• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 109
  • 90
  • 13
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 398
  • 192
  • 118
  • 104
  • 102
  • 83
  • 81
  • 76
  • 75
  • 64
  • 54
  • 53
  • 53
  • 52
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Search for the Standard Model Higgs boson produced in association with top quarks in the lepton plus jets channel

Flowers, Sean Christopher 11 December 2017 (has links)
No description available.
142

Confinement Mechanisms in Quantum Chromodynamics

Tsegaye, Takele Dessie 02 May 2003 (has links)
No description available.
143

Bottomonium Spectroscopy at Belle: Studies of Radiative and Hadronic Transitions

Stottler, Zachary Shaun 21 April 2022 (has links)
The large constituent quark mass of bottomonium, the bottom quark/anti-quark bound state $(bbbar)$, affords a rich spectroscopy in which the perturbative (non-relativistic) limit of Quantum Chromodynamics may be theoretically described and experimentally investigated. The radial excitations of bottomonia---with radial quantum number $n$, one unit of total angular momentum $(J=1)$, and orbital angular momentum $L=0$, labeled $Upsilon(nS)$---are copiously produced in electron--positron $(epem)$ collisions. The Belle Collaboration is a high energy physics experiment located at the KEKB B-Factory epem collider, based at KEK in Tsukuba, Japan. Belle has accumulated a large dataset near the FourS and ThreeS resonances, collectively containing more than 28 million ThreeS and 556 million FourS. Some of these decay to other bbbar states---with one unit of orbital angular momentum and total angular momentum $J=0,1,2$, labeled cbj{n} ---via the emission of a photon, with subsequent transition to the OneS with the emission of one or more gluons, which hadronize to form an om meson. This dissertation presents an analysis of the hadronic transitions $chi_{bJ}(nP) rightarrow omega Upsilon(1S)$, where $Upsilon(1S) rightarrow ell^{+}ell^{-}$ with $ell=e,mu$, at Belle. The transitions of the $n=2$ triplet states provide a unique laboratory in which to study nonrelativistic quantum chromodynamics (NRQCD), as the kinematic threshold for production of an $omega$ and $Upsilon(1S)$ lies between the $J=0$ and $J=1$ states. The results presented herein constitute the first confirmation measurement of the $omega$ transitions of the $chi_{bJ}(2P)$ states since their discovery in 2004, with evidence---in excess of three standard deviations---for the sub-threshold transition of the $J=0$ state. The branching fraction $mathcal{B}big( chi_{b0}(2P) rightarrow omega Upsilon(1S) big)$ is found to be as large as the corresponding rate for the $J=2$ transition. The ratio of the $J=2$ to $J=1$ transitions is also measured and compared with the expectation from NRQCD, which we compute, revealing a $3.3sigma$ tension between experiment and theory. This work is leveraged to perform a search for radiative transitions of the $Upsilon(4S)$ to the $chi_{bJ}(2P)$ and $chi_{bJ}(3P)$ states, which are reconstructed in an inclusive $omega Upsilon(1S)$ final state. With no significant signal seen, limits are set on the corresponding branching fractions. / Doctor of Philosophy / Atoms, the stuff of everyday matter, consist of a number of electrons bound to a compact nucleus. This nucleus, in turn, contains one or more protons and neutrons, which are themselves made up of constituent particles called quarks that interact with one another by exchanging particles called gluons. Although great strides were made during the last century to further our understanding of the fundamental structure of matter, a comprehensive description of nuclear structure, at the quark level, eludes us. What we do know is that the force responsible for binding the large number of positively charged protons within the narrowly confined nucleus of, say, a gold atom is incredibly strong---in reality, more than 137 times as strong as the electromagnetic (EM) interaction, which is responsible for binding electrons around the nucleus in atoms. Unlike the EM force, which has one charge that can be either positive or negative, the strong interaction has three. This leads to a manifestly more complicated phenomena whose mathematical descriptions are computationally intractable. To study the strong interaction, we seek out the simplest of strongly bound states---called the meson---which consist of a quark and its anti-particle counterpart. The meson made up of a bottom quark/anti-quark pair, called bottomonium, provides an ideal laboratory for our investigations. In bottomonium, the quarks are very heavy (about 4.5 times the mass of a proton) and move relatively slowly compared to the quarks within a proton. This allows for some simplifications in the mathematical description of the bottomonium system, making it possible to compute predictions that can be tested in the lab. In this low energy regime, the strong interaction gives rise to a family of excited bottomonium states that have a structure similar to the excited states of an atom. Just as scientists learned about the EM interaction by studying the decays of excited atomic states, so too do we study the strong force by measuring the decays of bottomonium states. We call this study heavy quarkonium spectroscopy. When excited bottomonium states transition to lower-energy states, they may emit photons (as excited atoms do) or gluons. These emitted gluons, in turn, produce other particles. Measurements of the decay rates of bottomonium states may be predicted from the mathematical description of the strong interaction, providing direct experimental tests of the theoretical models. This dissertation presents a study of the decays of several bottomonium states, which are produced at the Belle experiment at the KEKB electron--positron collider. The decay rates, called the branching fractions, of these transitions are measured and used to test the prediction from theory, which we calculate. This work is leveraged to search for several previously unobserved decays, which are expected to be exceptionally rare.
144

