• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 37
  • 15
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 41
  • 36
  • 36
  • 29
  • 26
  • 20
  • 16
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Uma álgebra de Clifford de assinatura (n,3n) e os operadores densidade da teoria da informação quântica / A Clifford algebra of signature (n,3n) and the density operators of quantum information theory

Melo, Nolmar 17 August 2018 (has links)
Orientador: Carlile Campos Lavor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T14:47:27Z (GMT). No. of bitstreams: 1 Melo_Nolmar_D.pdf: 2834013 bytes, checksum: 5639deabb953aa019e4e1c9c905e856d (MD5) Previous issue date: 2011 / Resumo: Este trabalho apresenta uma linguagem algébrica para dois elementos básicos da teoria da informação quântica (os bits quânticos e os operadores densidade), baseada nas propriedades de uma álgebra de Clifford de assinatura (n,3n). Demonstramos que a nova descrição desses elementos preserva as mesmas propriedades matemáticas obtidas com a descrição clássica. Com isso, estendemos alguns resultados apresentados na literatura que relaciona Álgebra de Clifford e Informação Quântica. / Abstract: This work presents an algebraic language for two basic elements of quantum information theory (the quantum bits and density operators), based in the properties of a Clifford algebra of signature (n,3n). We prove that the new description of these elements preserves the same mathematical properties obtained with the classical description. We also extend some results presented in the literature that relate Clifford algebra and quantum information. / Doutorado / Matematica Aplicada / Doutor em Matemática
82

