• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 14
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 92
  • 92
  • 31
  • 22
  • 18
  • 15
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Graphene based mechanical and electronic devices in optimized environments : from suspended graphene to in-situ grown graphene/boron nitride heterostructures / Dispositifs électroniques et mécaniques en graphène sous environnement optimal : du graphène suspendu aux hétérostructures graphène/nitrure de bore

Arjmandi-Tash, Hadi 27 May 2014 (has links)
Le graphène possède un gaz bidimensionnel de porteurs de charge stable et exposé à l'environnement sans aucune protection. Par conséquent, ses performances électriques sont extrêmement sensibles aux conditions environnementales, notamment aux impuretés chargées et aux corrugations imposées par le substrat sous-jacent. Ces éléments ont une contribution majeure dans la dégradation des propriétés de transport électronique du matériau.L'objectif de cette thèse est d'explorer par diverses techniques des méthodes pour atténuer ces effets par optimisation de son environnement direct.La première méthode consiste à reporter le graphènesur une couche neutre d'un cristal de nitrure de bore hexagonal (BN). Diverses techniques de fabrication d'empilement de Graphène sur BN sont présentées, notamment la croissance directe de graphène sur un cristal de BN exfolié sur un substrat catalytique qui aboutit à la formation d'empilements de structure bien contrôlée. Les échantillons sont mesurés à très basse température. Les effets de localisation faible mesurés par magnéto-transport montrent une amélioration nette des performances notamment de la longueur de cohérence et de la mobilité électronique par rapport à un échantillon de référence constitué du même ruban de graphène déposé sur substrat conventionnel de silicium oxydé.La deuxième technique consiste à isoler le graphène de son support par surgravure de la silice et suspension du graphène sous la forme d'une membrane autosupportée et tenue par ses extrémités. Après avoir introduit des techniques de fabrication spécifiques, les mesures de transport et le couplage à des modes de vibration mécanique sont étudiés température variable. Ces données permettent notamment une mesure du coefficient d'expansion thermique du graphène. / Charge carriers in graphene form stable two-dimensional gases which are fully exposed to the environment. As a consequence, the electrical performance of graphene is strongly affected by surface charged impurities as well as topographic perturbations inherited from the underlying substrate.This thesis addresses several methods to circumvent that issue.The first method consists in embedding graphene in an optimized environment by depositing graphene onto some neutral and crystalline material. Novel 2D insulating materials such as hexagonal boron nitride buffer layer (BN) appears as ideal substrates to get rid of detrimental effect of interfacial charges and corrugation. Several fabrication schemes of Graphene/BN stacks are shown including some direct in-situ growth of graphene on BN crystal using an innovative proximity-driven chemical vapour growth based on BN exfoliation on copper. In order to explore the effects of the improved substrate on the transport properties of graphene, we have performed low temperature magneto-transport studies on these stacks. We present a direct comparison of weak localization signals with those acquired on a graphene/silica reference device. A clear increase of the coherence length is shown on Graphene/BN stacks together with improved electronic mobility and charge neutrality.Removing the substrate and suspending graphene is another approach for optimization of the graphene environment which forms the second topic covered in this thesis. After introducing an improved recipe for preserving the quality of graphene throughout an elaborate fabrication process, we probe the room- and low-temperature performance of the nano-electro-mechanical devices based on doubly clamped suspended graphene ribbons. The obtained data are used for characterizing the thermal expansion of CVD graphene.
52

Electron interactions in mesoscopic physics : Scanning Gate Microscopy and interferometry at a quantum point contact / Interactions électroniques en physique mésoscopique, microscopie à effet de grille local et interférométrie sur un contact ponctuel quantique