Analysis of Neutral D Meson Two-Body Decays to a Neutral Kaon and a Neutral Pion

Kimmel Jr, Taylor Douglas 15 September 2021 (has links)
Decays of neutral D mesons to final states containing K + π's could provide evidence for CP-violation from a source not accounted for in the Standard Model. Due to the interference between Cabibbo-favored and Cabibbo-suppressed transitions, a decay rate asymmetry of D0 → K0S π0 compared to D0 → K0Lπ0 has been predicted to be non-zero. If New Physics interferes in doubly Cabibbo-suppressed D decays, the measurement of this asymmetry would differ from the predicted value and may provide evidence for CP-violation beyond the CKM mechanism. I present an analysis method to measure this branching fraction asymmetry, R(D0) ≡ B(D0→K0S π0)−B(D0→K0L π0)/(B(D0→K0Sπ0)+B(D0→K0Lπ0)), utilizing e+e− → cc events in the Belle dataset. / Doctor of Philosophy / The Universe appears to be made almost entirely of matter rather than antimatter; however, matter and antimatter should have been created in equal amounts in the Big Bang. We do not know exactly why we observe so much more matter as compared to antimatter. The Standard Model (SM) of particle physics accounts for some of the asymmetry through Charge-Parity (CP) symmetry violation, which explains how particles behave differently than their corresponding antiparticles. In the current state of the SM, some CP-violation is allowed in decays via the weak force, but the theory does not account for enough CP violation to explain the amount of matter-antimatter asymmetry observed in the Universe. Decays of a D meson to a kaon (K meson) plus one or more pions (π mesons) via a new mechanism beyond the weak force could provide evidence of a new source of CP-violation. In this analysis, I present a method for analyzing the decays of neutral D mesons to a neutral kaon and a neutral pion in the Belle dataset to test the SM.
145

Composite models of quarks and leptons

Geng, Chaqiang January 1987 (has links)
We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons. / Ph. D.
146

Masse des hadrons et des quarks légers en chromodynamique quantique sur réseau. / Hadron and light quark masses in lattice quantum chromodynamics

