• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 20
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 43
  • 25
  • 20
  • 20
  • 18
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing

O'Hagan, Seamus January 2017 (has links)
The extension of Multi-mode Absorption Spectroscopy (MUMAS) to the infra-red spectral region for multi-species gas sensing is reported. A computationally efficient, theoretical model for analysis of MUMAS spectra is presented that avoids approximations used in previous work and treats arbitrary and time-dependent spectral intensity envelopes, thus facilitating the use of commercially available Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCLs). The first use of an ICL for MUMAS is reported using a multi-mode device operating at 3.7 &mu;m to detect CH<sub>4</sub> transitions over a range of 30 nm. Mode-linewidths are measured using the pressure-dependent widths of an isolated absorption feature in HCl. Multi- species sensing is demonstrated by measurement of partial pressures of CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub> and H<sub>2</sub>CO in a low-pressure mixture with uncertainties of around 10&percnt;. Detection of CH<sub>4</sub> in N<sub>2</sub> at 1 bar is demonstrated using a shorter-cavity ICL to resolve spectral features in pressure-broadened and congested spectra. The first use of a QCL for MUMAS is reported using a commercially available device operating at 5.3 &mu;m to detect multiple absorption transitions of NO at a partial pressure of 2.79 &mu;bar in N<sub>2</sub> buffer gas. The revised model is shown to enable good fits to MUMAS data by accounting for the time-variation of the spectral intensity profile during frequency scanning. Individual mode-linewidths are derived from fits to pressure- dependent MUMAS spectra and features from background interferences due to H<sub>2</sub>O in laboratory air are distinguished from those of the target species, NO. Data obtained at scan rates up to 10 kHz demonstrate the potential for achieving short measurement times. The development of a balanced ratiometric detection scheme for MUMAS with commercially available multi-mode lasers operating at 1.5 &mu;m is reported for simultaneous detection of CO and CO<sub>2</sub> showing improved SNR performance over previous direct transmission methods and suitability for a compact field-employable instrument. In addition, MUMAS spectra of CO<sub>2</sub> are used to derive gas temperatures with an uncertainty of 3.2&percnt; in the range 300 - 700 K.
12

An Optical System to Transform the Output Beam of a Quantum Cascade Laser to be Uniform

Jacobson, Jordan M. 01 May 2016 (has links)
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteristics that are undesirable in a calibration source. The output beam from a QCL is polarized both temporally and spatially coherent, and has a non-uniform bivariate Gaussian profile. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization.
13

Growth and Characterization of Strain-engineered Si/SiGe Heterostructures Prepared by Molecular Beam Epitaxy