Brun, Boris 17 October 2014 (has links)
Au cours de cette thèse nous avons étudié les effets des interactions entre électrons dansles contacts ponctuels quantiques (QPCs). Les contacts ponctuels quantiques sont des petitscanaux quasi-unidimensionnels, définis à partir de gaz électroniques bidimensionnelsde haute mobilité (2DEG). Une tension négative appliquée sur des grilles métalliques audessus de la surface permet d’ouvrir ou fermer le QPC. Lorsqu’un QPC s’ouvre, de plusen plus de modes électroniques peuvent traverser le QPC, et sa conductance augmente parpas discrets, séparés par un quantum de conductance 2e2/h. On peut le comprendre parle transport unidimensionnel d’une seule particule, car chaque mode transverse contribuepour un quantum de conductance.Mais depuis leurs premières réalisations, les QPCs ont montré des déviations par rapportà ce modèle à une particule. Les plus connues sont un épaulement sous le premier plateau,autour de 0.7×2e2/h, appelé "l’anomalie 0.7", et un pic dans la conductance différentiellequi apparaît à basse température: l’anomalie à zéro polarisation (ZBA).L’instrument que nous avons utilisé pour étudier ces effets d’interactions est un microscopeà effet de grille local (SGM). Cette technique consiste à modifier localement le potentield’un dispositif à l’aide d’une pointe de microscope à force atomique (AFM) chargée négativement,et enregistrer les modifications de la conductance en fonction de la position dela pointe. En utilisant cette technique à très basse température, nous avons montré quenous pouvons moduler les anomalies de conductance du QPC. Nous avons interprété nosrésultats comme la signature d’un cristal d’électrons se formant spontanément à bassedensité dans le QPC à cause de la répulsion Coulombienne: un cristal de Wigner. Onpeut modifier le nombre d’électrons cristallisés en approchant la pointe, et obtenir dessignatures de la parité du nombre d’électrons localisés dans le transport électronique.En fonction de cette parité, le cristal de Wigner présente un état de spin différent, etl’écrantage de ce spin par les électrons de conduction au travers d’un mécanisme appeléeffet Kondo donne une anomalie à zéro polarisation formant alternativement un simplepic ou un double pic. Cette découverte apporte une avancée significative à ce domaine,qui a concentré les efforts de plusieurs groupes importants ces 15 dernières années.Nous avons ensuite réalisé des mesures interférométriques à l’aide du microscope SGM,en créant in situ des interféromètres dans le gaz 2D. Nous avons obtenu les signaturesd’un déphasage supplémentaire dans le régime de la ZBA. Nous attribuons cet effet audéphasage universel accumulé par les électrons à la traversée d’un singulet Kondo, ce quirenforce le fait que la ZBA trouve son origine dans les phénomènes Kondo.Enfin, nous avons adapté la technique SGM au transport thermoélectrique dans les QPCs,et avons imagé pour la première fois les interférences d’électrons se déplaçant sous l’effetd’une différence de température. / In this thesis, we studied the effect of electron electron interactions in quantum pointcontacts (QPCs). Quantum point contacts are small quasi-one dimensional channels,designed on a high mobility two-dimensional electron gas (2DEG). A negative voltageapplied on a pair of metallic split gates above the sample surface allows to open or closethe QPC. As a QPC opens, more and more electronic modes are allowed to cross theQPC, and its conductance increases by discrete steps, separated by a conductance quantum2e2/h. This can be understood from a single-particle picture in one-dimensionaltransport, as each transverse mode carries a conductance quantum.But from their first realization 25 years ago, quantum point contacts have shown deviationsfrom this picture, attributed to electron electron interactions. The most well knownare a shoulder below the first plateau, around 0.7×2e2/h, called the "0.7 anomaly", and apeak in the differential conductance that arises at low temperature: the zero bias anomaly(ZBA).The tool we used to study these interaction effects is a scanning gate microscope (SGM).It consists by changing locally the device’s potential with the polarized tip of an atomicforce microscope (AFM), and record the changes in conductance as a function of the tipposition. By performing this technique at very low temperature, we showed that we canmodulate the conductance anomalies of QPCs. We interpret our result as the signatureof a small electrons crystal forming spontaneously at low density in the QPC due to theCoulomb repulsion: a Wigner crystal. We can modify the number of crystallized electronsby approaching the tip, and obtain signatures of the parity of the localized electrons numberin transport features. Depending on this parity, the Wigner crystal has a differentspin state, and screening of this spin by the surrounding electrons through the so-calledKondo effect leads alternatively to a single peak or a split ZBA. This discovery bringsa significant advance in this field, that has attracted research efforts of many importantgroups in the world over the past 15 years.We then performed interferometric measurements thanks to the scanning gate microscopeby creating in-situ interferometers in the 2DEG. We obtained signatures of an additionalphase shift accumulated by the electrons in the ZBA regime. We attribute this effect tothe universal phase shift that electrons accumulate when crossing a Kondo singlet, reinforcingthat the debated origin of the ZBA lies in Kondo physics.Finally, we adapted the SGM technique to the study of thermoelectric transport in QPCs,and for the first time imaged interferences of electrons driven by a temperature difference.
53

Spintronique moléculaire de la vanne de spin à la détection d'un spin unique / Molecular spintronic using single molecular magnets : fabrication and caracterization of nanotube-based transistors and fonctionnalization by single molecular magnets.

