à recommander les meilleures solutions afin de réduire le niveau de risque. Notre approche est appliquée dans la douane Marocaine en considérant la criticité comme un indicateur de risque en premier temps, en appliquant la méthode AMDEC (Analyse des modes de défaillance, de leurs effets et de leur criticité) et la méthode ABC croisée et le poids prioritaire en deuxième temps, en utilisant la méthode AHP (Analytic Hierarchy Process) et la méthode AHP floue (c.-à-d. Évaluation de risques sous incertitude); puis une analyse comparative des deux indicateurs est effectuée afin d’examiner l’efficacité des résultats obtenus. Enfin, nous développons des modèles stochastiques pour les séries chronologiques de risques qui abordent le défi le plus important de la modélisation de risques dans le contexte douanier : la Saisonnalité. Plus précisément, nous proposons d’une part des modèles basés sur la quantification des incertitudes pour décrire les comportements mensuels. Les différents modèles sont ajustés en utilisant la méthode de coïncidence des moments sur des séries temporelles de quantités saisies du trafic illicite dans cinq sites. D'autre part, des modèles de Markov cachés sont ajustés à l'aide de l'algorithme EM sur les mêmes séquences d’observations. Nous montrons que nos modèles permettent avec précision de gérer et de décrire les composantes saisonnières des séries chronologiques de risques dans le contexte douanier. On montre également que les modèles ajustés sont interprétables et fournissent une bonne description des propriétés importantes des données, telles que la structure du second ordre et les densités de probabilité par saison et par site. / The security, safety and efficiency of the international supply chain are of central importance for the governments, for their financial and economic interests and for the security of its residents. In this regard, the society faces multiple threats, such as illicit traffic of drugs, arms and other contraband, as well as counterfeiting and commercial fraud. For countering (detecting, preventing, investigating and mitigating) such threats, the role of customs arises as the gatekeepers of international trade and the main actor in securing the international supply chain. Customs intervene in all stages along the routing of cargo; all transactions leaving or entering the country must be processed by the custom agencies. In such an environment, customs become an integral thread within the supply chain. We adopt this point of view, with a particular focus on customs operations and, in order to underline this focus, we refer to this analysis as “customs supply chain”. In this thesis, we firstly set up the concept of customs supply chain, identify the actors and structural links between them, then establish the process mapping, integration approach and performance model. Secondly, we develop a new approach for managing risks in customs supply chain based on qualitative analysis. Such an approach leads to identify the risk classes as well as recommend best possible solutions to reduce the risk level. Our approach is applied in Moroccan customs by considering the criticality as a risk indicator. In a first time we use Failure Modes Effects Criticality Analysis (FMECA) and Cross Activity Based Costing (ABC) Method and priority weight; in the second time we use Analytic Hierarchy Process (AHP) and Fuzzy AHP (i.e., risk assessment under uncertainty); then a benchmarking of the two indicators is conducted in order to examine the effectiveness of the obtained results. Finally, we develop stochastic models for risk time series that address the most important challenge of risk modeling in the customs context: Seasonality. To be more specific, we propose on the one hand, models based on uncertainty quantification to describe monthly components. The different models are fitted using Moment Matching method to the time series of seized quantities of the illicit traffic on five sites. On the other hand, Hidden Markov Models which are fitted using the EM-algorithm on the same observation sequences. We show that these models allow to accurately handle and describe the seasonal components of risk time series in customs context. It is also shown that the fitted models can be easily interpreted and provide a good description of important properties of the data such as the second-order structure and Probability Density Function (PDFs) per season per site.