Zhao, Ming January 2008 (has links)
The strain introduced by lattice mismatch is a built-in characteristic in Si/SiGe heterostructures, which has significant influences on various material properties. Proper design and precise control of strain within Si/SiGe heterostructures, i.e. the so-called “strain engineering”, have become a very important way not only for substantial performance enhancement of conventional microelectronic devices, but also to allow novel device concepts to be integrated with Si chips for new functions, e.g. Si-based optoelectronics. This thesis thus describes studies on two subjects of such strain-engineered Si/SiGe heterostructures grown by molecular beam epitaxy (MBE). The first one focuses on the growth and characterizations of delicately strain-symmetrized Si/SiGe multi-quantum-well/superlattice structures on fully relaxed SiGe virtual substrates for light emission in the THz frequency range. The second one investigates the strain relaxation mechanism of thin SiGe layers during MBE growth and post-growth processes in non-conventional conditions. Two types of THz emitters, based on different quantum cascade (QC) intersubband transition schemes, were studied. The QC emitters using the diagonal transition between two adjacent wells were grown with Si/Si0.7Ge0.3 superlattices up to 100 periods. It was shown that nearly perfect strain symmetry in the superlattice with a high material quality was obtained. The layer parameters were precisely controlled with deviations of ≤ 2 Å in layer thickness and ≤ 1.5 at. % in Ge composition from the designed values. The fabricated emitter devices exhibited a dominating emission peak at ~13 meV (~3 THz), which was consistent with the design. An attempt to produce the first QC THz emitter based on the bound-to-continuum transition was made. The structures with a complicated design of 20 periods of active units were extremely challenging for the growth. Each unit contained 16 Si/Si0.724Ge0.276 superlattice layers, in which the thinnest one was only 8 Å. The growth parameters were carefully studied, and several samples with different boron δ-doping concentrations were grown at optimized conditions. Extensive material characterizations revealed a high crystalline quality of the grown structures with an excellent growth control, while the heavy δ-doping may introduce layer undulations as a result of the non-uniformity in the strain field. Moreover, carrier lifetime dynamics, which is crucial for the THz QC structure design, was also investigated. Strain-symmetrized Si/SiGe multi-quantum-well structures, designed for probing the carrier lifetime of intersubband transitions inside a well between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown on SiGe virtual substrates. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of lifetime by a factor of ~2 due to the increasingly unconfined LH1 state, which agreed very well with the theory. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process. Strained SiGe grown on Si (110) substrates has promising potentials for high-speed microelectronics devices due to the enhanced carrier mobility. Strain relaxation of SiGe/Si(110) subjected to different annealing treatments was studied by X-ray reciprocal space mapping. The in-plane lattice mismatch was found to be asymmetric with the major strain relaxation observed in the lateral [001] direction. It was concluded that this was associated to the formation and propagation of conventional a/2&lt;110&gt; dislocations oriented along [110]. This was different from the relaxation observed during growth, which was mainly along in-plane [110]. A novel MBE growth process to fabricate thin strain-relaxed Si0.6Ge0.4 virtual substrates involving low-temperature (LT) buffer layers was investigated. At a certain LT-buffer growth temperature, a dramatic increase in the strain relaxation accompanied with a decrease of surface roughness was observed in the top SiGe, together with a cross-hatch/cross-hatch-free transition in the surface morphology. It was explained by the association with a certain onset stage of the ordered/disordered transition during the growth of the LT-SiGe buffer. / Kisel(Si)-baserad mikroelektronik har utvecklats under en femtioårsperiod till att bli basen för vår nuvarande informationsteknologi. Förutom att integrera fler och mindre komponenter på varje kisel-chip så utvecklas metoder att modifiera och förbättra materialegenskaperna för att förbättra prestanda ytterligare. Ett sätt att göra detta är att kombinera kisel med germanium (Ge) bl.a. för att skapa kvantstrukturer av nanometer-storlek. Eftersom Ge-atomerna är större än Si-atomerna kan man skapa en töjning i materialet vilket kan förbättra egenskaperna, ex.vis hur snabbt laddningarna (elektronerna) rör sig i materialet. Genom att variera Gekoncentrationen i tunna skikt kan man skapa skikt som är antingen komprimerade eller expanderade och därmed ger möjlighet att göra strukturer för tillverkning av nya typer av komponenter för mikroelektronik eller optoelektronik. I detta avhandlingsarbete har Si/SiGe nanostrukturer tillverkats med molekylstråle-epitaxi-teknik (molecular beam epitaxy, MBE). Med denna teknik byggs materialet upp på ett substrat, atomlager för atomlager, med mycket god kontroll på sammansättningen av varje skikt. Samtidigt kan töjningen av materialet designas så att inga defekter skapas alternativt många defekter genereras på ett kontrollerat sätt. I denna avhandling beskrivs detaljerade studier av hur töjda i/SiGe-strukturer kan tillverkas och ge nya potentiella tillämpningar ex.vis som källa för infraröd strålning. Studierna av de olika töjda skikten har framför allt gjorts med avancerade röntgendiffraktionsmätningar och transmissionselektronmikroskopi.
14

Fourier optics for wavefront engineering and wavelength control of lasers

Blanchard, Romain 25 February 2014 (has links)
Since their initial demonstration in 1994, quantum cascade lasers (QCLs) have become prominent sources of mid-infrared radiation. Over the years, a large scientific and engineering effort has led to a dramatic improvement in their efficiency and power output, with continuous wave operation at room temperature and Watt-level output power now standard. However, beyond this progress, new functionalities and capabilities need to be added to this compact source to enable its integration into consumer-ready systems. Two main areas of development are particularly relevant from an application standpoint and were pursued during the course of this thesis: wavelength control and wavefront engineering of QCLs. The first research direction, wavelength control, is mainly driven by spectroscopic applications of QCLs, such as trace gas sensing, process monitoring or explosive detection. We demonstrated three different capabilities, corresponding to different potential spectroscopic measurement techniques: widely tunable single longitudinal mode lasing, simultaneous lasing on multiple well-defined longitudinal modes, and simultaneous lasing over a broad and continuous range of the spectrum. The second research direction, wavefront engineering of QCLs, i.e. the improvement of their beam quality, is relevant for applications necessitating transmission of the QCL output over a large distance, for example for remote sensing or military countermeasures. To address this issue, we developed plasmonic lenses directly integrated on the facets of QCLs. The plasmonic structures designed are analogous to antenna arrays imparting directionality to the QCLs, as well as providing means for polarization control. Finally, a research interest in plasmonics led us to design passive flat optical elements using plasmonic antennas. All these projects are tied together by the involvement of Fourier analysis as an essential design tool to predict the interaction of light with various gratings and periodic arrays of grooves and scatterers. / Engineering and Applied Sciences
15

