Spelling suggestions: "subject:"réseaux dde neurones artificiell."" "subject:"réseaux dde neurones artificielle.""
21 |
Système radio-fréquences sans contact pour la caractérisation diélectrique de tissus biologiques / Dielectric characterization of biological tissues using a non contact radio-frequency systemWang, Mengze 11 January 2017 (has links)
La connaissance des propriétés diélectriques des tissus biologiques constitue un enjeu majeur pour la santé. Ces propriétés traduisent la manière dont un tissu stocke ou dissipe l’énergie électromagnétique transmise par un champ extérieur ; étant liées à la composition et à la structure du milieu organique, elles traduisent également la nature et l’état physiologique d’un tissu. Leur estimation fine permet donc, le cas échéant, de détecter et/ou de suivre l’évolution d’une pathologie. Parmi les méthodes de caractérisation diélectrique des tissus possibles, nous nous sommes concentrés sur une technique de caractérisation électromagnétique par antenne inductive exploitée en émission/réception, qui permet une mise en œuvre sans contact entre le système de mesure et le tissu. Celle-ci opère dans la gamme des radiofréquences (RF) ce qui présente l’avantage de rendre le dispositif sensible à la fois à la conductivité électrique et à la permittivité diélectrique du tissu. Cette technique travaillant en champ proche nécessite l’utilisation d’un modèle électromagnétique 3D des interactions sonde / tissu pour être mise en œuvre de manière pertinente. Dans ces travaux, nous nous sommes donc intéressés au problème de la modélisation des interactions, ainsi qu’à la résolution du problème inverse qui consiste à estimer les paramètres diélectriques recherchés à partir des données de mesure fournies par l’antenne et du modèle élaboré. Pour cela, nous nous sommes concentrés sur une configuration canonique, constituée d’une antenne RF filiforme circulaire, interagissant avec un milieu diélectrique homogène « sain » dont les paramètres diélectriques macroscopiques sont représentatifs d’un tissu organique (conductivité de 0.6 S/m et permittivité relative de 80), et d’une inclusion sphérique représentative d’une lésion présentant un contraste de 10% à 50% avec les paramètres du milieu « sain ». Nous avons établi un modèle d’interactions électromagnétiques 3D reposant sur une formulation semi – analytique à sources distribuées (DPSM) adaptée à cette configuration. Une étude paramétrique de la mise en œuvre du modèle, validée dans des configurations simples par rapport à des modèles analytiques et des expérimentations, a permis de construire un modèle qui montre des écarts inférieurs à 5 % par rapport à l’expérimentation, et qui établit un compromis acceptable entre exactitude et ressources informatiques nécessaires pour calculer la solution. Enfin, nous nous sommes intéressés à la résolution du problème inverse, consistant à retrouver les paramètres géométriques et diélectriques d’une lésion enfouie dans un milieu diélectrique « sain », à partir des variations d’impédances de l’antenne RF. Pour cela, nous avons construit un modèle inverse à réseaux de neurones artificiels (RNA) à partir de banque de données produites par le modèle DPSM. Une étude paramétrique a permis d’identifier les configurations de mise œuvre (fréquences, positions des antennes) les plus pertinentes permettant d’estimer les propriétés diélectrique, la taille et la position de l’inclusion dans le tissu, avec des erreurs d’estimation de l’ordre de 7% avec une antenne unique monofréquence, pour la caractérisation d’une inclusion de 3 cm de rayon enfouie jusqu’à 6 cm de profondeur. Ces travaux ouvrent la voix à des techniques de diagnostics de dans des milieux plus complexes (tissus stratifiés…) avec des techniques d’investigation multi-antennes et/ou multifréquences particulièrement prometteuses. / The characterization of the dielectric properties of organic tissues is a major issue in health diagnosis. These properties reflect the way organic material stores or dissipates the electromagnetic energy transmitted by an external field. They are related to the composition and the structure of the organic medium. Furthermore, they are also related to the nature and the physiological state of a tissue. For that reason the estimation of these properties is very valuable for detecting and/or monitoring the evolution of tissue pathology.Among the existing dielectric characterization methods, we focused on a characterization technique using an inductive antenna, which acts as a transmitter/receiver sensor and allows a contactless implementation between the measuring system and investigated tissue to be carried out. This system is operated in the radio-frequency (RF) band. Indeed, in the RF the device is equally sensitive to both the electrical conductivity and the dielectric permittivity of the tissue. This technique operates in a near-field and therefore a 3D electromagnetic modeling technique is required to accurately model the interactions between the sensor and the investigated tissue.This work deals with the 3D modeling and with the resolution of the inverse problem required to estimate the dielectric parameters of tissues starting from the data provided by the antenna and the outputs of the model. For this purpose, a canonical configuration featuring a filiform circular antenna is considered. This antenna interacts with a “healthy” homogeneous dielectric medium, which possess the macroscopic dielectric parameters of a typical organic tissue (i.e. conductivity 0.6S/m and relative permittivity of 80 at 100 MHz). Meanwhile, a spherical inclusion buried within the tissue is considered to simulate a tissue lesion. This inclusion features a dielectric contrast of 10% up to 50% by reference to the parameters of the “healthy” medium. A 3D modeling of the sensor/tissue interactions is established, which is based on the distributed point source method (DPSM), a versatile semi-analytical modeling technique. The model is adjusted using a parametric study and validated against