20

Towards robust prediction of the dynamics of the Antarctic ice sheet: Uncertainty quantification of sea-level rise projections and grounding-line retreat with essential ice-sheet models / Vers des prédictions robustes de la dynamique de la calotte polaire de l'Antarctique: Quantification de l'incertitude sur les projections de l'augmentation du niveau des mers et du retrait de la ligne d'ancrage à l'aide de modèles glaciologiques essentiels

Bulthuis, Kevin 29 January 2020 (has links) (PDF)
Recent progress in the modelling of the dynamics of the Antarctic ice sheet has led to a paradigm shift in the perception of the Antarctic ice sheet in a changing climate. New understanding of the dynamics of the Antarctic ice sheet now suggests that the response of the Antarctic ice sheet to climate change will be driven by instability mechanisms in marine sectors. As concerns have grown about the response of the Antarctic ice sheet in a warming climate, interest has grown simultaneously in predicting with quantified uncertainty the evolution of the Antarctic ice sheet and in clarifying the role played by uncertainties in predicting the response of the Antarctic ice sheet to climate change. Essential ice-sheet models have recently emerged as computationally efficient ice-sheet models for large-scale and long-term simulations of the ice-sheet dynamics and integration into Earth system models. Essential ice-sheet models, such as the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model developed at the Université Libre de Bruxelles, achieve computational tractability by representing essential mechanisms and feedbacks of ice-sheet thermodynamics through reduced-order models and appropriate parameterisations. Given their computational tractability, essential ice-sheet models combined with methods from the field of uncertainty quantification provide opportunities for more comprehensive analyses of the impact of uncertainty in ice-sheet models and for expanding the range of uncertainty quantification methods employed in ice-sheet modelling. The main contributions of this thesis are twofold. On the one hand, we contribute a new assessment and new understanding of the impact of uncertainties on the multicentennial response of the Antarctic ice sheet. On the other hand, we contribute new methods for uncertainty quantification of geometrical characteristics of the spatial response of physics-based computational models, with, as a motivation in glaciology, a focus on predicting with quantified uncertainty the retreat of the grounded region of the Antarctic ice sheet. For the first contribution, we carry out new probabilistic projections of the multicentennial response of the Antarctic ice sheet to climate change using the f.ETISh model. We apply methods from the field of uncertainty quantification to the f.ETISh model to investigate the influence of several sources of uncertainty, namely sources of uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-shelf melting, ice-shelf rheology, and bedrock relation, on the continental response on the Antarctic ice sheet. We provide new probabilistic projections of the contribution of the Antarctic ice sheet to future sea-level rise; we carry out stochastic sensitivity analysis to determine the most influential sources of uncertainty; and we provide new probabilistic projections of the retreat of the grounded portion of the Antarctic ice sheet. For the second contribution, we propose to address uncertainty quantification of geometrical characteristics of the spatial response of physics-based computational models within the probabilistic context of the random set theory. We contribute to the development of the concept of confidence sets that either contain or are contained within an excursion set of the spatial response with a specified probability level. We propose a new multifidelity quantile-based method for the estimation of such confidence sets and we demonstrate the performance of the proposed method on an application concerned with predicting with quantified uncertainty the retreat of the Antarctic ice sheet. In addition to these two main contributions, we contribute to two additional pieces of research pertaining to the computation of Sobol indices in global sensitivity analysis in small-data settings using the recently introduced probabilistic learning on manifolds (PLoM) and to a multi-model comparison of the projections of the contribution of the Antarctic ice sheet to global mean sea-level rise. / Les progrès récents effectués dans la modélisation de la dynamique de la calotte polaire de l'Antarctique ont donné lieu à un changement de paradigme vis-à-vis de la perception de la calotte polaire de l'Antarctique face au changement climatique. Une meilleure compréhension de la dynamique de la calotte polaire de l'Antarctique suggère désormais que la réponse de la calotte polaire de l'Antarctique au changement climatique sera déterminée par des mécanismes d'instabilité dans les régions marines. Tandis qu'un