Urdampilleta, Matias 26 October 2012 (has links)
Spintronique moléculaire : de la vanne de spin à la détection d'un spin unique. Parmi les thématiques qui ont émergé ces dix dernières années, la spintronique moléculaire est intéressante de par son caractère hybride, à la croisée entre l'électronique de spin, l'électronique moléculaire et le magnétisme moléculaire. Dans ce nouveau domaine, on cherche à exploiter les propriétés magnétiques et quantiques des aimants moléculaires pour créer des dispositifs originaux, utiles en spintronique ou en information quantique. Mon projet de thèse s'inscrit dans cette perspective en voulant combiner un transistor à nanotube de carbone avec des aimants à molécule unique, en les couplant par des interactions supramoléculaires. L'objectif est d'observer le renversement magnétique d'une seule molécule par des mesures de transport électronique à travers le nanotube. En effet, le diamètre de ce dernier étant comparable aux dimensions d'un aimant moléculaire, le couplage devrait être suffisamment fort pour en permettre la détection. La réalisation d'un tel dispositif, un défi technique, et la question de savoir s'il était réellement possible de détecter et de caractériser le moment d'une seule molécule ont constitué les deux enjeux majeurs de cette thèse. Une grande partie du travail réalisé porte sur la fabrication du dispositif expérimental par des techniques de micro- et nano-fabrication, ainsi que sur l'optimisation du greffage des aimants moléculaires sur la surface du nanotube. Dans un second temps, nous nous intéressons à l'étude du système et à son comportement à très basse température (100 mK). En effet, la proximité des aimants moléculaires TbPc2 modifie de façon spectaculaire les propriétés de transport d'un nanotube. En particulier, nous présentons la réalisation d'un dispositif dont la réponse est analogue à une vanne de spin classique, où les molécules magnétiques jouent le rôle de polariseur ou d'analyseur de spin. Grâce à ce système, nous avons réussi à affiner nos connaissances sur TbPc2. Entre autres résultats, nous sommes parvenus à isoler et à caractériser le retournement du moment magnétique d'un seul ion de terbium. Enfin, la dernière partie de cette thèse est consacrée à l'étude de l'interaction hyperfine au sein du terbium. En réalisant un dispositif qui n'est couplé qu'à deux molécules, nous avons mis en évidence qu'il est possible de réaliser une lecture directe de l'état d'un spin nucléaire unique. / Nowadays, new directions in quantum spintronics aim at transposing the existing concepts and at developing alternative ones with various types of materials, from inorganic to -conjugated organic semiconductors. In this context, single molecule-magnets (SMMs) are interesting candidates to be integrated in molecular spintronics devices. Such devices lead the way for the electronic detection and coherent manipulation of SMMs spin states, exploitable in quantum computation schemes. We developed for this purpose an innovative multi-terminals device based on a carbon nanotube quantum dot, laterally coupled to few SMMs through supramolecular interaction. The conductance of the nanotube is measured at very low temperature (40 mK) and each time one of the SMM magnetic moment reverses, the conductance changes. The latters act on the conduction electron through the QD as spin polarizer and analyzer. This spin-valve effect gives access to the behavior of a single localized spin by standard electrometry We report a full magnetic characterization of a single bis-phthalocyaninato terbium complex (TbPc2). In particular, we performed a detailed study of quantum tunnelling of the magnetization of the Tb electronic moment and we present a read-out technic of the Tb nuclear spin state. These results open up strong perspectives for a coherent manipulation of a single nuclear spin in TbPc2.
54

Processos de tunelamento em sistemas unidimensionais / Tunnelling processes in one-dimensional systems