Da computação paraconsistente a computação quantica

Agudelo, Juan Carlos Agudelo 05 August 2006 (has links)
Orientador: Walter Alexandre Carnielli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-08-06T09:39:40Z (GMT). No. of bitstreams: 1 Agudelo_JuanCarlosAgudelo_M.pdf: 2515941 bytes, checksum: 58c117425f8731bb67cf3fc0e1181ad4 (MD5) Previous issue date: 2006 / Resumo: As diferentes interpretações da mecânica quântica levanta sérios problemas filosóficos a respeito da natureza do mundo físico e do estatuto das teorias físicas. Tais interpretações desempenham um papel importante na compreensão dos modelos de computação quântica, e por sua vez os modelos de computação quântica abrem a possibilidade de se confrontar as teses filosóficas que se atrevem a responder a tais problemas. Apesar das relevantes e surpreendentes promessas de uso pragmático e tecnológico da computação quântica, não é por essa vereda que caminha este trabalho: o que aqui se oferece é um novo paradigma de computação (um modelo de computação baseado no paradigma paraconsistente), e se propõe uma nova interpretação da computação quântica através desse novo paradigma, dessa forma colaborando simultaneamente na discussão filosófica a respeito da noção de computabilidade e da mecânica quântica. O presente trabalho introduz a definição do que será chamado de modelo de máquinas de Turing paraconsistentes (MTPs). Tal modelo de computação é uma generalização do modelo clássico de máquinas de Turing. No modelo de máquinas de Turing paraconsistentes, diferentemente do modelo clássico, permite-se a execução de múltiplas instruções de mancha simultânea, dando lugar a multiplicidade de símbolos em diferentes casas da fita, multiplicidade de estados e multiplicidade dc posições da máquina. Considerando que tal multiplicidade de configurações, embora essencial nas MTPs pode ser interpretado como incoerências com respeito às máquinas de Turing clássicas, permite-se acrescentar condições de consistência e inconsistência na execução das instruções nas MTPs. o que servirá então para controlar o estado dc incoerência do sistema. Depois de apresentar o modelo de MTPs, são descritos os modelo de máquinas de Turing quânticas (MTQs) e o modelo dc circuitos quânticos (CQs), ambos introduzidos inicialmente por David Dcutsch. os quais são, respectivamente, generalizações do modelo de máquinas dc Turing clássicas e de circuitos boolcanos clássicos usando as leis da mecânica quântica. Finalmente, estabelecem-se relações entre o modelo de MTPs e os modelos de computação quântica, simulando algoritmos quânticos simples (um CQ que soluciona o chamado problema de Dcutsch e um CQ que soluciona o chamado problema de Deutsch-Josza) e mostrando que o paralelismo quântico, uma característica essencial da computação quântica., pode em alguns casos ser simulado por meio de MTPs. Dessa forma, apesar de o particular modelo de MTPs aqui apresentado ter algumas restrições na simulação de certas características da computação quântica, abre-se a possibilidade de se definir outros modelos de MTPs de maneira a simular tais características. Em resumo, o presente trabalho, na medida cm que oferece um novo paradigma de computação (a saber, a computação paraconsistente) e uma nova interpretação dos modelos de computação quântica (a saber, a interpretação da computação quântica através da computação paraconsistente) contribui para a discussão filosófica a respeito da interpretação dos modelos de computação quântica, e possivelmente da interpretação da própria mecânica quântica. Contudo, não menos importante é o fato de que, apesar de o presente trabalho não pretender se dedicar a questões puramente técnicas da computabilidade, ele de fato abre um imenso campo de investigação a respeito da computação relativizada à lógica e suas implicações - no caso presente, relativizada à lógica paraconsistente / Abstract: The interpretations of quantum mechanics open serious philosophical questions about the nature of the physical world and about the status of physical theories. Such interpretations play an important role in the understanding of models of quantum computing, and models of quantum computing, by their turn, open possibilities to confront and test philosophical theses that dare to address such problems. Although the promising pragmatic and technological applications of quantum computing, this work goes in another way: what is here offered is a new paradigm of computation based upon the pa-raconsistency paradigm, and a new interpretation of quantum computing through this model, in this way simultaneously collaborating in the philosophical discussion about the concepts of computability and of quantum mechanics. This work introduces the definition of what will be called the model of paraconsistent Turing machines (PTMs). Such computational model is a generalization of the classical model of Turing machines. In the PTMs model, differently from the classical Turing machines model, simultaneous execution of multiple instructions is allowed, giving rise to a multiplicity of symbols on different cells of the tape, multiplicity of machine states and multiplicity of machine positions. Such multiplicity of configurations, though essential in the PTMs. can be seen as incoherencies with respect to classical Turing machines: to compensate this, the PTMs permit to operate with consistency and inconsistency conditions to control the global state of incoherence of the system. After introducing the PTMs, the model of quantum Turing machines (QTMs) and the model of quantum circuits (QCs) arc presented. This models arc due to David Dcutsch and arc. respectively, generalizations of the model of classical Turing machines and the model of classical boolean circuits, using the laws of quantum mechanics. Finally, relations between the model of PTMs and models of quantum computing arc established, which permits to simulate simple quantum algorithms (a QC to solve the so called Dcutsch problem and a QC to solve the so called Dcutsch-Jozsa. problem) by PTMs. It is also shown that quantum parallelism, an essential characteristic of quantum computation, may be simulated in some cases by PTMs. Although the particular model of PTMs here presented has some restrictions in the capacity to simulate certain quantum computing characteristics, our work opens the possibility to define other PTM models which could simulate such characteristics. To sum up, the present work, while offering a new paradigm of computation (namely, parconsistent computation) and a new interpretation of quantum computing (namely, interpretation of quantum computation by means of paraconsistent computation) contributes to the philosophical discussion about the interpretation of quantum computation and of the quantum mechanics itself. However, not less important is the fact that, besides its lack of explicit intention towards tccnical questions of computability theory, opens a new line of research about the possibilities of logic-relativized computation and its implications- in the present case, relativized to paraconsistent logics / Mestrado / Logica / Mestre em Filosofia
83

State and Process Tomography : In Spekkens' Toy Model

Andersson, Andreas January 2020 (has links)
In 2004 Robert W. Spekkens introduced a toy theory designed to make a case for the epistemic view of quantum mechanics. But how does Spekkens’ toy model differ from quantum theory? While some differences are well-established, we attempt to approach this question from a tomographic point of view. More specifically, we provide experimentally viableprocedureswhichenablesustocompletelycharacterizethestatesandgatesthatare available in the toy model. We show that, in contrast to quantum theory, decompositions of transformations in the toy model must be done in a non-linear fashion.
84

Adiabatisk genväg till quditberäkning / Adiabatic shortcut to holonomic qudit computation