InAs/AlSb short wavelength quantum cascade lasers / Trumpabangiai InAs/AlSb kvantiniai kaskadiniai lazeriai

Devenson, Jan 02 November 2010 (has links)
Application of InAs/AlSb materials system for development of short-wavelength quantum cascade lasers is explored. Molecular beam epitaxy (MBE) technology allowing to grow multiperiodical unstrained InAs/AlSb heterostructures with roughness of 1-2 monolayers is developed. It is demonstrated that InAs/AlSb materials system is well-suitable for development of short-wavelength quantum cascade lasers operating below 4 µm wavelength. Lasers containing plasmon-enhanced waveguides as well as the short period InAs/AlSb superlattices as waveguides were designed, MBE-grown and studied. The effect of waveguide properties on the device parameters is revealed. Usage of these waveguides and innovations in laser active region introducing “funnel” injector allowed one to reach operation temperature 420 K at the emission wavelength of 3.3 µm. The obtained optical peak power exceeded 1 W per facet. The room temperature operation has been obtained at wavelength below 3 µm. As for wavelength range, applying the new active region design strategy and the short period InAs/AlSb superlattice spacers InAs based quantum cascade lasers emitting at the wavelengths as short as 2.63 µm were developed, which is today the shortest emission wavelength of the operation of semiconductor lasers based on the intersubband transitions. / Disertaciniame darbe nagrinėjamas InAs/AlSb medžiagų sistemos panaudojimas trumpabangių tarppajuostinių lazerių kūrimui. Buvo išplėtota molekulinių pluoštelių epitaksijos technologija, leidžianti auginti daugiaperiodines neįtemptas InAs/AlSb heterosandūras su mažu 1-2 atominių sluoksnių šiurkštumu. Buvo parodyta, jog InAs/AlSb medžiagų sistema yra tinkama kurti trumpabangiams kvantiniams kaskadiniams lazeriams, veikiantiems žemiau 4 µm bangos ilgio ribos. Buvo ištirtas kvantinių kaskadinių lazerių, turinčių tiek plazmoninius bangolaidžius su stipriai legiruotais InAs apdariniais sluoksniais, tiek ir mažo periodo InAs/AlSb supergardelių bangolaidžius, veikimas bei jų įtaka prietaiso parametrams. Šie sprendimai dėl bangolaidžių bei tolimesni aktyviosios terpės patobulinimai, naudojant piltuvėlio formos injektorių, leido sukurti didelio našumo prietaisus, galinčius veikti iki 420 K temperatūros, esant 3,3 µm bangos ilgio emisijai, ir pasiekti maksimalią optinę galią siekiančią 1 W kambario temperatūroje. Šios inovacijos leido sukurti ir InAs/AlSb kvantinį kaskadinį lazerį, emituojantį ~2,6 µm bangos ilgio spinduliuotę  šiai dienai tai yra trumpiausią bangos ilgį spinduliuojantis tokio tipo prietaisas pasaulyje.
16

Trumpabangiai InAs/AlSb kvantiniai kaskadiniai lazeriai / InAs/AlSb short wavelength quantum cascade lasers