Vulvert, Gregory 08 April 2011 (has links)
Le sujet de cette thèse est le calcul ab initio de masses en QCD sur réseau.Dans la première partie on reconstruit le spectre des hadrons légers de la QCD. En utilisant une action de jauge de Lüscher-Weisz et une action fermionique de Wilson clover qui couplent par le biais de liens ayant subi six étapes de smearing stout, on extrait les masses de hadrons légers dans simulations à $N_f=2+1$ saveurs. Ces masses sont en accord avec l'expérience avec une précision de l'ordre de quelques pourcents et tous les erreurs systématiques sont contrôlées.Dans la seconde partie, on détermine les masses de quarks légers. L'action est la même que précédement mais on utilise deux étapes de smearing hex. Les simulations sont réalisées à la masse du pion et on utilise cinq réseaux pour prendre la limite du continu, éliminant de ce fait une grande source d'erreur systématique. La renormalisation est effectuée à la Rome-Southampton pour ne pas induire d'incertitudes dues à la théorie des perturbations. On obtient ainsi les premiers résultats au point physique atteignant une précision inférieure à 5%. / The main topic of this thesis is the computation ab initio of masses from lattice QCD.In the first part, the light hadron spectrum is computed. Thanks to a Lüscher-Weisz gauge action and a clover Wilson action describing with the quarks with six levels of stout-smearing, light hadron masses are extracted from simulations with $N_f=2+1$ flavors. These masses agree with experiment with a few percent accuracy and all the systematic errors are under control.In the second part, the light quark masses are determined. We use the same action as previously but with two levels of hex smearing. The simulations are done at the physical point mass and five lattice spacings are used to take a safe conitnuum limit, thus eliminating a higher source of systematice incertitude. Renormalization is perfo,rmed non perturbatively à la Rome-Southampton, thereby suppressing perturbative errors. We obtain in this work the first full non perturbative resultats at the physical point with a high accuracy since we obtain an error of about 5%.
147

Interações efetivas entre quarks a baixas energias a partir da Cromodinâmica Quântica considerando o condensado de quark-antiquark

Paulo Júnior, Ademar 17 February 2014 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-15T18:48:07Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Ademar Paulo Júnior.pdf: 470454 bytes, checksum: ca666cb4df9cfed260dd792d9b884664 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-15T18:48:28Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Ademar Paulo Júnior.pdf: 470454 bytes, checksum: ca666cb4df9cfed260dd792d9b884664 (MD5) / Made available in DSpace on 2014-09-15T18:48:28Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Ademar Paulo Júnior.pdf: 470454 bytes, checksum: ca666cb4df9cfed260dd792d9b884664 (MD5) Previous issue date: 2014-02-17 / The Quantum Chromodynamics (QCD) is the current theory that aim to describe the strong interactions in the Standard Model. It is a non-abelian gauge theory where quarks and gluons are the fundamental particles. However, QCD exhibits difficulties when low energy regimes are considered and perturbative methods cannot be employed. Thus, effective models are extremely important and useful when low energy limits are considered. Starting with QCD we develop an effetive model taking into account the second order gluon condensate, ⟨Aa A a ⟩, and quark-antiquark, ⟨ qq⟩. The coupled GAP equations are derived for Ns = 3 and numerical solutions are found for that. Furthermore, a functional expansion from effective potencial to the sixth order is calculated and contributions from that terms inserted into the effective lagrangian. / A Cromodin^amica Qu^antica (QCD) e a atual teoria que busca descrever as intera c~oes fortes dentro do modelo padr~ao. Trata-se de uma teoria de calibre n~ao-abeliana em que os quarks e gl uons constituem as part culas fundamentais. Entretanto, a QCD apresenta di - culdades quando consideram-se regimes de baixas energias em que t ecnicas n~ao perturbativas devem ser utilizadas. Assim, o uso de modelos efetivos e de extrema import^ancia e utilidade para os regimes de baixas energias que s~ao os de interesse deste trabalho. Partindo da QCD desenvolveremos um modelo efetivo para intera c~oes entre quarks levando em conta a presen ca dos condensados de gl uons de ordem dois, ⟨Aa A a ⟩, e de quark-antiquark, ⟨ qq⟩. As equa c~oes do GAP acopladas s~ao obtidas para Ns = 3 e suas solu c~oes num ericas s~ao encontradas. Al em disso, a expans~ao funcional do potencial efetivo at e sexta ordem no campo dos quarks e calculada e as contribui c~oes destes termos consideradas na lagrangeana efetiva.
148