analytical models (in simplified configurations) and experiments. The implemented DPSM modeling was found to feature a 5% accuracy error, compared to the experimentations, together with offering an acceptable trade-off between accuracy and the computation cost. Finally, we focused on the solving of the inverse problem which consists in estimating the geometric and dielectric parameters of a buried lesion in the “healthy” dielectric medium, starting from the variations of the impedance of the RF antenna. To do so, a behavioral model build up using an artificial neural network (ANN) was established. The model is build using a data base elaborated using the DPSM model. The parameters of the ANN is discussed in order to identify the relevant configuration (frequency, position of the antenna) to estimate the dielectric properties, the size and the position of the inclusion in the tissue. For a single antenna operated at a single frequency, an inclusion of 3cm radius buried as deep at 6 cm within the tissue was located and characterized with estimation errors of the order of 7%.The methodologies developed in these works open the way to the diagnosis of more complex material (such as layered tissues), using promising techniques such as multi-frequency non contact RF antenna arrays.
|
22 |
Prévision statistique de la qualité de l’air et d’épisodes de pollution atmosphérique en Corse / Statistical forecast of air quality and episodes of atmospheric pollution in CorsicaTamas, Wani Théo 17 November 2015 (has links)
L’objectif de ces travaux de doctorat est de développer un modèle prédictif capable de prévoir correctement les concentrations en polluants du jour pour le lendemain en Corse. Nous nous sommes intéressés aux PM10 et à l’ozone, les deux polluants les plus problématiques sur l’île. Le modèle devait correspondre aux contraintes d’un usage opérationnel au sein d’une petite structure, comme Qualitair Corse, l’association locale de surveillance de la qualité de l’air.La prévision a été réalisée à l’aide de réseaux de neurones artificiels. Ces modèles statistiques offrent une grande précision tout en nécessitant peu de ressources informatiques. Nous avons choisi le Perceptron MultiCouche (PMC), avec en entrée à la fois des mesures de polluants, des mesures météorologiques, et des sorties de modèles de chimie-transport (CHIMERE via la plate-forme AIRES) et de modèles météorologiques (AROME).La configuration des PMC a été optimisée avant leur apprentissage automatique, en conformité avec le principe de parcimonie. Pour en améliorer les performances, une étude de sélection de variables a été au préalable menée. Nous avons comparé l’usage d’algorithmes génétiques, de recuits simulés et d’analyse en composantes principales afin d’optimiser le choix des variables d’entrées. L’élagage du PMC a été également mis en œuvre.Nous avons ensuite proposé un nouveau type de modèle hybride, combinaison d’un classifieur et de plusieurs PMC, chacun spécialisé sur un régime météorologique particulier. Ces modèles, qui demandent un large historique de données d’apprentissage, permettent d’améliorer la prévision des valeurs extrêmes et rares, correspondant aux pics de pollution. La classification non-supervisée a été menée avec des cartes auto-organisatrices couplées à l’algorithme des k-means, ainsi que par classification hiérarchique ascendante. L’analyse de sensibilité à été menée grâce à l’usage de courbes ROC.Afin de gérer les jeux de données utilisés, de mener les expérimentations de manière rigoureuse et de créer les modèles destinés à l’usage opérationnel, nous avons développé l’application « Aria Base », fonctionnant sous Matlab à l’aide de la Neural Network Toolbox.Nous avons également développé l’application « Aria Web » destinée à l’usage quotidien à Qualitair Corse. Elle est capable de mener automatiquement les prévisions par PMC et de synthétiser les différentes informations qui aident la prévision rendues disponibles sur internet par d’autres organismes. / The objective of this doctoral work is to develop a forecasting model able to correctly predict next day pollutant concentrations in Corsica. We focused on PM10 and ozone, the two most problematic pollutants in the island. The model had to correspond to the constraints of an operational use in a small structure like Qualitair Corse, the local air quality monitoring association.The prediction was performed using artificial neural networks. These statistical models offer a great precision while requiring few computing resources. We chose the MultiLayer Perceptron (MLP), with input data coming from pollutants measurements, meteorological measurements, chemical transport model (CHIMERE via AIRES platform) and numerical weather prediction model (AROME).The configuration of the MLP was optimized prior to machine learning, in accordance with the principle of parsimony. To improve forecasting performances, we led a feature selection study. We compared the use of genetic algorithms, simulated annealing and principal component analysis to optimize the choice of input variables. The pruning of the MLP was also implemented.Then we proposed a new type of hybrid model, combination of a classification model and various MLPs, each specialized on a specific weather pattern. These models, which need large learning datasets, allow an improvement of the forecasting for extreme and rare values, corresponding to pollution peaks. We led unsupervised classification with self organizing maps coupled with k-means algorithm, and with hierarchical ascendant classification. Sensitivity analysis was led with ROC curves.We developed the application “Aria Base” running with Matlab and its Neural Network Toolbox, able to manage our datasets, to lead rigorously the experiments and to create operational models.We also developed the application “Aria Web” to be used daily by Qualitair Corse. It is able to lead automatically the prevision with MLP, and to synthesize forecasting information provided by other organizations and available on the Internet.