nouvel engouement se porte sur une meilleure compréhension de la réponse de la calotte polaire de l'Antarctique au changement climatique, un intérêt particulier se porte simultanément vers le besoin de quantifier les incertitudes sur l'évolution de la calotte polaire de l'Antarctique ainsi que de clarifier le rôle joué par les incertitudes sur le comportement de la calotte polaire de l'Antarctique en réponse au changement climatique. D'un point de vue numérique, les modèles glaciologiques dits essentiels ont récemment été développés afin de fournir des modèles numériques efficaces en temps de calcul dans le but de réaliser des simulations à grande échelle et sur le long terme de la dynamique des calottes polaires ainsi que dans l'optique de coupler le comportement des calottes polaires avec des modèles globaux du sytème terrestre. L'efficacité en temps de calcul de ces modèles glaciologiques essentiels, tels que le modèle f.ETISh (fast Elementary Thermomechanical Ice Sheet) développé à l'Université Libre de Bruxelles, repose sur une modélisation des mécanismes et des rétroactions essentiels gouvernant la thermodynamique des calottes polaires au travers de modèles d'ordre réduit et de paramétrisations. Vu l'efficacité en temps de calcul des modèles glaciologiques essentiels, l'utilisation de ces modèles en complément des méthodes du domaine de la quantification des incertitudes offrent de nombreuses opportunités afin de mener des analyses plus complètes de l'impact des incertitudes dans les modèles glaciologiques ainsi que de développer de nouvelles méthodes du domaine de la quantification des incertitudes dans le cadre de la modélisation glaciologique. Les contributions de cette thèse sont doubles. D'une part, nous contribuons à une nouvelle estimation et une nouvelle compréhension de l'impact des incertitudes sur la réponse de la calotte polaire de l'Antarctique dans les prochains siècles. D'autre part, nous contribuons au développement de nouvelles méthodes pour la quantification des incertitudes sur les caractéristiques géométriques de la réponse spatiale de modèles physiques numériques avec, comme motivation en glaciologie, un intérêt particulier vers la prédiction sous incertitudes du retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux. Dans le cadre de la première contribution, nous réalisons de nouvelles projections probabilistes de la réponse de la calotte polaire de l'Antarctique au changement climatique au cours des prochains siècles à l'aide du modèle numérique f.ETISh. Nous appliquons des méthodes du domaine de la quantification des incertitudes au modèle numérique f.ETISh afin d'étudier l'impact de différentes sources d'incertitude sur la réponse continentale de la calotte polaire de l'Antarctique. Les sources d'incertitude étudiées sont relatives au forçage atmosphérique, au glissement basal, à la paramétrisation du flux à la ligne d'ancrage, au vêlage, à la fonte sous les barrières de glace, à la rhéologie des barrières de glace et à la relaxation du lit rocheux. Nous réalisons de nouvelles projections probabilistes de la contribution de la calotte polaire de l'Antarctique à l'augmentation future du niveau des mers; nous réalisons une analyse de sensibilité afin de déterminer les sources d'incertitude les plus influentes; et nous réalisons de nouvelles projections probabilistes du retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux.Dans le cadre de la seconde contribution, nous étudions la quantification des incertitudes sur les caractéristiques géométriques de la réponse spatiale de modèles physiques numériques dans le cadre de la théorie des ensembles aléatoires. Dans le cadre de la théorie des ensembles aléatoires, nous développons le concept de régions de confiance qui contiennent ou bien sont inclus dans un ensemble d'excursion de la réponse spatiale du modèle numérique avec un niveau donné de probabilité. Afin d'estimer ces régions de confiance, nous proposons de formuler l'estimation de ces régions de confiance dans une famille d'ensembles paramétrés comme un problème d'estimation de quantiles d'une variable aléatoire et nous proposons une nouvelle méthode de type multifidélité pour estimer ces quantiles. Finalement, nous démontrons l'efficacité de cette nouvelle méthode dans le cadre d'une application relative au retrait de la région de la calotte polaire de l'Antarctique en contact avec le lit rocheux. En plus de ces deux contributions principales, nous contribuons à deux travaux de recherche additionnels. D'une part, nous contribuons à un travail de recherche relatif au calcul des indices de Sobol en analyse de sensibilité dans le cadre de petits ensembles de données à l'aide d'une nouvelle méthode d'apprentissage probabiliste sur des variétés géométriques. D'autre part, nous fournissons une comparaison multimodèle de différentes projections de la contribution de la calotte polaire de l'Antarctique à l'augmentation du niveau des mers. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1686 seconds