Plasma de quarks e glúons no interior de estrelas de nêutrons

Jacobsen, Rafael Bán January 2007 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear em altas densidades, considerando-se as fases hadrônica e de quarks à temperatura nula, com a perspectiva de aplicar o formalismo desenvolvido no trabalho à análise das propriedades estáticas globais das estrelas de nêutrons. No trabalho, depois de apresentarmos aspectos importantes da evolução estelar e da teoria das estrelas de nêutrons, estudamos as propriedades e os modelos da matéria nuclear. No estudo da matéria nuclear para a fase hadrônica, consideramos os modelos relativísticos da teoria quântica de campos nucleares desenvolvida por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, também conhecidos, respectivamente, como modelos Sigma-ômega, ZM e Não-linear. Nesses modelos, a matéria nuclear é descrita a partir de uma formulação lagrangeana relativística de muitos corpos, com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear. Nesse estudo, consideramos, inicialmente, a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como, por exemplo, a massa efetiva do núcleon para matéria nuclear simétrica e matéria de nêutrons. O conhecimento da equação de estado da matéria de nêutrons torna possível a descrição de propriedades estáticas globais de uma estrela de nêutrons, como sua massa e seu raio, através das equações de Tolman, Oppenheimer e Volko . Os resultados obtidos neste trabalho estão em plena concordância com os resultados apresentados por outros autores. Posteriormente, incorporamos ao formalismo as equações de equilíbrio químico, a presen ça de graus de liberdade leptônicos de elétrons e múons, o octeto bariônico fundamental e a condição de neutralidade de carga. Nossa escolha para as constantes de acoplamento dos híperons está baseada na simetria SU(6) e nas regras de contagem para quarks. A consideração, no formalismo, do equilíbrio beta generalizado entre as partículas gera um sistema de onze equações acopladas que deve ser resolvido numericamente para se encontrar as diferentes populações fermiônicas. Por m, estudamos um modelo fenomenológico para a matéria nuclear com acoplamento derivativo ajustável, no qual a intensidade dos acoplamentos méson-núcleon é parametrizada por expressões matemáticas com coe cientes ajustáveis. Estudamos a in- uência desses acoplamentos na determinação das principais propriedades nucleares e nas propriedades estáticas globais das estrelas de nêutrons. Esse modelo é o que utilizamos, na parte nal do trabalho, para desenvolver nosso estudo da transição de fase entre matéria hadrônica e matéria de quarks livres, usando o critério de Gibbs. No estudo da matéria de quarks, consideramos o modelo de sacola desenvolvido no Massachusetts Institute of Technology (MIT) por A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn e V. F. Weisskopf. Como resultado principal, determinamos uma equação de estado geral para a matéria hadrônica e para a matéria de quarks e analisamos condições de equilíbrio de estrelas híbridas. Enfocamos, então, a in uência dos acoplamentos do modelo ajustável na determina ção da densidade bariônica em que ocorre a transição de fase. Analisamos, também, como a existência de um caroço de quarks na estrela repercute em suas propriedades estáticas globais (tais como raio e massa máxima) e na propriedade termodinâmica conhecida como índice adiabático. Os resultados obtidos nessa etapa do trabalho, embora inéditos, são coerentes com aqueles obtidos por outros autores. / The purpose of this work is the study of nuclear matter at high densities considering the hadronic and quark phases at zero temperature, with the perspective of applying the developed formalism to the analysis of global static properties of neutron stars. in this work, after presenting important aspects of stellar evolution and neutron star theory, we study the properties and models of nuclear matter. In the nuclear matter studies for the hadronic phase, we have considered the relativistic nuclear quantum eld theory developed by J. D. Walecka, J. Zimanyi and S. A. Moszkowski, and by J. Boguta and A. R. Bodmer, also known, respectively, as Sigma-omega, ZM and Non-linear models. In these models the nuclear matter is described by a relativistic and strong interaction lagrangian many-body formulation with baryon e ective elds coupled to scalar, vector and iso-vector mesons. In this study we consider initially the description of global static properties of manybody nuclear systems at zero temperature as, for instance, the nucleon e ective mass for symmetric nuclear and neutron matter. Knowledge of the neutron matter equation of state makes it possible the description of global static properties of a neutron star, such as its mass and radius, through the Tolman, Oppenheimer and Volko equations. The results we have obtained in this work are in agreement with the corresponding ones presented by other authors. We have further included into the formalism the chemical equilibrium equations, lepton degrees of freedom for electrons and muons, the fundamental octet of baryons and the charge neutrality condition. Our choice for the hyperonic coupling constants is based on the SU(6) symmetry and on the counting rules for quarks. The consideration of generalized beta equilibrium among the particles in our formalism generates a strongly coupled system of eleven equations to be numerically solved to nd the di erent fermionic populations. At last we study a phenomenological lagrangian model of nuclear matter with adjustable derivative coupling, which exhibits a parametrization, through mathematical expressions with adjustable coe cients, of the intensity of the meson-nucleon coupling. We study the in uence of these couplings in the determination of the main nuclear properties and global static properties of neutron stars. This model is the one we use to develop our study of the hadronic matter to quark matter phase transition in the last part of our work, using the Gibbs criteria. In the quark matter study, we have considered the bag model developed ih the Massachusetts Institute of Technology (MIT) by A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn and V. F. Weisskopf. As a main result, we have determined a general equation of state for hadronic and quark matter, and we have analyzed the equilibrium conditions for hybrid stars. We have then focused the in uence of the adjustable model couplings in the determination of the phase transition baryon density. We have also analyzed how the existence of the quarkgluon plasma core in the star repercutes in its global static properties (such as radius and maximum mass) and in the thermodynamical property known as the adiabatic index. The predictions of our work, even though based on new results, are in complete agreement with the corresponding ones obtained by other authors.
149