|
23 |
Approches neuromimétiques pour l'identification et la commande des systèmes électriques : application au filtrage actif et aux actionneurs synchronesNguyen, Ngac Ky 02 December 2010 (has links) (PDF)
Cette thèse propose des approches neuromimétiques d'identification et de commande avec des applications directes au Filtre Actif Parallèle (FAP) et au Moteur Synchrone à Aiment Permanent (MSAP). Une structure neuronale complète a été développée pour réaliser toutes les fonctionnalités d'un FAP pour compenser des harmoniques de courant. La phase instantanée et les composantes symétriques d'un système triphasé de tensions ou de courants ont été estimées avec une boucle à verrouillage de phase neuronale. L'identification des harmoniques de courant a été réalisée avec des réseaux de neurones de type Adaline opérant dans les différents repères. Plusieurs schémas de commande ont été développés pour réinjecter les courants de compensation à l'aide d'un onduleur. Ils sont basés sur des techniques neuromimétiques, sur la logique floue, ou sur leur association. Une approche neuronale a été développée pour commander une MSAP à distribution quelconque avec des contraintes prédéterminées réduisant les ondulations du couple. Elle consiste en des schémas de commande directe en couple ou en vitesse pour obtenir les courants statoriques optimaux qui donnent exactement le couple électromagnétique (ou la vitesse) désiré et qui réduisent au maximum les pertes par effet Joule. Ces commandes intègrent deux blocs neuronaux, l'un dédié au calcul des courants optimaux et l'autre pour assurer leur génération à travers un onduleur de tension. Toutes les approches neuromimétiques ont été validées par des tests de simulation et des essais expérimentaux. Des comparaisons avec les méthodes de commande classique démontrent des caractéristiques supérieures en termes de performance et de robustesse.
|
24 |
Caractérisation de l'environnement sonore urbain : Proposition de nouveaux indicateurs de qualité / Characterization of the urban soundscape : with new indicators of qualityBrocolini, Laurent 13 December 2012 (has links)
A l'heure actuelle, les seuls moyens d'informer les usagers de la ville de l'environnement sonore dans lequel ils vivent consistent en des indicateurs de niveaux sonores moyens et annuels obtenus par modélisation acoustique des principales infrastructures de transports. Or, ces indicateurs sont difficilement compris et de ce fait mal interprétés par les usagers de la ville car ils ne reflètent pas la signification des bruits perçus et la diversité des situations que les citadins rencontrent. Le but de ce travail de recherche est donc d'analyser la façon dont les usagers de la ville perçoivent le paysage sonore urbain afin de définir des indicateurs de qualité sonore qui pourront être à terme intégrés dans une représentation territoriale cartographique. Pour ce faire, il a tout d'abord été nécessaire de s'attacher à déterminer un pas temporel et spatial de mesure permettant de caractériser des ambiances urbaines d'un point de vue acoustique. A partir d'enregistrements longue durée (trois mois environs) en six points fixes à Paris, il a été possible de déterminer à travers des classifications ascendantes hiérarchiques de Ward associées à des cartes auto-organisatrices de Kohonen qu'une durée de dix minutes semble dans la plupart des cas être suffisante pour caractériser différentes ambiances sonores. Grâce aux mêmes méthodes de classification, l'analyse du maillage spatial a permis de définir quatre zones homogènes qui correspondent (1) au parc, (2) au boulevard, (3) à la rue piétonne puis (4) une zone que l'on qualifiera de zone de transition. La suite de l'étude s'est attachée à construire des modèles de prédiction de la qualité sonore. A partir d'enquêtes de terrain réalisées à Paris et à Lyon, il a été possible d'établir des modèles à la fois locaux (caractérisant le lieu même où le questionnaire a été évalué) et globaux basés d'une part sur des régressions linéaires multiples et d'autre part sur des réseaux de neurones artificiels. La comparaison de ces deux types de modèles a permis entre autre de mettre en évidence l'apport des réseaux de neurones artificiels devant les régressions linéaires multiples en termes de prédiction. Par ailleurs il est ressorti de ces modèles l'importance de variables telles que le silence, l'agrément visuel ou encore la présence de sources sonores particulières comme les véhicules légers pour expliquer la qualité sonore de l'environnement. / At present, the only ways to inform city dwellers about the sound environment in which they live are annual and average sound level indicators using acoustic modeling of main transport