Spelling suggestions: "subject:"réseaux dde neurones"" "subject:"réseaux dee neurones""
101 |
Parallélisation de problèmes d'apprentissage par des réseaux neuronaux artificiels. Application en radiothérapie externeSauget, Marc 07 December 2007 (has links) (PDF)
Les travaux présentés dans cette thèse s'inscrivent dans un projet lié à la radiothérapie externe. L'objectif de ceux-ci est de mettre au point un moteur de calcul permettant une évaluation précise et concise d'un dépôt de dose lors d'une irradiation. Pour remplir cet objectif, nous avons construit un moteur de calcul reposant sur l'utilisation des réseaux de neurones. Dans un premier temps, nous avons développé un algorithme L'apprentissage pour les réseaux de neurones spécifiquement conçu pour la prise en charge des données liées à la radiothérapie externe. Dans un second temps, nos travaux ont consisté en la réalisation d'algorithmes permettant l'évaluation des doses.<br />La première partie a donc porté sur la mise au point de l'algorithme d'apprentissage des réseaux de neurones. Un des problèmes majeurs lors de la préparation de l'apprentissage concerne la détermination de la structure optimale permettant l'apprentissage le plus efficace possible. Pour construire un réseau proche de l'optimal, nous nous sommes basés sur une construction incrémentale du réseau. Ensuite, pour permettre une prise en charge des nombreux paramètres liés à notre domaine d'application, et du volume des données nécessaires à un apprentissage rigoureux, nous nous sommes attachés à paralléliser notre algorithme. Nous avons obtenu, à la fin de cette première phase de nos travaux, un algorithme d'apprentissage incrémental et parallèle pouvant être déployé de manière efficace sur une grappe de calcul non-fiable. Ce déploiement est possible grâce à l'ajout d'un mécanisme de tolérance aux pannes. La deuxième partie, quant à elle, a consisté en la mise au point d'algorithmes permettant l'évaluation des doses déposées lors d'une irradiation. Ces algorithmes utilisent les réseaux de neurones comme référence pour la valeur des doses ainsi que le principe de continuité de la dose en tout point du milieu. Ils ont été construits à partir d'une fine observation du comportement de la courbe de dépôt de dose à chaque changement de milieu.<br />En aboutissement, nous présentons des expérimentations montrant les performances de notre algorithme d'apprentissage, ainsi que de nos algorithmes d'évaluation de doses dans différentes configurations.
|
102 |
Implémentation de méthodes d'intelligence artificielle pour le contrôle du procédé de projection thermiqueLiu, Taikai 09 December 2013 (has links) (PDF)
Depuis sa création, la projection thermique ne cesse d'étendre son champ d'application en raison de ses potentialités à projeter des matériaux bien différents (métallique, céramique, plastique,...) sous des formes bien différentes aussi (poudre, fil, suspension, solution,...). Plusieurs types de procédés ont été développés afin de satisfaire les applications industrielles, par exemple, le procédé HVOF (High Velocity Oxygen Fuel), le procédé APS (Atmospheric Plasma Spraying), le procédé VLPPS (Very Low Pressure Plasma Spray). Parmi ces procédés, le procédé APS est aujourd'hui bien implanté dans l'industrie et en laboratoire réussissant à élaborer des revêtements de bonne qualité à coût intéressant. Néanmoins, cette technologie pâtit des incidences des instabilités du procédé sur la qualité du produit obtenu et souffre d'un manque de compréhension des relations entre les paramètres opératoires et les caractéristiques des particules en vol.Pour rappel, pendant la projection APS, les phénomènes d'instabilité du pied d'arc, d'érosion des électrodes, d'instabilité des paramètres opératoires ne peuvent pas être complètement éliminés. Et, il est encore aujourd'hui difficile de mesurer et de bien contrôler ces paramètres.Compte tenu des progrès réalisés sur les moyens de diagnostic qui peuvent être utilisés en milieu hostile (comme dans le cas de la projection APS), un contrôle efficace de ce procédé en boucle fermée peut être maintenant envisagé et requiert le développement d'un système expert qui se compose des réseaux de neurones artificiels et de logique floue. Les réseaux de neurones artificiels sont développés dans plusieurs domaines d'application et aussi maintenant au cas de la projection thermique. La logique floue quant à elle est une extension de la logique booléenne basée sur la théorie mathématique des ensembles flous. Nous nous sommes intéressés dans ce travail à bâtir le modèle de contrôle en ligne du procédé de projection basé sur des éléments d'Intelligence Artificielle et à construire un émulateur qui reproduise aussi fidèlement que possible le comportement dynamique du procédé.