Devenson, Jan 02 November 2010 (has links)
Disertaciniame darbe nagrinėjamas InAs/AlSb medžiagų sistemos panaudojimas trumpabangių tarppajuostinių lazerių kūrimui. Buvo išplėtota molekulinių pluoštelių epitaksijos technologija, leidžianti auginti daugiaperiodines neįtemptas InAs/AlSb heterosandūras su mažu 1-2 atominių sluoksnių šiurkštumu. Buvo parodyta, jog InAs/AlSb medžiagų sistema yra tinkama kurti trumpabangiams kvantiniams kaskadiniams lazeriams, veikiantiems žemiau 4 µm bangos ilgio ribos. Buvo ištirtas kvantinių kaskadinių lazerių, turinčių tiek plazmoninius bangolaidžius su stipriai legiruotais InAs apdariniais sluoksniais, tiek ir mažo periodo InAs/AlSb supergardelių bangolaidžius, veikimas bei jų įtaka prietaiso parametrams. Šie sprendimai dėl bangolaidžių bei tolimesni aktyviosios terpės patobulinimai, naudojant piltuvėlio formos injektorių, leido sukurti didelio našumo prietaisus, galinčius veikti iki 420 K temperatūros, esant 3,3 µm bangos ilgio emisijai, ir pasiekti maksimalią optinę galią siekiančią 1 W kambario temperatūroje. Šios inovacijos leido sukurti ir InAs/AlSb kvantinį kaskadinį lazerį, emituojantį ~2,6 µm bangos ilgio spinduliuotę  šiai dienai tai yra trumpiausią bangos ilgį spinduliuojantis tokio tipo prietaisas pasaulyje. / Application of InAs/AlSb materials system for development of short-wavelength quantum cascade lasers is explored. Molecular beam epitaxy (MBE) technology allowing to grow multiperiodical unstrained InAs/AlSb heterostructures with roughness of 1-2 monolayers is developed. It is demonstrated that InAs/AlSb materials system is well-suitable for development of short-wavelength quantum cascade lasers operating below 4 µm wavelength. Lasers containing plasmon-enhanced waveguides as well as the short period InAs/AlSb superlattices as waveguides were designed, MBE-grown and studied. The effect of waveguide properties on the device parameters is revealed. Usage of these waveguides and innovations in laser active region introducing “funnel” injector allowed one to reach operation temperature 420 K at the emission wavelength of 3.3 µm. The obtained optical peak power exceeded 1 W per facet. The room temperature operation has been obtained at wavelength below 3 µm. As for wavelength range, applying the new active region design strategy and the short period InAs/AlSb superlattice spacers InAs based quantum cascade lasers emitting at the wavelengths as short as 2.63 µm were developed, which is today the shortest emission wavelength of the operation of semiconductor lasers based on the intersubband transitions.
17

Pattern recognition and tomographic reconstruction with Terahertz Signals for applications in biomedical engineering.

Yin, Xiaoxia (Sunny) January 2009 (has links)
Over the last ten years, terahertz (THz or T-ray) biomedical imaging has become a modality of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized, with increasing trials performed in a biomedical setting. Advanced digital image processing algorithms are greatly need to assist screening, diagnosis, and treatment. Pattern recognition algorithms play a critical role in the accurate and automatic process of detecting abnormalities when applied to biomedical imaging. This goal requires classification of meaningful physical contrast and identification of information in images, for example, distinguishing between different biological tissues or materials. T-ray tomographic imaging and detection technology contributes especially to our ability to discriminate opaque objects with clear boundaries and makes possible significant potential applications in both in vivo and ex vivo environments. The Thesis consists of a number of Chapters, which can be grouped in to three parts. The first part provides a review of the state-of-the-art regarding THz sources and detectors, THz imaging modes, and THz imaging analysis. Pattern recognition forms the second part of this Thesis, which is represented via combining several basic operations: wavelet transforms and wavelet based signal filtering, feature extraction and selection, along with classification schemes for THz applications. Signal filtering in this Thesis is achieved via wavelet based de-noising. The ultrafast pulses generated terahertz time-domain spectroscopy (THz-TDS), which is demonstrated to justify their decomposition in the wavelet domain as it can provide better de-noising performance. Feature extraction and selection of the terahertz measurements rely on observed changes in pulse amplitude and phase, as well as scattering characteristics of several different types of powder samples under study. Additionally, three signal processing algorithms are adopted for the evaluation of the complex insertion loss function of such samples as lactose, mandelic acid, and dl-mandelic acid: (i) standard evaluation by ratioing the sample with the background spectra, (ii) a subspace identification algorithm, and (iii) a novel wavelet packet identification procedure. These system identification algorithms enable THz measurements to be transformed to features for THz pattern recognition. Meanwhile, a novel feature extraction method involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA)models on the wavelet transforms of measured T-ray pulse responses of ex vivo osteosarcoma cells as well as other biomedical materials is presented. Classification schemes are carried out via simple and robust schemes, such as the linear Mahalanobis distance classifier, and the non-linear Support Vector Machine (SVM) classifier. In particular, SVMs are used as a learning scheme to achieve the identification of two classes of RNA samples and multiple classes of powered materials. Coherent terahertz detection hardware—THz time-domain spectroscopy (THz-TDS)—is used to obtain all the data for validation of these classification schemes. The past decade has witnessed the tremendous development of terahertz instruments for detecting, storing, analysing, and displaying images. Terahertz time-domain spectroscopy (THz-TDS) is a broadband technique that generates and detects THz radiation in a synchronous and coherent manner. By contrast, the newly developed THz quantum cascade laser is a narrow-band radiation source that provides potential for realising compact systems; they produce image data with higher average power levels. The third part of this Thesis discusses methods to improve the capability of both broad and narrow-band terahertz imaging, driven by computer-aided analytical techniques. A wavelet based reconstruction algorithm for terahertz computed tomography is represented to show how this algorithm can be used to rapidly reconstruct the region of interest (ROI) with a reduction in the measurements of terahertz responses, compared with a standard filtered back-projection technique. These reconstruction algorithms are applied to the analysis of acquired experimental data and to locally recover the two dimensional (2D) and three-dimensional (3D) structures of several optically opaque objects. Moreover, a segmentation technique based on two dimensional wavelet transforms is investigated for the identification of different materials from the reconstructed CT image. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1352839 / Thesis (Ph.D.) - University of Adelaide, School of Electrical and Electronic Engineering, 2009
18