infrastructure. However, these indicators are difficult to understand and therefore misinterpreted by city dwellers because they do not reflect the significance of perceived noise and the diversity of the situations. The aim of this research is therefore to analyze how the city dwellers perceive the urban soundscape in order to characterize sound quality indicators which can be used into mapping. To do this, it was first of all necessary to determine a temporal and spatial resolution to characterize urban environment from an acoustic point of view. From long period recordings (almost three months) at six locations in Paris it was possible to determine through hierarchical ascendant Ward classifications combined with self-organizing Kohonen maps that duration of ten minutes for measurements seems to be enough to characterize in most cases different acoustic environments. Thanks to the same classification methods, spatial study made it possible to define four homogeneous areas which correspond (1) to the park, (2) to the boulevard, (3) to the pedestrian street and (4) to an area which can be considered as a transition one. Then this study focused on building sound quality predictive models. Thanks to field surveys in Paris and Lyon, it was possible to establish local models (characterizing the location where the questionnaire has been evaluated) and overall models based on one hand on multiple linear regressions and on the other hand on artificial neural networks. The comparison of both models highlighted the advantages of artificial neural networks compared to multiple linear regressions in terms of prediction. Moreover, according to these models, variables such as silence, the visual pleasantness or even the presence of specific sound sources as light vehicles explain the sound quality of the environment.
|
25 |
Apprentissage Interactif en Robotique Autonome : vers de nouveaux types d'IHM / Interactive Learning in Autonomous Robotics : towards new kinds of HMIRolland de Rengerve, Antoine 13 December 2013 (has links)
Un robot autonome collaborant avec des humains doit être capable d'apprendre à se déplacer et à manipuler des objets dans la même tâche. Dans une approche classique, on considère des modules fonctionnels indépendants gérant les différents aspects de la tâche (navigation, contrôle du bras...). A l'opposé, l'objectif de cette thèse est de montrer que l'apprentissage de tâches de natures différentes peut être abordé comme un problème d'apprentissage d'attracteurs sensorimoteurs à partir d'un petit nombre de structures non spécifiques à une tâche donnée. Nous avons donc proposé une architecture qui permet l'apprentissage et l'encodage d'attracteurs pour réaliser aussi bien des tâches de navigation que de contrôle d'un bras.Comme point de départ, nous nous sommes appuyés sur un modèle inspiré des cellules de lieu pour la navigation d'un robot autonome. Des apprentissages en ligne et interactifs de couples lieu/action sont suffisants pour faire émerger des bassins d'attraction permettant à un robot autonome de suivre une trajectoire. En interagissant avec le robot, on peut corriger ou orienter son comportement. Les corrections successives et leur encodage sensorimoteur permettent de définir le bassin d'attraction de la trajectoire. Ma première contribution a été d'étendre ce principe de construction d'attracteurs sensorimoteurs à un contrôle en impédance pour un bras robotique. Lors du maintien d'une posture proprioceptive, les mouvements du bras peuvent être corrigés par une modification en-ligne des commandes motrices exprimées sous la forme d'activations musculaires. Les attracteurs moteurs résultent alors des associations simples entre l'information proprioceptive du bras et ces commandes motrices. Dans un second temps, j'ai montré que le robot pouvait apprendre des attracteursvisuo-moteurs en combinant les informations proprioceptives et visuelles. Le contrôle visuo-moteur correspond à un homéostat qui essaie de maintenir un équilibre entre ces deux informations. Dans le cas d'une information visuelle ambiguë, le robot peut percevoir un stimulus externe (e.g. la main d'un humain) comme étant sa propre pince. Suivant le principe d'homéostasie, le robot agira pour réduire l'incohérence entre cette information externe et son information proprioceptive. Il exhibera alors un comportement d'imitation immédiate des gestes observés. Ce mécanisme d'homéostasie, complété par une mémoire des séquences observées et l'inhibition des actions durant l'observation, permet au robot de réaliser des imitations différées et d'apprendre par observation. Pour des tâches plus complexes, nous avons aussi montré que l'apprentissage de transitions peut