Smith, Kellen January 2021 (has links)
One of the major challenges hindering advancement of quantum computing is the sensitive nature of the physical systems used to build a quantum computer. One suggestion for improving reliability is a particular type of logic gates, based on Berry's geometric phase, showing improved robustness to external disturbance of the quantum system over the course of a calculation. Such logic gates have previously been shown for the smallest possible two-level qubits. Using the method of adiabatic shortcut we endevour to discover similarly realistic and robust logic gates for units of quantum information in higher dimensions. The example shown in this paper discusses three-level qutrits, but is expected to apply to theoretically unlimited higher dimensions since new geometric complications are expected to arise primarily when moving from a two-level to a multi-level problem.  We here present a set of primitive single-qutrit gates able to perform universal quantum computations if supplemented by a two-qutrit gate. We also present a set of condensed single-qutrit gates for commonly needed operations. By detailing the underlying mathematical framework, relying on the multi-dimensional generalisation of Berry's phase describing the time evolution of degenerate quantum states, we also suggest an easily scalable geometric interpretation of quantum gates in higher dimensions along with visual representation of logic gates using parameters of the physical system to sequentially unlock and manipulate subspaces of the quantum information unit.
85

Introducing Quantum Computation in Education

Hedenskog, Amadeus January 2023 (has links)
Quantum Computation is the quest for more efficient technologies. It can in principal be applied to Complex quantum systems, Quantum chemical systems, Cyber-security, Finance and AI. However, the introductory course in Quantum Mechanics at the Luleå University of Technology (F0047T) does not provide an introduction to Quantum Computation. This thesis investigates educational material and summarizes introductory concepts to Quantum Computation in the form of a compendium, as well as laboratory tasks in the form of simulation exercises as a potential integration of Quantum Computation into the course. The constructed compendium includes a historical overview, applications, introductory level Quantum Computation theory, Quantum Computational algorithms and a section of the Nobel prize in Physics 2022 which is relevant to both fields. An alternative proof of one of the algorithms, the Deutsch Jozsa Algorithm, presented in the compendium was created, which utilizes mathematics more in-line with the course. If the laboratory tasks were to be incorporated into the course, they would replace one of the current three laboratory tasks. Auxiliary aims for the laboratory tasks were thus imposed. These were: be of similar length/difficulty as the three laboratory tasks separately, be inspirational, be within the theoretical scope of the compendium and focus on quantum phenomenon. The laboratory tasks were chosen to center around Quantum Entanglement and the Deutsch Jozsa Algorithm which are to be preformed using IBM's Quantum Logic Circuit simulator 'Quantum Composer'. Both these tasks focus on Quantum phenomenon and are within the theoretical scope of the compendium. The length/difficulty and inspirational aspects of the tasks needs to be verified in a continuation study.
86

Coherence protection by random coding.

Brion, E., Akulin, V.M., Dumer, I., Harel, Gil, Kurizki, G. January 2005 (has links)
No / We show that the multidimensional Zeno effect combined with non-holonomic control allows one to efficiently protect quantum systems from decoherence by a method similar to classical random coding. The method is applicable to arbitrary error-inducing Hamiltonians and general quantum systems. The quantum encoding approaches the Hamming upper bound for large dimension increases. Applicability of the method is demonstrated with a seven-qubit toy computer.
87

Theoretical and Numerical Studies of Phase Transitions and Error Thresholds in Topological Quantum Memories