Precision Measurements of the Top Quark Pair Production Cross Section in the Single Lepton Channel with the ATLAS Experiment / Praezisionsmessungen des Topquark Paarproduktions Wechselwirkungsquerschnittes im Zerfallskanal mit einzelnen Leptonen am ATLAS Experiment

Henrichs, Anna Christine 19 April 2012 (has links)
No description available.
150

Plasma de quarks e glúons no interior de estrelas de nêutrons

Jacobsen, Rafael Bán January 2007 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear em altas densidades, considerando-se as fases hadrônica e de quarks à temperatura nula, com a perspectiva de aplicar o formalismo desenvolvido no trabalho à análise das propriedades estáticas globais das estrelas de nêutrons. No trabalho, depois de apresentarmos aspectos importantes da evolução estelar e da teoria das estrelas de nêutrons, estudamos as propriedades e os modelos da matéria nuclear. No estudo da matéria nuclear para a fase hadrônica, consideramos os modelos relativísticos da teoria quântica de campos nucleares desenvolvida por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, também conhecidos, respectivamente, como modelos Sigma-ômega, ZM e Não-linear. Nesses modelos, a matéria nuclear é descrita a partir de uma formulação lagrangeana relativística de muitos corpos, com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear. Nesse estudo, consideramos, inicialmente, a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como, por exemplo, a massa efetiva do núcleon para matéria nuclear simétrica e matéria de nêutrons. O conhecimento da equação de estado da matéria de nêutrons torna possível a descrição de propriedades estáticas globais de uma estrela de nêutrons, como sua massa e seu raio, através das equações de Tolman, Oppenheimer e Volko . Os resultados obtidos neste trabalho estão em plena concordância com os resultados apresentados por outros autores. Posteriormente, incorporamos ao formalismo as equações de equilíbrio químico, a presen ça de graus de liberdade leptônicos de elétrons e múons, o octeto bariônico fundamental e a condição de neutralidade de carga. Nossa escolha para as constantes de acoplamento dos híperons está baseada na simetria SU(6) e nas regras de contagem para quarks. A consideração, no formalismo, do equilíbrio beta generalizado entre as partículas gera um sistema de onze equações acopladas que deve ser resolvido numericamente para se encontrar as diferentes populações fermiônicas. Por m, estudamos um modelo fenomenológico para a matéria nuclear com acoplamento derivativo ajustável, no qual a intensidade dos acoplamentos méson-núcleon é parametrizada por expressões matemáticas com coe cientes ajustáveis. Estudamos a in- uência desses acoplamentos na determinação das principais propriedades nucleares e nas propriedades estáticas globais das estrelas de nêutrons. Esse modelo é o que utilizamos, na parte nal do trabalho, para desenvolver nosso estudo da transição de fase entre matéria hadrônica e matéria de quarks livres, usando o critério de Gibbs. No estudo da matéria de quarks, consideramos o modelo de sacola desenvolvido no Massachusetts Institute of Technology (MIT) por A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn e V. F. Weisskopf. Como resultado principal, determinamos uma equação de estado geral para a matéria hadrônica e para a matéria de quarks e analisamos condições de equilíbrio de estrelas híbridas. Enfocamos, então, a in uência dos acoplamentos do modelo ajustável na determina ção da densidade bariônica em que ocorre a transição de fase. Analisamos, também, como a existência de um caroço de quarks na estrela repercute em