servir de support pour l'apprentissage de séquences de gestes, comme c'était le cas pour l'apprentissage de cartes cognitives en navigation. L'utilisation de contextes motivationnels permet alors le choix entre les différentes séquences apprises.Nous avons ensuite abordé le problème de l'intégration dans une même architecture de comportements impliquant une navigation visuomotrice et le contrôle d'un bras robotique pour la préhension d'objets. La difficulté est de pouvoir synchroniser les différentes actions afin que le robot agisse de manière cohérente. Les comportements erronés du robot sont détectés grâce à l'évaluation des actions proposées par le modèle vis à vis des corrections imposées par le professeur humain. Un apprentissage de ces situations sous la forme de contextes multimodaux modulant la sélection d'action permet alors d'adapter le comportement afin que le robot reproduise la tâche désirée.Pour finir, nous présentons les perspectives de ce travail en terme de contrôle sensorimoteur, pour la navigation comme pour le contrôle d'un bras robotique, et son extension aux questions d'interface homme/robot. Nous insistons sur le fait que différents types d'imitation peuvent être le fruit des propriétés émergentes d'une architecture de contrôle sensorimotrice. / An autonomous robot collaborating with humans should be able to learn how to navigate and manipulate objects in the same task. In a classical approach, independent functional modules are considered to manage the different aspects of the task (navigation, arm control,...) . To the contrary, the goal of this thesis is to show that learning tasks of different kinds can be tackled by learning sensorimotor attractors from a few task nonspecific structures. We thus proposed an architecture which can learn and encode attractors to perform navigation tasks as well as arm control.We started by considering a model inspired from place-cells for navigation of autonomous robots. On-line and interactive learning of place-action couples can let attraction basins emerge, allowing an autonomous robot to follow a trajectory. The robot behavior can be corrected and guided by interacting with it. The successive corrections and their sensorimotor coding enables to define the attraction basin of the trajectory. My first contribution was to adapt this principle of sensorimotor attractor building for the impedance control of a robot arm. While a proprioceptive posture is maintained, the arm movements can be corrected by modifying on-line the motor command expressed as muscular activations. The resulting motor attractors are simple associations between the proprioceptive information of the arm and these motor commands. I then showed that the robot could learn visuomotor attractors by combining the proprioceptive and visual information with the motor attractors. The visuomotor control corresponds to a homeostatic system trying to maintain an equilibrium between the two kinds of information. In the case of ambiguous visual information, the robot may perceive an external stimulus (e.g. a human hand) as its own hand. According to the principle of homeostasis, the robot will act to reduce the incoherence between this external information and its proprioceptive information. It then displays a behavior of immediately observed gestures imitation. This mechanism of homeostasis, completed by a memory of the observed sequences and action inhibition capability during the observation phase, enables a robot to perform deferred imitation and learn by observation. In the case of more complex tasks, we also showed that learning transitions can be the basis for learning sequences of gestures, like in the case of cognitive map learning in navigation. The use of motivational contexts then enables to choose between different learned sequences.We then addressed the issue of integrating in the same architecture behaviors involving visuomotor navigation and robotic arm control to grab objects. The difficulty is to be able to synchronize the different actions so the robot act coherently. Erroneous behaviors of the robot are detected by evaluating the actions predicted by the model with respect to corrections forced by the human teacher. These situations can be learned as multimodal contexts modulating the action selection process in order to adapt the behavior so the robot reproduces the desired task.Finally, we will present the perspectives of this work in terms of sensorimotor control, for both navigation and robotic arm control, and its link to human robot interface issues. We will also insist on the fact that different kinds of imitation behavior can result from the emergent properties of a sensorimotor control architecture.