Jouzdani, Pejman 01 January 2014 (has links)
This dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code. We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world. We begin with a brief introduction to stabilizer codes. The stabilizer formalism of the theory of quantum error correction gives a well-defined description of quantum codes that is used throughout this dissertation. Then, we turn our attention to a quite new subject, namely, topological quantum codes. Topological quantum codes take advantage of the topological characteristics of a physical many-body system. The physical many-body systems studied in the context of topological quantum codes are of two essential natures: they either have intrinsic interaction that self-corrects errors, or are actively corrected to be maintained in a desired quantum state. Examples of the former are the toric code and the unpaired Majorana, while an example for the latter is the surface code. A brief introduction and history of topological phenomena in condensed matter is provided. The unpaired Majorana and the Kitaev toy model are briefly explained. Later we introduce a spin model that maps onto the Kitaev toy model through a sequence of transformations. We show how this model is robust and tolerates local perturbations. The research on this topic, at the time of writing this dissertation, is still incomplete and only preliminary results are represented. As another example of passive error correcting codes with intrinsic Hamiltonian, the toric code is introduced. We also analyze the dynamics of the errors in the toric code known as anyons. We show numerically how the addition of disorder to the physical system underlying the toric code slows down the dynamics of the anyons. We go further and numerically analyze the presence of time-dependent noise and the consequent delocalization of localized errors. The main portion of this dissertation is dedicated to the surface code. We study the surface code coupled to a non-interacting bosonic bath. We show how the interaction between the code and the bosonic bath can effectively induce correlated errors. These correlated errors may be corrected up to some extend. The extension beyond which quantum error correction seems impossible is the error threshold of the code. This threshold is analyzed by mapping the effective correlated error model onto a statistical model. We then study the phase transition in the statistical model. The analysis is in two parts. First, we carry out derivation of the effective correlated model, its mapping onto a statistical model, and perform an exact numerical analysis. Second, we employ a Monte Carlo method to extend the numerical analysis to large system size. We also tackle the problem of surface code with correlated and single-qubit errors by an exact mapping onto a two-dimensional Ising model with boundary fields. We show how the phase transition point in one model, the Ising model, coincides with the intrinsic error threshold of the other model, the surface code.
88

High fidelity readout and protection of a 43Ca+ trapped ion qubit

Szwer, David James January 2009 (has links)
This thesis describes theoretical and experimental work whose main aim is the development of techniques for using trapped <sup>43</sup>Ca⁺ ions for quantum information processing. I present a rate equations model of <sup>43</sup>Ca⁺, and compare it with experimental data. The model is then used to investigate and optimise an electron-shelving readout method from a ground-level hyperfine qubit. The process is robust against common experimental imperfections. A shelving fidelity of up to 99.97% is theoretically possible, taking 100 μs. The laser pulse sequence can be greatly simplified for only a small reduction in the fidelity. The simplified method is tested experimentally with fidelities up to 99.8%. The shelving procedure could be applied to other commonly-used species of ion qubit. An entangling two-qubit quantum controlled-phase gate was attempted between a <sup>40</sup>Ca⁺ and a <sup>43</sup>Ca⁺ ion. The experiment did not succeed due to frequent decrystallisation of the ion pair, and strong motional decoherence. The source of the problems was never identified despite significant experimental effort, and the decision was made to suspend the experiments and continue them in an improved ion trap which is under construction. A sequence of pi-pulses, inspired by the Hahn spin-echo, was derived that is capable of greatly reducing dephasing of any qubit. If the qubit precession frequency varies with time as an nth-order polynomial, an (n+1) pulse sequence is theoretically capable of perfectly cancelling the resulting phase error. The sequence is used on a 43Ca+ magnetic-field-sensitive hyperfine qubit, with 20 pulses increasing the coherence time by a factor of 75 compared to an experiment without any spin-echo. In our ambient noise environment the well-known Carr-Purcell-Meiboom-Gill dynamic-decoupling method was found to be comparably effective.
89

High fidelity readout of trapped ion qubits

Burrell, Alice Heather January 2010 (has links)
This thesis describes experimental demonstrations of high-fidelity readout of trapped ion quantum bits ("qubits") for quantum information processing. We present direct single-shot measurement of an "optical" qubit stored in a single calcium-40 ion by the process of resonance fluorescence with a fidelity of 99.991(1)% (surpassing the level necessary for fault-tolerant quantum computation). A time-resolved maximum likelihood method is used to discriminate efficiently between the two qubit states based on photon-counting information, even in the presence of qubit decay from one state to the other. It also screens out errors due to cosmic ray events in the detector, a phenomenon investigated in this work. An adaptive method allows the 99.99% level to be reached in 145us average detection time. The readout fidelity is asymmetric: 99.9998% is possible for the "bright" qubit state, while retaining 99.98% for the "dark" state. This asymmetry could be exploited in quantum error correction (by encoding the "no-error" syndrome of the ancilla qubits in the "bright" state), as could the likelihood values computed (which quantify confidence in the measurement outcome). We then extend the work to parallel readout of a four-ion string using a CCD camera and achieve the same 99.99% net fidelity, limited by qubit decay in the 400us exposure time. The behaviour of the camera is characterised by fitting experimental data with a model. The additional readout error due to cross-talk between ion images on the CCD is measured in an experiment designed to remove the effect of qubit decay; a spatial maximum likelihood technique is used to reduce this error to only 0.2(1)x10^{-4} per qubit, despite the presence of ~4% optical cross-talk between neighbouring qubits. Studies of the cross-talk indicate that the readout method would scale with negligible loss of fidelity to parallel readout of ~10,000 qubits with a readout time of ~3us per qubit. Monte-Carlo simulations of the readout process are presented for comparison with experimental data; these are also used to explore the parameter space associated with fluorescence detection and to optimise experimental and analysis parameters. Applications of the analysis methods to readout of other atomic and solid-state qubits are discussed.
90