Cleverson Francisco Cherubim 20 February 2015 (has links)
Neste trabalho apresentamos uma análise de possíveis processos de tunelamento em sistemas unidimensionais através do estudo do potencial de barreira dupla com região intermediária confinante, conseguimos verificar a existência de um processo de tunelamento que ocorre através da ocupação virtual da região intermediária. Uma modelagem deste fenômeno é proposta baseando-se em uma teoria perturbativa realizada em termos de estados \"quase-localizados\" da partícula. Além da descrição qualitativa do fenômeno, determinamos as condições físicas para que este processo de tunelamento, também chamado de cotunelamento ou tunelamento de ordem superior, ocorra. Como resultado, recuperamos com boa aproximação o coeficiente de transmissão exato do sistema escolhido. Por fim, um outro resultado obtido durante o desenvolvimento deste trabalho foi uma prova conclusiva da convergência do método de diferenças finitas FDTD aplicada à equação de Schrödinger. Esta prova, diferente das demais encontradas na literatura, conseguiu demonstrar de maneira conclusiva a inclusão do limite superior para o passo temporal, de maneira a assegurar a convergência das soluções numéricas, algo até então testado numericamente, mas sem uma prova rigorosa da sua validade. / In this work, we present a study about tunnelling processes occurring in one-dimensional systems. Choosing a double well potential with a confining region as a case study, we verified that there is a tunnelling process which is due to virtual occupation of the confining region. Using perturbative theory of quasi-localized states to describe the particles dynamics, we provide a qualitative description of the phenomenon of tunnelling through virtual occupation, and we are capable of determining the conditions for which such a tunneling (also known as cotunnelling or high-order tunneling) should be present. With this analysis we could calculate with good approximation the particle transmission coefficient through the barrier. Finally, we also provide a rigorous proof of the convergence conditions for the numerical calculation of the Schrödinger equation using the finite difference method.
55

Processos fora do equilíbrio em sistemas quânticos controlados por campos externos

Garcia, Alvaro Andres Cifuentes January 2018 (has links)
Orientador: Prof. Dr. Fernando Luis da Silva Semião / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2018.
56

Investigação em eletrônica molecular: um estudo via cálculos de primeiros princípios / Molecular electronics investigation: a first principles study

Renato Borges Pontes 09 November 2007 (has links)
O iminente fim da \"era do Silício\" tem motivado a busca de novas tecnologias para utilização na indústria eletrônica. Dentre estas tecnologias, a eletrônica molecular explora o uso moléculas como elementos funcionais em dispositivos eletrônicos. Nesta Tese, realizamos cálculos de primeiros princípios baseados na teoria do funcional da densidade (DFT) para determinar as propriedades eletrônicas, estruturais e de transporte em sistemas com aplicação em eletrônica molecular. Para o benzeno-1,4-ditiol (BDT), considerado um sistema protótipo dentro da eletrônica molecular, correlacionamos a adsorção, em uma superfície de Au, com as propriedades de transporte. Na sequência, analisamos evolução estrutural e o efeito de átomos de Au adsorvidos na superfície de Au na transmitância do BDT entre eletrodos de Au. A importância da correção de auto-interação (SIC), nos cálculos de transporte da junção molecular (Au/BDT/Au), também foi discutida. Em seguida, determinamos as propriedades eletrônicas e estruturais da molécula y[(tpy SH)2]x, onde y representa os metais de transição Co, Fe e Ni e; x está associado aos estados de carga 0, +, 2+ e 3+. Verificamos que os metais de transição ficam em uma configuração de baixo spin e, dependendo do estado de carga do metal de transição uma distorção Jahn-Teller leva a uma redução na simetria local de D2d para C2v. Por fim, devido à possibilidade de aplicação em spintrônica, discutimos o efeito de uma impureza de Cobalto na evolução estrutural e transmitância de um nanofio de Au. / The possible end of the road for Silicon has motivated academic researchers and research laboratories to search for new technologies to be applied in the electronic industry. The molecular electronics, which studies the possibility of using molecules as active elements in a new generation of electronic devices, is among these new technologies. In this Thesis, we performed first principles calculations within the density functional theory (DFT) framework to determine the structural, electronic and transport properties of systems with strong application on molecular electronics. We analised the benzene-1,4-dithiol (BDT). For this prototypical system we coupled its adsorption on an Au(111) surface with its transport properties. After this, we investigated its structural evolution between gold leads and the effects of adsorded gold atoms on the Au(111) surface in the trasmitance. The effect of the self-interaction correction (SIC) in the transport calculations of the molecular junction (Au/BDT/Au) was discussed as well. Moreover, we determined the electronic and the structural properties of the molecule y[(tpySH)2]x, where y stands for the transition metals Co, Fe and Ni and; x is associated with the charge states 0, +, 2+ e 3+. We verified that the transition metals are more stable at the low spin configuration. Depending on the charge state a Jahn-Teller distortion leads to a local symmetry reduction: D2d to C2v. Finally, with a spintronic application in mind, we analised the effect of a Cobalt impurity on the structural evolution and transmitance of a gold nanowire.
57