|
26 |
Network on chip based multiprocessor system on chip for wireless software defined cognitive radio / Système multiprocesseur à base de réseau sur puce destiné au traitement de la radio logicielle et la radio cognitiveTaj, Muhammad Imran 12 September 2011 (has links)
La Radio Logicielle (SDR : Software Defined Radio) et la Radio Cognitive (CR : Cognitive Radio) deviennent d'un usage courant car elles répondent à plusieurs enjeux technico-économiques majeurs dans le domaine des télécommunications. Ces systèmes radio permettent de combler l'écart de développement technologique qui existe entre la partie matérielle et la partie logicielle des systèmes de communication, en permettant la gestion optimale des bandes de fréquences sous-utilisées par la commutation en temps réel d'une configuration radio à une autre. Dans ce cadre, cette thèse présente la mise en œuvre d'une chaîne de traitements Radio Logicielle (appelée SDR waveform) dans un Système Multiprocesseurs sur Puce (MPSoC) à usage général (implémenté dans un FPGA de type Xilinx Virtex-4). Cette plateforme est basée autour d'un Réseau sur Puce (NoC) interconnectant 16 processeurs élémentaires (appelés PE) disposant de quatre blocs-mémoires externes DDR2. Nous avons proposé des implémentations temps réel et embarquées sur MPSoC de différentes briques de traitements d'une chaîne SDR, en concevant une stratégie efficace de parallélisation et de synchronisation pour chaque composante élémentaire de la « waveform ». Nous avons amélioré la fonctionnalité de la chaîne de traitement Radio Logicielle, en intégrant un Transceiver reconfigurable basé sur différents modèles de Réseaux de Neurones Artificiels (RNA) : les Cartes Auto-Organisatrices (SOM), les Réseaux de Neurones Compétitifs (LVQ) et enfin les Réseaux Multi-Couches de Perceptrons (MLP). Ces trois RNA permettent la reconnaissance de la norme spécifique basée sur les paramètres d'entrée extraits du signal et la reconfiguration du Transceiver de CR. La solution adaptative que nous avons proposée commute vers le RNA le plus approprié en fonction des caractéristiques du signal d'entrée détecté. Il est important de pouvoir prendre en compte des signaux complexes et multi-porteuses. Dans ce cadre, nous avons adressé le cas d'un signal complexe composé de plusieurs porteuses, ainsi en divisant les PEs en différents groupes indépendants, nous affectons chaque groupe de PEs au traitement d'une nouvelle porteuse. Nous avons conçu une stratégie efficace de synchronisation et de parallélisation de ces trois RNA pour CR Transceiver. Nous l'avons appliquée, par la suite pour l'implantation de nos algorithmes sur le MPSoC déjà cité. L'accélération que nous obtenons pour la SDR waveform et pour les algorithmes de Transceiver de CR démontre que les MPSoC à usage général sont une réponse pertinente, entre autres, aux contraintes de performances sur une telle plateforme. Le système que nous proposons apporte une réponse aux défis technico-économiques des grandes entreprises qui investissent ou prévoient d'investir dans des équipements basés sur des SDR ou des CR, puisqu'il permet d'éviter de recourir à des équipements d'accélération coûteux. Nous avons, par la suite, ajouté d'autres fonctionnalités à notre waveform avec un « CR Transceiver multinormes », en proposant une nouvelle approche pour la gestion du spectre radio. Ceci étant l'aspect le plus important de CR. Nous rendons ainsi notre waveform spectralement efficace en modélisant les caractéristiques radiofréquences (RF) du signal utilisateur primaire sous la forme d'une série temporelle multi-variée. Cette série temporelle est ensuite fournie comme entrée dans un Réseau de Neurones Récurrent d'Elman (ERNN) qui prédit l'évolution de la série temporelle de RF pour déterminer si l'utilisateur secondaire peut exploiter la bande de fréquences. Nous avons exploité la cyclo-stationnarité inhérente des signaux primaires pour la Modélisation Non-Linéaire Autorégressive Exogène (NARX : Non-linear AutoRegressive Exogenous) des séries temporelles des caractéristiques RF, car la prédiction d'une caractéristique RF demande d'abord de connaître les autres caractéristiques radios pertinentes. Nous avons observé une tendance similaire pour les valeurs prédites et observées. En résumé, nous avons proposé des algorithmes pour SDR waveform à efficacité spectrale avec un Transceiver Universel, ainsi que leurs implantations parallèles sur MPSoC. Notre conception de waveform répond aux exigences en performances et aux contraintes de ressources embarquées des applications dans le domaine / Software Defined Radio (SDR) and Cognitive Radio (CR) are entering mainstream. These high performance and high adaptability requiring devices with agile frequency operations hold promise to :1. address the inconsistency between hardware and software advancements, 2. real time mode switching from one radio configuration to another and3. efficient spectrum management in under-utilized spectrum bands. Framed within this statement, in this thesis we have implemented a SDR waveform on 16 Processing Element (PE) Network on chip (NoC) based general purpose Multiprocessors System on chip (MPSoC), with access to four external DDR2 memory banks, which is implemented on a single chip Xilinx Virtex-4 FPGA. We shifted