|
103 |
Structured prediction and generative modeling using neural networksKastner, Kyle 08 1900 (has links)
Cette thèse traite de l'usage des Réseaux de Neurones pour modélisation de données séquentielles. La façon dont l'information a été ordonnée et structurée est cruciale pour la plupart des données. Les mots qui composent ce paragraphe en constituent un exemple. D'autres données de ce type incluent les données audio, visuelles et génomiques. La Prédiction Structurée est l'un des domaines traitant de la modélisation de ces données. Nous allons aussi présenter la Modélisation Générative, qui consiste à générer des points similaires aux données sur lesquelles le modèle a été entraîné.
Dans le chapitre 1, nous utiliserons des données clients afin d'expliquer les concepts et les outils de l'Apprentissage Automatique, incluant les algorithmes standards d'apprentissage ainsi que les choix de fonction de coût et de procédure d'optimisation. Nous donnerons ensuite les composantes fondamentales d'un Réseau de Neurones. Enfin, nous introduirons des concepts plus complexes tels que le partage de paramètres, les Réseaux Convolutionnels et les Réseaux Récurrents. Le reste du document, nous décrirons de plusieurs types de Réseaux de Neurones qui seront à la fois utiles pour la prédiction et la génération et leur application à des jeux de données audio, d'écriture manuelle et d'images.
Le chapitre 2 présentera le Réseau Neuronal Récurrent Variationnel (VRNN pour variational recurrent neural network). Le VRNN a été développé dans le but de générer des échantillons semblables aux exemples de la base d'apprentissage. Nous présenterons des modèles entraînées de manière non-supervisée afin de générer du texte manuscrites, des effets sonores et de la parole. Non seulement ces modèles prouvent leur capacité à apprendre les caractéristiques de chaque type de données mais établissent aussi un standard en terme de performance.
Dans le chapitre 3 sera présenté ReNet, un modèle récemment développé. ReNet utilise les sorties structurées d'un Réseau Neuronal Récurrent pour classifier des objets. Ce modèle atteint des performances compétitives sur plusieurs tâches de reconnaissance d'images, tout en utilisant une architecture conçue dès le départ pour de la Prédiction Structurée. Dans ce cas-ci, les résultats du modèle sont utilisés simplement pour de la classification mais des travaux suivants (non inclus ici) ont utilisé ce modèle pour de la Prédiction Structurée.
Enfin, au Chapitre 4 nous présentons les résultats récents non-publiés en génération acoustique. Dans un premier temps, nous fournissons les concepts musicaux et représentations numériques fondamentaux à la compréhension de notre approche et introduisons ensuite une base de référence et de nouveaux résultats de recherche avec notre modèle, RNN-MADE. Ensuite, nous introduirons le concept de synthèse vocale brute et discuterons de notre recherche en génération. Dans notre dernier Chapitre, nous présenterons enfin un résumé des résultats et proposerons de nouvelles pistes de recherche. / In this thesis we utilize neural networks to effectively model data with sequential structure.
There are many forms of data for which both the order and the structure of the information is incredibly important. The words in this paragraph are one example of this type of data. Other examples include audio, images, and genomes. The work to effectively model this type of ordered data falls within the field of structured prediction. We also present generative models, which attempt to generate data that appears similar to the data which the model was trained on.
In Chapter 1, we provide an introduction to data and machine learning. First, we motivate the need for machine learning by describing an expert system built on a customer database. This leads to a discussion of common algorithms, losses, and optimization choices in machine learning. We then progress to describe the basic building blocks of neural networks. Finally, we add complexity to the models, discussing parameter sharing and convolutional and recurrent layers. In the remainder of the document, we discuss several types of neural networks which find common use in both prediction and generative modeling and present examples of their use with audio, handwriting, and images datasets.