Diffusion quantique au-delà des systèmes quasi-unidimensionnels / Quantum scattering beyond quasi one-dimensionnal systems

Istas, Mathieu 19 June 2019 (has links)
Les simulations de nanoélectronique quantique sont souvent restreintes à des géométries où un nanosystème de taille fini est connecté au monde macroscopique via des électrodes unidimensionelles. Cette thèse développe des méthodes numériques pour faire fi de ces restrictions.La première partie présente un algorithme robuste et efficace qui calcule les propriétés d'états liés présents dans des systèmes de liaisons fortes construits avec une région de "scattering" connectée à un nombre indéfini d'électrodes. La formulation de la méthode est faite par analogie à la méthode de continuité des ondes. L'algorithme permet de calculer des états de bord ou de surfaces comme les arcs de Fermi.La deuxième partie est dédiée à une nouvelle méthode numérique, basé sur le formalisme des fonctions de Green, qui permet de simuler efficacement des systèmes infinis en 1, 2 ou 3 directions et quasiment invariants par translation. Comparativement aux approches usuelles où le temps de calcul croît avec la taille du système, cette méthode innovante permet d'accéder directement à la limite thermodynamique. Ces développements fournissent une voie pratique pour la simulation d'échantillons 3D qui était jusqu'à maintenant restée insaisissable.Les deux méthodes sont illustrées par des applications sur des systèmes quantiques (un gaz d'électrons bidimensionel, une structure de graphène...) et des matériaux topologiques (fermions de Majorana, arcs de Fermi sur des semimétaux de Weyl...). La dernière application (résistance des arcs de Fermi au désordre) est la plus aboutie étant donné qu'elle requiert tous les algorithmes présentés dans la thèse. / Simulations in the field of quantum nanoelectronics are often restricted to a quasi one-dimensional geometries where the device is connected to the macroscopic world with one-dimensional electrodes. This thesis presents novel numerical methods that lift many of these restrictions, in particular rendering realistic simulations of three-dimensional systems possible.The first part introduces a robust and efficient algorithm for computing bound states of infinite tight-binding systems that are made up of a scattering region connected to semi-infinite leads. The method is formulated in close nalogy to the wave-matching approach used to compute the scattering matrix. It also allows one to calculate edge or surface states, e.g. the so-called Fermi arcs.The second part is dedicated to a new numerical method, based on the Green's function formalism, that allows to efficiently simulate systems that are infinite in 1, 2 or 3 dimensions and mostly invariant by translation. Compared to established approaches whose computational costs grow with system size and that are therefore plagued by finite size effects, the new method allows one to directly reach the thermodynamic limit. It provides a practical route for simulating 3D setups that have so far remained elusive.Both methods are illustrated by applications to several quantum systems(a disordered two-dimensional electron gas, a graphene device...) and topological materials (Majorana states in 1D superconducting nanowires, Fermi arcs in 3D Weyl semimetals...). The last application (resilience of Fermi arcs to disorder) combines all the algorithms that were introduced in this thesis.
58

Quantum Transport in Topological Insulator Nanowires / Kvanttransport i topologiska isolator nanotrådar