Nouvelles architectures et optimisations pour la montée en puissance des lasers à  cascade quantique moyen infrarouge / New architectures and optimisations for higher power mid-infrared quantum cascade lasers

Ferré, Simon 12 December 2016 (has links)
Les lasers à  cascade quantique (QCLs) sont des sources laser à  semi-conducteurs permettant de fortes puissances optiques dans le moyen-infrarouge. Les applications visées sont la spectroscopie à  distance et les contre-mesures optiques. Les performances des QCLs restent limitées par le transport électronique, le comportement optique et la dissipation de la charge thermique. Premièrement, cette thèse a permis une meilleure compréhension des éléments limitants les performances des QCLs. Les propriétés optiques et thermiques des matériaux qui constituent les QCLs ont été mesurées. En nous appuyant sur des simulations, nous avons montré l'impact de la géométrie du composant et de l'embase sur les performances. Deuxièmement, nous avons étudié des méthodes pour mettre en forme le faisceau afin d'augmenter la luminance du QCL. Nous avons ainsi montré que le couplage avec des fibres optiques ou l'utilisation de QCLs à  section évasée permettent de réduire la divergence du QCL. De plus, nous avons obtenu de très fortes puissances crêtes et moyennes avec des lasers larges tout en conservant un bon champ lointain. Enfin, nous avons montré qu'il est possible de mettre en forme le faisceau émis par des QCLs larges en réinjectant le signal optique. Dernièrement, nous avons proposé des nouvelles méthodes pour réaliser des réseaux de QCLs couplés monolithiquement. En plus de résultats expérimentaux sur des réseaux de QCLs uniformes, nous avons montré les limites des réseaux non-uniformes. Enfin, nous avons breveté une solution basée sur des antiguides en silicium amorphe pour coupler un grand nombre de QCLs. / Quantum cascade lasers (QCLs) are semiconductor laser sources able to produce high output power in mid-infrared range. Target applications are remote spectroscopy and optical counter-measure. Their performances are still limited by electronic transport, optical behavior and thermal load dissipation. First, this work has lead to a better comprehension of the features limiting the QCLs performances. Optical and thermal properties of the materials the QCLs are made of have been measured. By simulation, we have shown the impact of the device and submount's geometries on the performances. Second, we have studied some methods to shape the beam in order to increase the luminance of the QCL. We have then demonstrated that coupling with optic fibers, or using tapered QCLs reduces the divergence of the QCL. In addition, we have obtained very high peak and average powers with broad area (BA) QCLs, while keeping a good far-field quality. Finally, we have shown that it is possible to shape the beam emitted by BA QCLs by optical feedback. Lastly, we have proposed new methods to conceive monolithically phase-locked QCL arrays. On top of experimental results on uniform QCL arrays, we have shown the limits of non-uniform arrays. Finally, we have patented a solution based on amorphous silicon antiguides to phase-lock a large number of QCLs.
19

Mesures par spectrométrie laser des flux de N2O et CH4 produits par les sols agricoles et viticoles / Measurement by laser spectrometry of N2O fluxes producted by agricultural and viticultural soil