Tomografia de estados quânticos em sistemas de 3 q-bits: uma ferramenta da ressonância magnética nuclear para aplicações em computação quântica / Quantum state tomography in 3 q-bits systems: a tool of nuclear magnetic resonance for applications on quantum computing

Brasil, Carlos Alexandre 21 February 2008 (has links)
Este trabalho consiste na análise de um método de reconstrução/tomografia de estado quântico em ressonância magnética nuclear utilizando pulsos de radiofreqüência não-seletivos, que possuem a propriedade de promover rotações globais do sistema de spins 7/2. Tal método foi aplicado para reconstruir estados relacionados à computação quântica. As operações lógicas e os estados iniciais envolvidos nas operações quânticas foram construídos através de pulsos modulados optimizados numericamente; o processo de optimização, em particular, não foi tratado nesse trabalho. Foram elaborados programas que simulam: a construção dos estados e portas lógicas utilizando os parâmetros dos pulsos modulados; a aplicação dos pulsos de tomografia e a geração dos dados necessários à reconstrução (amplitudes espectrais); construção de estados utilizando pulsos simples para testes das circunstâncias experimentais; o efeitos de possíveis problemas relacionados à amostra ou ao equipamento. Finalmente, foi elaborado um programa para reconstrução do estado a partir da leitura das amplitudes espectrais, que podem ser obtidas a partir dos programas relacionados no segundo item, ou experimentalmente. As implementações experimentais foram realizadas medindo sinais de RMN de núcleos de 133Cs, localizados em um cristal líquido, que, por possuírem spin 7/2, devido às interações Zeeman e quadrupolar elétrica, apresentam sete linhas espectrais distintas para transições entre níveis energéticos adjacentes; logo, é possível tratar esses núcleos como sistemas de 3 q-bits. Foram construídos estados pseudo-puros e aplicada uma das portas Toffoli. Além disso, uma discussão do algoritmo quântico de busca de Grover no contexto da Ressonância Magnética Nuclear é apresentada para uma futura implementação. / This work describes a quantum state tomography method in nuclear magnetic resonance using nonselective radiofrequency pulses that cause global rotations of spin 7/2 systems. This method was applied to tomograph states related to quantum computation. Numerically optimized modulated pulses allowed building the initial states and the logical operations involved in the quantum operations; particularly, the optimization process was not treated in this work. Several programs were constructed that simulate: o the construction of the quantum states and the logical operations by means of the modulated pulses parameters; o the application of the tomography pulses and the generation of the necessary data for tomography (spectral amplitudes); o the construction of the states using simple pulses for experimental condition tests; o the effects of possible problems related to the samples or equipments. Finally, a quantum state tomography program was elaborated to read the spectral amplitudes, which can be obtained from the programs related to the second item, or experimentally. The experimental implementations were performed measuring the NMR signals from spin 7/2 133Cs nuclei located in a liquid crystal under Zeeman and quadrupolar electric interactions. The NMR spectrum of these nuclei, under these interactions and located in an oriented sample, present 7 spectral lines for transitions between adjacent energetic levels; with this, it is possible to treat it like a 3 q-bits system. Pseudo-pure states were constructed and one Toffoli gate was applied. Furthermore, a discussion about the Grover\'s quantum search algorithm in the nuclear magnetic resonance context was presented for future implementation.

Page generated in 0.0797 seconds