suas propriedades estáticas globais (tais como raio e massa máxima) e na propriedade termodinâmica conhecida como índice adiabático. Os resultados obtidos nessa etapa do trabalho, embora inéditos, são coerentes com aqueles obtidos por outros autores. / The purpose of this work is the study of nuclear matter at high densities considering the hadronic and quark phases at zero temperature, with the perspective of applying the developed formalism to the analysis of global static properties of neutron stars. in this work, after presenting important aspects of stellar evolution and neutron star theory, we study the properties and models of nuclear matter. In the nuclear matter studies for the hadronic phase, we have considered the relativistic nuclear quantum eld theory developed by J. D. Walecka, J. Zimanyi and S. A. Moszkowski, and by J. Boguta and A. R. Bodmer, also known, respectively, as Sigma-omega, ZM and Non-linear models. In these models the nuclear matter is described by a relativistic and strong interaction lagrangian many-body formulation with baryon e ective elds coupled to scalar, vector and iso-vector mesons. In this study we consider initially the description of global static properties of manybody nuclear systems at zero temperature as, for instance, the nucleon e ective mass for symmetric nuclear and neutron matter. Knowledge of the neutron matter equation of state makes it possible the description of global static properties of a neutron star, such as its mass and radius, through the Tolman, Oppenheimer and Volko equations. The results we have obtained in this work are in agreement with the corresponding ones presented by other authors. We have further included into the formalism the chemical equilibrium equations, lepton degrees of freedom for electrons and muons, the fundamental octet of baryons and the charge neutrality condition. Our choice for the hyperonic coupling constants is based on the SU(6) symmetry and on the counting rules for quarks. The consideration of generalized beta equilibrium among the particles in our formalism generates a strongly coupled system of eleven equations to be numerically solved to nd the di erent fermionic populations. At last we study a phenomenological lagrangian model of nuclear matter with adjustable derivative coupling, which exhibits a parametrization, through mathematical expressions with adjustable coe cients, of the intensity of the meson-nucleon coupling. We study the in uence of these couplings in the determination of the main nuclear properties and global static properties of neutron stars. This model is the one we use to develop our study of the hadronic matter to quark matter phase transition in the last part of our work, using the Gibbs criteria. In the quark matter study, we have considered the bag model developed ih the Massachusetts Institute of Technology (MIT) by A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn and V. F. Weisskopf. As a main result, we have determined a general equation of state for hadronic and quark matter, and we have analyzed the equilibrium conditions for hybrid stars. We have then focused the in uence of the adjustable model couplings in the determination of the phase transition baryon density. We have also analyzed how the existence of the quarkgluon plasma core in the star repercutes in its global static properties (such as radius and maximum mass) and in the thermodynamical property known as the adiabatic index. The predictions of our work, even though based on new results, are in complete agreement with the corresponding ones obtained by other authors.

Page generated in 0.057 seconds