Pradas Rodriguez, Sergi January 2023 (has links)
Three-dimensional topological insulators are materials that have a bulk band gap like a traditional insulator, but which hold topologically protected conducting surface states. In this thesis we present a numerical analysis of the surface states of topological insulator nanowires in the tight-binding approximation. We carry out the calculations at zero temperature under the presence of coaxial and perpendicular magnetic fields using Dirac Hamiltonians to model the surface. The results are obtained using Kwant, a Python package first developed in 2014 by Groth et al. for the purpose of aiding in the creation of quantum transport simulations in tight-binding models. The main focus is the self-contained and complete study of the behaviour of the conductance in clean and disordered systems, as well as to serve as an introduction to Kwant. We first study the main properties of quantum transport in mesoscopic systems, and present the scattering problem in the tight-binding approximation, which is the one treated in Kwant. We review the main properties of topological insulators, as well as the history of their discovery. We then present Kwant in detail, and illustrate its inner workings by considering the example of a clean wire. We study clean wires and show the existence of the perfectly transmitted mode under a coaxial magnetic field, obtain the quantisation of the conductance expected from the Laundauer-Büttiker formalism, and recover Fabry-Pérot oscillations when considering highly doped leads. We discuss how disorder can be introduced in our systems to simulate more realistic models, analyse its effects in the period of the conductance oscillations, and recover the robustness to disorder of the perfectly transmitted mode. Finally, we comment on how this thesis can be expanded to cover a wider range of systems and phenomena. / Tredimensionella topologiska isolatorer är material som har ett bulkbandgap som traditionella isolatorer, men som har topologiskt skyddade ledande yttilstånd. I detta arbete presenterar vi en numerisk analys av yttilstånden hos topologiska isolator nanotrådar i tight-binding approximationen vid nolltemperatur, under närvaron av koaxiala och vinkelräta magnetfält med användning av Dirac-Hamiltonians för att modellera ytan. Resultaten erhålls med hjälp av Kwant, ett Python-paket som först utvecklades 2014 av Groth et al. i syfte att underlätta skapandet av simuleringar för kvanttransport i tight-binding modeller. Huvudfokus ligger på en självständig och komplett studie av beteendet hos konduktansen i rena och oordnade system, samt att fungera som en introduktion till Kwant. Vi studerar först de huvudsakliga egenskaperna hos kvanttransport i mesoskopiska system och presenterar spridningsproblemet i tight-binding approximationen, vilket är det som behandlas i Kwant. Dessutom går vi igenom de viktigaste egenskaperna hos topologiska isolatorer, samt deras upptäckthistoria. Sedan pre- senterar vi Kwant i detalj och illustrerar dess inre funktioner genom att titta på en ren tråd. Vi studerar rena trådar och visar förekomsten av det perfekt överförda läget under ett koaxialt magnetfält, erhåller kvantiseringen av den förväntade konduktansen från Laundauer-Büttiker-formalismen och återfår Fabry-Pérot-oscillationer när vi överväger starkt dopade ledare. Sedan diskuterar vi hur oordning kan införas i våra system för att simulera mer realistiska modeller, analysera dess effekter under tiden för oscillationer vid konduktans och återfå robustheten mot oordning av det perfekt överförda läget. Slutligen kommenterar vi hur detta arbete kan utvidgas för att täcka ett bredare spektrum av system och fenomen.
59

Quantum Simulation of Quantum Effects in Sub-10-nm Transistor Technologies

Winka, Anders January 2022 (has links)
In this master thesis, a 2D device simulator run on a hybrid classical-quantum computer was developed. The simulator was developed to treat statistical quantum effects such as quantum tunneling and quantum confinement in nanoscale transistors. The simulation scheme is based on a self-consistent solution of the coupled non-linear 2D SchrödingerPoisson equations. The Open Boundary Condition (OBC) of the Schrödinger equation, which allows for electrons to pass through the device between the leads (source and drain), are modeled with the QuantumTransmitting Boundary Method (QTBM). The differential equations are discretized with the finite-element method, using rectangular mesh elements. The self-consistent loop is a very time-consuming process, mainly due to the solution of the discretized OBC Schrödinger equation. To accelerate the solution time of the Schrödinger equation, a quantum assisted domain decomposition method is implemented. The domain decomposition method of choice is the Block Cyclic Reduction (BCR) method. The BCR method is at least 15 times faster (CPU time) than solving the whole linear system of equations with the Python solver numpy.linalg.solve, based on the LAPACK routine _gesv. In the project, we also propose an alternative approach of the BCR method called the "extra layer BCR" that shows an improved accuracy for certain types of solutions. In a quantum assisted version, the matrix inverse solver as a step in the BCR method was computed on the D-Wave quantum annealer chip ADVANTAGE_SYSTEM4.1 [4]. Two alternative methods to solve the matrix inverses on a quantum annealer were compared. One is called the "unit vector" approach, based on work by Rogers and Singleton [5], and the other is called the "whole matrix" approach which was developed in the thesis. Because of the limited amount of qubits available on the quantum annealer, the "unit vector" approach was more suitable for adaption in the BCR method. Comparing the quantum annealer to the Python inverse solver numpy.linalg.inv, also based on LAPACK, it was found that an accurate solution can be achieved, but the simulation time (CPU time) is at best 500 times slower than numpy.linalg.inv.
60

Thermoelectric Transport and Energy Conversion Using Novel 2D Materials

Wirth, Luke J. January 2016 (has links)
No description available.

Page generated in 0.0757 seconds