Mappe fogaing, Irene 28 March 2013 (has links)
Depuis l'ère industrielle, les émissions des gaz à effet de serre, responsables du réchauffement climatique majoritairement d'origine anthropique, ne cessent d'augmenter. Parmi ces gaz, les principaux concernés sont le dioxyde de carbone (CO2), le protoxyde d'azote (N2O) et le méthane (CH4).Dans le cadre de ma thèse, nous allons nous intéresser majoritairement au N2O et aussi au CH4, qui malgré leurs plus faibles quantités dans l'atmosphère, ils ont un potentiel de réchauffement global largement supérieur à celui du CO2.Ces rejets gazeux anthropiques suffisent à provoquer des modifications climatiques à court ou moyen terme. Il est donc nécessaire de comprendre les phénomènes liés à ces émissions. De nombreux réseaux européens tels que Euroflux, CarboEuroflux, NitroEurope, CarboEurope, GHG-Europe et ICOS ont activement contribué à la quantification et la compréhension des émissions des gaz à effet de serre. Il subsiste cependant d'importantes incertitudes sur les bilans inter annuels de ces émissions. Afin de mieux assimiler la variabilité temporelle des émissions de N2O et CH4, il est indispensable de les mesurer continuellement dans le temps en fonction des écosystèmes, des types de sol, et de disposer d'instruments de mesure performants. Le GSMA grâce à ses compétences en instrumentation, a développé un spectromètre utilisant un laser à cascade quantique, QCLAS (Quantum Cascade Laser Absorption Spectrometer), dédié à la mesure in situ de flux de gaz produits par les sols. Comme dans toute expérimentation, les mesures faites par QCLAS peuvent être contaminées de bruits. Ces bruits peuvent entraîner des biais sur les valeurs de flux calculés. C'est la raison pour laquelle on s'intéressera aux méthodes d'analyses des signaux telles que les transformées en ondelettes, la décomposition en valeurs singulières, dont l'utilisation aura pour objectif d'extraire l'information utile des signaux, et permettra d'améliorer significativement le rapport signal à bruit ainsi que la dispersion des mesures. Cette thèse est organisée en trois principales parties : la première est consacrée dans un premier temps aux techniques usuelles de mesure de gaz, où nous introduirons l'instrument QCLAS. On verra ensuite trois techniques usuelles de mesure de flux à savoir : la technique des enceintes closes, l'Eddy corrélation, et le relaxed Eddy accumulation. La seconde partie portera sur les différentes procédures et méthodes de traitement pour l'optimisation de la mesure expérimentale. La dernière partie portera sur les différentes campagnes de mesures réalisées avec QCLAS. Ces applications montreront la robustesse de QCLAS ainsi que son aptitude à effectuer des mesures de terrain. / Since the industrial revolution, emissions of greenhouse gases (GHG) responsible for global warming, mainly anthropogenic, continue to increase. Among these gases, the main concerned are carbon dioxide (CO2 ), nitrous oxide (N2O ) and methane (CH4 ).In my thesis, we will focus mainly on N2O and CH4 , which despite their smaller quantities in the atmosphere, have a global warming potential higher than the CO2. These anthropogenic gas emissions are sufficient to cause climatic change in the short or medium term. It is therefore necessary to understand the phenomena linked to these emissions.Many European networks such as Euroflux, CarboEuroflux, NitroEurope, CarboEurope GHG-Europe and ICOS have actively contributed to the understanding and quantification of greenhouse gases emissions. However it remains considerable uncertainty about the inter-annual balance sheets of these emissions. To better assimilate the temporal variability of N2O and CH4 emissions, it is necessary to measure continuously over time in terms of ecosystems, soil types, and to have performance measurement tools. The GSMA with its expertise in instrumentation, has developed a spectrometer using a quantum cascade laser, QCLAS (Quantum Cascade Laser Absorption Spectrometer), designed to measure in situ gas flow produced by the soil. As in any experiment, QCLAS measurements may be contaminated by noise. These noises can cause biases in fluxes determination. This is why we will focus on signal proccessing methods such as wavelet transform, singular value decomposition, with the purpose of extracting useful signal informations and significantly improving the signal to noise ratio and the dispersion of measurements. This thesis is organized in three main parts: The first part is devoted first to conventional techniques for gas measurements, where we will introduce the instrument QCLAS. Then, we will examine three usual techniques of flow measurement namely: the technique of closed chambers, Eddy correlation and relaxed Eddy accumulation. The second part will focus on the different procedures and treatment methods to optimize experimental measurements. The last part will focus on the various measurements campaigns made with QCLAS. These applications demonstrate the robustness of QCLAS as well as its ability to perform field measurements.
20