In Chapter 2, we introduce a variational recurrent neural network (VRNN). Our VRNN is developed with to generate new sequential samples that resemble the dataset that is was trained on. We present models that learned in an unsupervised manner how to generate handwriting, sound effects, and human speech setting benchmarks in performance.
Chapter 3 shows a recently developed model called ReNet. In ReNet, intermediate structured outputs from recurrent neural networks are used for object classification. This model shows competitive performance on a number of image recognition tasks, while using an architecture designed to handle structured prediction. In this case, the final model output is only used for simple classification, but follow-up work has expanded to full structured prediction.
Lastly, in Chapter 4 we present recent unpublished experiments in sequential audio generation. First we provide background in musical concepts and digital representation which are fundamental to understanding our approach and then introduce a baseline and new research results using our model, RNN-MADE. Next we introduce the concept of raw speech synthesis and discuss our investigation into generation. In our final chapter, we present a brief summary of results and postulate future research directions.
|
104 |
Encodage d'un signal audio dans un électroencéphalogrammeMoinnereau, Marc-Antoine January 2017 (has links)
Les interfaces cerveau-machine visent à établir un lien de communication entre le cerveau et un système externe à ce dernier. Les électroencéphalogrammes (EEG), dans ce contexte, ont l’avantage d’être non invasifs. Par contre, l’information sensorielle qui se retrouve dans un signal EEG est beaucoup moins ciblée que dans un signal neuronal acquis par une méthode invasive. De plus, étant donné que le cortex auditif est situé dans des repliements du tissu cortical, les neurones qui déchargent, suite à un stimulus auditif, sont parallèles à la surface corticale sur laquelle les EEG sont enregistrés. Par conséquent, l’information auditive qui se retrouve dans le canal EEG situé vis-à-vis du cortex auditif est faible. L’objectif principal de ce projet de recherche consiste donc à étudier la répartition de l’information auditive dans l’ensemble des canaux EEG. Pour ce faire, nous utilisons deux approches. Dans la première, nous tenterons d’estimer l’activité
corticale sous-jacente à partir des signaux EEG en utilisant un modèle de couplage bande fréquence. En effet, certaines bandes de fréquences sont des bons prédicteurs des décharges neuronales. Cependant, cette approche n’a pas été validée pour le système auditif, nous confronterons donc l’estimation obtenue à une autre estimation en ayant recours à un modèle spécialisé pour l’encodage du signal de parole faisant appel aux processus ponctuels. Ce modèle prend en compte les dynamiques intrasèques des neurones et également des propriétés spectrotemporelles du stimulus d’entrée. Dans la seconde approche, nous étudierons la possibilité de classifier 3 voyelles (a, i et u) en fonction du nombre de canaux EEG utilisés ainsi que leur répartition sur le cuir chevelu. Nous aurons recours, pour cela, à un réservoir de neurone à décharge récurrent activé en entrée par les données EEG. Les résultats démontrent que l’information auditive se retrouve en fait dans l’ensemble des canaux EEG et qu’elle n’est pas confinée à un nombre restreint d’électrodes. Il est également montré que lorsque l’on utilise les 64 électrodes que comporte l’EEG pour classifier les 3 voyelles, on obtient une classification de l’ordre de 80%, mais aussi qu’un nombre limité de 10 électrodes suffit pour obtenir une classification satisfaisante et, qu’en plus, la position de ces électrodes sur le cuir chevelu est peu importante.
|
105 |
Réseaux de neurones génératifs avec structureCôté, Marc-Alexandre January 2017 (has links)
Cette thèse porte sur les modèles génératifs en apprentissage automatique. Deux nouveaux modèles basés sur les réseaux de neurones y sont proposés. Le premier modèle possède une représentation interne où une certaine structure a été imposée afin d’ordonner les caractéristiques apprises. Le deuxième modèle parvient à exploiter la structure topologique des données observées, et d’en tenir compte lors de la phase générative.