short term development of a waveform into software domain by designing an efficient parallelization and synchronization strategy for each waveform component, individually. We enhance our designed waveform functionality by proposing and implementing three Artificial Neural Networks Schemes : Self Organizing Maps, Linear Vector Quantization and Multi-Layer Perceptrons as effective techniques for reconfiguring CR Transceiver after recognizing the specific standard based on input parameters, pertaining to different layers, extracted from the signal. Our proposed adaptive solution switches to appropriate Artificial Neural Network, based on the features of input signal sensed. We designed an efficient synchronization and parallelization strategy to implement the Artificial Neural Networks based CR Transceiver Algorithms on the aforementioned MPSoC chip. The speed up we obtained for our SDR waveform and CR Transceiver algorithms demonstrated that the general purpose MPSoC devices are the most efficient answer to the acquisition challenge for major organizations that invest or plan to invest in SDR and CR based devices, thereby allowing us to avoid expensive hardware accelerators. We address the case of a complex signal composed of many modulated carriers by dividing the PEs in individual groups, thus received signal with more than one Standard is processed efficiently. We add further functionality in our designed Multi-standard CR Transceiver possessing SDR Waveform by proposing a new approach for radio spectrum management, perhaps the most important aspect of CR. We make our designed waveform Spectrum efficient by modelling the primary user signal Radio Frequency features as a multivariate time series, which is then given as input to Elman Recurrent Neural Network that predicts the evolution of Radio Frequency Time Series to decide if the secondary user can exploit the Spectrum band. We exploit the inherent cyclostationary in primary signals for Non-linear Autoregressive Exogenous Time Series Modeling of Radio Frequency features, as predicting one RF feature needs the previous knowledge of other relevant RF features. We observe a similar trend between predicted and actual values. Ensemble, our designed Spectrum Efficient SDR waveform with a Universal Multi-standard Transceiver answers the SDR and CR performance requirements under resource constraints by efficient algorithm design and implementation using lateral thinking that seeks a greater cross-domain interaction
|
27 |
Méthodologie de détection et d'identification des défauts multiples dans les systèmes complexes à partir d'évènements discrets et de réseaux de neurones : applications aux aérogénérateurs / Detection methodology and identify multiple faults in complex systems from discrete events and neural networks : applications for wind turbinesToma, Samuel 08 September 2014 (has links)
L'étude présentée dans ce mémoire concerne le diagnostic des machines électriques à l'aide d'une association innovante entre la modélisation à évènements discrets, la Simulation Comparative et Concurrente (SCC) et les Réseaux de Neurones Artificiels (RNAs). Le diagnostic des machines électriques est effectué à partir d'une analyse temporelle des signaux statoriques et rotoriques à l'aide de réseaux de neurones de type Feed-Forward. Afin de comparer les différentes configurations de ces réseaux de neurones, l'approche proposée dans ce document utilise la simulation comparative et concurrente implémentée grâce au formalisme à évènements discrets DEVS (Discrete EVent system Specification). L'intégration des algorithmes de la SCC et des RNAs au sein du formalisme DEVS a été effectuée de manière générique et indépendamment du simulateur en développent des extensions et une librairie de modèles dans l'environnement de modélisation et de simulation à évènements discrets DEVSimPy. L'application de cette nouvelle solution pour le diagnostic des machines électriques permet de détecter les défauts à partir d'une architecture logiciel facilement portable sur des systèmes embarqués de type FPGA. / This thesis deals with the time-domain analysis of the electrical machines fault diagnosis due to early short-circuits detection in both stator and rotor windings. It also introduces to the Discrete EVent system Specification (DEVS) a generic solution to enable concurrent and comparative simulations (CCS). The DEVS-based CCS is an extension introduced using an aspect-oriented programming (AOP) to interact with the classic DEVS simulator. A new DEVS-based artificial neural network (ANN) is also introduced with a separation between learning and calculation models. The DEVS-based CCS is validated on the proposed ANN DEVS library inside the DEVSimPy environment. The concurrent ANN contributes in the time-domains analysis for the electrical machine fault diagnosis. This new method is based on data coming directly from the sensors without any computation but with a new dedicated preprocessing technique. Later, some enhancements are brought to the artificial neural network based on a new multistage architecture reducing the training time and errors compared to the single ANN. The new architecture and techniques has been validated on real data sixteen non-destructive windings faults analysis and localization.