Lasers à cascade quantique moyen infrarouge à base d'InAs / Mid-infrared quantum cascade laser on InAs

Laffaille, Pierre 11 December 2013 (has links)
Les lasers à cascade quantique sont des sources lasers à semiconducteur compactes et capables de délivrer une forte puissance optique sur une large gamme de longueur d'onde dans l'infrarouge. Les QCLs de la filière InP sont les plus établis. Le système de matériaux InAs/AlSb est une solution alternative encore peu développée mais qui, en vertu de ses propriétés, présente des atouts incontestables pour la réalisation de lasers à cascade quantique. Le travail de cette thèse a apporté une meilleure connaissance du système InAs/AlSb et de ses possibilités pour les QCLs, à la fois sur un plan théorique, expérimental et technologique.Nous avons œuvré à l'amélioration des performances des lasers à cascade quantique sur ce système de matériaux, notamment en cherchant à augmenter la température maximum de fonctionnement dans les courtes longueurs d'onde et le lointain infrarouge. Un modèle de transport électronique a été développé. Ce modèle permet de reproduire de manière relativement précise les résultats expérimentaux. Il est un outil utile pour l'amélioration des designs de zone active et, en conséquence, des performances des lasers.La finalité de ces lasers est leur utilisation pour des applications telles que la spectroscopie moléculaire par absorption. Nous avons donc travaillé à les rendre plus adaptés aux besoins de celles-ci, à savoir que leur émission soit monomode, ce que nous avons rendu possible grâce au développement d'une technologie DFB à haut rendement et très reproductible, et qu'ils puissent fonctionner en régime continu, ce qui a été accompli, autour de 9 µm de longueur d'onde d'émission, jusqu'à une température de 255 K en s'appuyant sur un modèle prédictif basé sur une approche analytique.Afin d'atteindre le fonctionnement en régime continu en dessous de 4 µm de longueur d'onde, nous nous sommes penchés sur l'utilisation d'un substrat alternatif en GaSb, qui nous permet de réaliser des claddings conciliant un faible indice de réfaction et de faibles pertes optiques. Nous avons à cette occasion fait la démonstration du premier QCL fonctionnant sur ce substrat, et ce jusqu'à température ambiante à 3,3 µm de longueur d'onde. / Quantum cascade lasers (QCLs) are unipolar semiconductor lasers employing radiative transitions between electron subbands in multiple quantum well structures. QCLs can deliver high optical powers in a large spectral range from mid-IR to THz. The best QCL performances have been achieved using III-V materials that can be grown on InP substrates. The InAs/AlSb material system represents an alternative solution for the elaboration of QCLs. While it is still much less explored compared with the InP family, some properties of these materials are very attractive for the development of QCLs.This thesis contributed to better understanding of the InAs/AlSb system, as well as to physics and technology QCLs based on these materials.Much attention has been paid to the performance improvement of InAs/AlSb QCLs, especially to the increasing of operation temperature of these lasers. A model of electronic transport in such devices, which is in good agreement with obtained experimental data, has been developed. This model has been used for optimization of the QCL design and, in consequence, to the improvement of the lasers performances.The main application of infrared lasers is molecular spectroscopy requiring high spectral purity of the laser emission. To make InAs-based QCLs suitable for spectroscopic applications we have developed a technology of distributed feedback (DFB) lasers for the 3-10 µm range with single frequency emission. Continuous wave (cw) operation of InAs/AlSb QCLs has been achieved for the first time in lasers emitting near 9 µm at temperatures up to 255 K. These lasers have been optimized for cw operation using predictive modeling of heat balance in the device. In order to improve performances of short wavelength InAs/AlSb QCLs emitting below 4 µm we proposed to replace a plasmon enhanced waveguide employing heavily doped InAs and exhibiting strong free carrier absorption by a low loss dielectric waveguide with AlGaSbAs cladding layers. These lasers grown for the first time on GaSb substrates and operated between 2.8 and 3.3 µm demonstrated performances proving the attractiveness of this approach to achieve further progress in InAs/AlSb QCLs.

Page generated in 0.3114 seconds