Cette thèse présente également une des premières applications de l’apprentissage automatique au problème de la tractographie du cerveau. Pour ce faire, un réseau de neurones récurrent est appliqué à des données de diffusion afin d’obtenir une représentation des fibres de la matière blanche sous forme de séquences de points en trois dimensions.
|
106 |
Mémoires de traduction sous-phrastiquesSimard, Michel January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
107 |
Accélérer l'entraînement d'un modèle non-paramétrique de densité non normalisée par échantillonnage aléatoireSenécal, Jean-Sébastien January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
108 |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition / Réseaux de Neurones Profonds pour la Reconnaissance de Texte Manucrit à Large VocabulaireBluche, Théodore 13 May 2015 (has links)
La transcription automatique du texte dans les documents manuscrits a de nombreuses applications, allant du traitement automatique des documents à leur indexation ou leur compréhension. L'une des approches les plus populaires de nos jours consiste à parcourir l'image d'une ligne de texte avec une fenêtre glissante, de laquelle un certain nombre de caractéristiques sont extraites, et modélisées par des Modèles de Markov Cachés (MMC). Quand ils sont associés à des réseaux de neurones, comme des Perceptrons Multi-Couches (PMC) ou Réseaux de Neurones Récurrents de type Longue Mémoire à Court Terme (RNR-LMCT), et à un modèle de langue, ces modèles produisent de bonnes transcriptions. D'autre part, dans de nombreuses applications d'apprentissage automatique, telles que la reconnaissance de la parole ou d'images, des réseaux de neurones profonds, comportant plusieurs couches cachées, ont récemment permis une réduction significative des taux d'erreur.Dans cette thèse, nous menons une étude poussée de différents aspects de modèles optiques basés sur des réseaux de neurones profonds dans le cadre de systèmes hybrides réseaux de neurones / MMC, dans le but de mieux comprendre et évaluer leur importance relative. Dans un premier temps, nous montrons que des réseaux de neurones profonds apportent des améliorations cohérentes et significatives par rapport à des réseaux ne comportant qu'une ou deux couches cachées, et ce quel que soit le type de réseau étudié, PMC ou RNR, et d'entrée du réseau, caractéristiques ou pixels. Nous montrons également que les réseaux de neurones utilisant les pixels directement ont des performances comparables à ceux utilisant des caractéristiques de plus haut niveau, et que la profondeur des réseaux est un élément important de la réduction de l'écart de performance entre ces deux types d'entrées, confirmant la théorie selon laquelle les réseaux profonds calculent des représentations pertinantes, de complexités croissantes, de leurs entrées, en apprenant les caractéristiques de façon automatique. Malgré la domination flagrante des RNR-LMCT dans les publications récentes en reconnaissance d'écriture manuscrite, nous montrons que des PMCs profonds atteignent des performances comparables. De plus, nous avons évalué plusieurs critères d'entrainement des réseaux. Avec un entrainement discriminant de séquences, nous reportons, pour des systèmes PMC/MMC, des améliorations comparables à celles observées en reconnaissance de la parole. Nous montrons également que la méthode de Classification Temporelle Connexionniste est particulièrement adaptée aux RNRs. Enfin, la technique du dropout a récemment été appliquée aux RNR. Nous avons testé son effet à différentes positions relatives aux connexions récurrentes des RNRs, et nous montrons l'importance du choix de ces positions.Nous avons mené nos expériences sur trois bases de données publiques, qui représentent deux langues (l'anglais et le français), et deux époques, en utilisant plusieurs types d'entrées pour les réseaux de neurones : des caractéristiques prédéfinies, et les simples valeurs de pixels. Nous avons validé notre approche en participant à la compétition HTRtS en 2014, où nous avons obtenu la deuxième place. Les résultats des systèmes présentés dans cette thèse, avec les deux types de réseaux de neurones et d'entrées, sont comparables à l'état de l'art sur les bases Rimes et IAM, et leur combinaison dépasse les meilleurs résultats publiés sur les trois bases considérées. / The automatic transcription of text in handwritten documents has many applications, from automatic document processing, to indexing and document understanding. One of the most popular approaches nowadays consists in scanning the text line image with a sliding window, from which features are extracted, and modeled by Hidden Markov Models (HMMs). Associated with neural networks, such as Multi-Layer Perceptrons (MLPs) or Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs), and with a language model, these models yield good transcriptions. On the other hand, in many machine learning applications, including speech recognition and computer vision, deep neural networks consisting of several hidden layers recently produced a significant reduction of error rates. In this thesis, we have conducted a thorough study of different aspects of optical models based on deep neural networks in the hybrid neural network / HMM scheme, in order to better understand and evaluate their relative importance. First, we show that deep neural networks produce consistent and significant improvements over networks with one or two hidden layers, independently of the kind of neural network, MLP or RNN, and of input, handcrafted features or pixels. Then, we show that deep neural networks with pixel inputs compete with those using handcrafted features, and that depth plays an important role in the reduction of the performance gap between the two kinds of inputs, supporting the idea that deep neural networks effectively build hierarchical and relevant representations of their inputs, and that features are automatically learnt on the way. Despite the dominance of LSTM-RNNs in the recent literature of handwriting recognition, we show that deep MLPs achieve comparable results. Moreover, we evaluated different training criteria. With sequence-discriminative training, we report similar improvements for MLP/HMMs as those observed in speech recognition. We also show how the Connectionist Temporal Classification framework is especially suited to RNNs. Finally, the novel dropout technique to regularize neural networks was recently applied to LSTM-RNNs. We tested its effect at different positions in LSTM-RNNs, thus extending previous works, and we show that its relative position to the recurrent connections is important. We conducted the experiments on three public databases, representing two languages (English and French) and two epochs, using different kinds of neural network inputs: handcrafted features and pixels. We validated our approach by taking part to the HTRtS contest in 2014. The results of the final systems presented in this thesis, namely MLPs and RNNs, with handcrafted feature or pixel inputs, are comparable to the state-of-the-art on Rimes and IAM. Moreover, the combination of these systems outperformed all published results on the considered databases.
|
109 |
Détection, localisation et typage de texte dans des images de documents hétérogènes par Réseaux de Neurones Profonds / Detection, localization and typing of text in heterogeneous document images with Deep Neural NetworksMoysset, Bastien 28 May 2018 (has links)
Lire automatiquement le texte présent dans les documents permet de rendre accessible les informations qu'ils contiennent. Pour réaliser la transcription de pages complètes, la localisation des lignes de texte est une étape cruciale. Les méthodes traditionnelles de détection de lignes, basées sur des approches de traitement d'images, peinent à généraliser à des jeux de données hétérogènes. Pour cela, nous proposons dans cette thèse une approche par réseaux de neurones profonds. Nous avons d'abord proposé une approche de segmentation mono-dimensionnelle des paragraphes de texte en lignes à l'aide d'une technique inspirée des modèles de reconnaissance, où une classification temporelle connexionniste (CTC) est utilisée pour aligner implicitement les séquences. Ensuite, nous proposons un réseau qui prédit directement les coordonnées des boîtes englobant les lignes de texte. L'ajout d'un terme de confiance à ces boîtes hypothèses permet de localiser un nombre variable d'objets. Nous proposons une prédiction locale des objets afin de partager les paramètres entre les localisations et, ainsi, de multiplier les exemples d'objets vus par chaque prédicteur de boîte lors de l'entraînement. Cela permet de compenser la taille restreinte des jeux de données utilisés. Pour récupérer les informations contextuelles permettant de prendre en compte la structure du document, nous ajoutons, entre les couches convolutionnelles, des couches récurrentes LSTM multi-dimensionnelles. Nous proposons trois stratégies de reconnaissance pleine page qui permettent de tenir compte du besoin important de précision au niveau des positions et nous montrons, sur la base hétérogène Maurdor, la performance de notre approche pour des documents multilingues pouvant être manuscrits et imprimés. Nous nous comparons favorablement à des méthodes issues de l'état de l'art. La visualisation des concepts appris par nos neurones permet de souligner la capacité des couches récurrentes à apporter l'information contextuelle. / Being able to automatically read the texts written in documents, both printed and handwritten, makes it possible to access the information they convey. In order to realize full page text transcription, the detection and localization of the text lines is a crucial step. Traditional methods tend to use image processing based approaches, but they hardly generalize to very heterogeneous datasets. In this thesis, we propose to use a deep neural network based approach. We first propose a mono-dimensional segmentation of text paragraphs into lines that uses a technique inspired by the text recognition models. The connexionist temporal classification (CTC) method is used to implicitly align the sequences. Then, we propose a neural network that directly predicts the coordinates of the boxes bounding the text lines. Adding a confidence prediction to these hypothesis boxes enables to locate a varying number of objects. We propose to predict the objects locally in order to share the network parameters between the locations and to increase the number of different objects that each single box predictor sees during training. This compensates the rather small size of the available datasets. In order to recover the contextual information that carries knowledge on the document layout, we add multi-dimensional LSTM recurrent layers between the convolutional layers of our networks. We propose three full page text recognition strategies that tackle the need of high preciseness of the text line position predictions. We show on the heterogeneous Maurdor dataset how our methods perform on documents that can be printed or handwritten, in French, English or Arabic and we favourably compare to other state of the art methods. Visualizing the concepts learned by our neurons enables to underline the ability of the recurrent layers to convey the contextual information.
|
110 |
Exploitation des informations de traçabilité pour l'optimisation des choix en production et en logistique / Exploiting traceability information in order to optimize production and logistic choicesTamayo Giraldo, Simon 05 December 2011 (has links)
Dans le cours des dernières années, la traçabilité s’est positionnée au cœur de plusieurs enjeux fondamentaux pour les entreprises. Cependant, cette notion est encore aujourd’hui vue comme une contrainte, servant uniquement à respecter des impositions légales et à rappeler des produits non-conformes. Dans ce projet, nous nous sommes attachés à élargir la définition de traçabilité aux domaines de la prévision et de la protection, pour qu’elle ne soit plus perçue comme une obligation supplémentaire à assumer, mais comme un véritable argument d’avantage concurrentiel. Ces travaux de recherche sont consacrés à l’exploitation des informations de traçabilité par l’utilisation des techniques d’intelligence artificielle et de recherche opérationnelle, afin de proposer des actions d’amélioration en production et en logistique. Ils ont été menés en collaboration avec la société ADENTS International, experte en traçabilité. Ce projet est composé de deux principaux axes de travail : l’un portant sur le diagnostic de la criticité d’une production, en fonction des informations de traçabilité et l’autre sur les actions à entreprendre par rapport à ce diagnostic. Dans le premier, nous remarquons l’importance de la notion de dispersion de matières premières et des composants, ainsi que celle des écarts en termes de qualité et de sécurité. Dans le second, nous nous intéressons d’avantage à la notion de rappel de produits, visant une gestion de transformations adaptée en aval de la production, afin de minimiser ces rappels. Pour la mise en place de ces deux grandes activités, nous nous sommes engagés à proposer des modèles et des méthodes flexibles et réactives, pouvant s’adapter à la versatilité ontologique des flux d’informations de traçabilité / The recent product traceability requirements demonstrate an industrial need to improve the information management strategies within traceability systems in order to evolve from reactivity to proactivity. The aim of this work is to exploit the recently available real-time access to traceability information. We propose the utilization of artificial intelligence and operational research techniques to analyse the information and therefore suggest improvement actions. This research project is composed of two main activities: first, the diagnosis of the criticality value associated to a production regarding the traceability information and second, the actions to undertake as a result of this diagnosis. One of the issues studied in this thesis is the problem of minimizing the size of products recall. Initially the problem of raw materials dispersion minimization is analysed. Then a result of the dispersion rate along with other production criteria are evaluated in order to determine a risk level criterion in terms of quality and security that we name “production criticality”. This criterion is used subsequently to optimize deliveries dispatch with the purpose of minimizing the number of batch recalls in case of crisis. This is achieved by implementing flexible and reactive tools
|
Page generated in 0.0517 seconds