|
28 |
Dynamique des structures composites linéaires et non-linéaires en présence d'endommagement / Dynamics of linear and non linear damaged composite structuresMahmoudi, Saber 28 March 2017 (has links)
Les structures composites sont souvent exposées à des ambiances dynamiques plus oumoins sévères. Ces vibrations peuvent développer différentes formes d’endommagement(fracture des fibres, délamination, fissuration de la matrice. . . ). Les défauts locaux sepropagent et affectent les propriétés mécaniques de la structure modifiant ainsi soncomportement dynamique global. Ces changements peuvent induire une dégradationrapide de la structure et une réduction de sa durée de vie. La thèse a pour objectif lamise en oeuvre de modèles de comportement pour le dimensionnement de structurescomplexes intégrant des sous-structures composites susceptibles d’être endommagées.La méthode des éléments finis est utilisée pour modéliser le comportement vibratoirelinéaire et non-linéaire de ces structures et l’endommagement est introduit via un modèlebilatéral, dans un premier temps. Durant le processus de résolution, une des difficultésrencontrées est le coût de calcul très élevé. Ainsi, un méta-modèle a été développé basésur les réseaux de neurones artificiels couplé avec la méthode de condensation par sousstructurationde Craig-Bampton. Les réseaux de neurones artificiels permettent d’estimer,à moindre cout numérique, le niveau d’endommagement sans avoir recours au calculexact. Le modèle d’endommagement bilatéral n’est pas adapté au cas de chargementsalternés ou périodiques. Par conséquent, la deuxième partie de la thèse est orientée versle développement d’un modèle d’endommagement unilatéral qui donne une meilleuredescription du comportement mécanique lorsque les micro-fissures sont fermées. De plus,dans plusieurs applications industrielles, les structures composites utilisées sont de faibleépaisseur. Par conséquent, elles peuvent avoir naturellement un comportement vibratoirenon-linéaire de type grands déplacements. Le modèle de comportement dynamique engrands déplacements et en présence de la non-linéarité matérielle d’endommagement estdéveloppé et validé. A l’issue de ces travaux de thèse, un outil numérique implémentésur MATLAB® a été développé intégrant deux modèles d’endommagement, bilatéralet unilatéral et une méta-modélisation permettant la localisation et l’estimation del’endommagement ainsi que la prédiction de la réponse dynamique des structures composites, totalement ou localement, endommagées. Le méta-modèle proposé permet deréduire significativement le coût de calcul tout en assurant une bonne précision en termesde localisation et d’estimation du niveau d’endommagement. Cet outil peut s’avérer utilepour diverses applications dans le domaine de surveillance de l’état de santé des structurescomposites. / Composite structures are often exposed to more or less severe dynamic perturbations.These vibrations can develop different forms of damage (fiber fracture, delamination,cracking of the matrix, etc.). Local defects propagate and affect the mechanical propertiesof the structure resulting to modify its global dynamic behavior. These changes can leadto the degradation of the structure and the reduction in its lifetime. This thesis focuseson the implementation of behavior models for the dimensioning of complex structuresintegrating damaged composite sub-structures. The finite element method is used tomodel the linear and nonlinear vibration behavior of these structures where the damageis introduced, initially, via a bilateral model. Since the high computational costs duringthe solving process, a meta-model was developed based on artificial neural networkscoupled with the condensation method of Craig-Bampton. Artificial neural networkspermit to estimate the damage severity at a lower numerical cost without resorting toexact calculation. The bilateral damage model is not adapted to the case of periodic loads.Consequently, the second part of the thesis is oriented towards the development of aunilateral damage model which gives a better description of the mechanical behaviorwhen the micro-cracks are closed. Moreover, in several industrial applications, the usedcomposite structures have small thickness. Therefore, they can naturally have a geometricnon-linear dynamic behavior. The model of dynamic behavior in large displacements andin the presence of material non-linearity of damage is developed and validated. At theend of this thesis, a numerical tool implemented on MATLAB® software was developedintegrating two models of damage, bilateral and unilateral, and a meta-modeling allowingthe localization and the estimation of the damage as well as the prediction of the linear andnon-linear dynamic responses of composite structures, totally or locally, damaged. Theproposed meta-model reduces significantly the computational cost and ensuring a goodaccuracy in terms of localization and estimation of the damage severity. Thereby, thistool can be useful in life-time estimation and monitoring strategies of composite structures.Thèse de
|
29 |
Caractérisation non destructive des matériaux composites en fatigue : diagnostic de l’état de santé et pronostic de la durée de vie résiduelle par réseaux de neurones / Nondestructive characterization of composite materials under fatigue loading : structural health diagnosis and remaining useful life prognostic using artificial neural networksDuchene, Pierre 13 December 2018 (has links)
Ce travail de recherche consiste en la proposition d’une nouvelle approche de caractérisation non destructive de l’endommagement des matériaux composites (carbone/époxy) sollicités en fatigue par des essais d’auto-échauffement (blocs de chargements croissants). Cette approche est basée sur l’utilisation de plusieurs techniques non destructives appliquées in-situ, en temps réel ou différé, dont l’analyse est, soit redondante soit complémentaire. Au total, six techniques ont été utilisées (émission acoustique, thermographie infrarouge, corrélation d’images numériques, acousto-ultrasons, ultrasons C-scan et ondes de Lamb) et leurs résultats post-traités puis fusionnés à l’aide d’algorithmes basés sur les réseaux de neurones. Les résultats obtenus ont permis d’évaluer et de localiser l’endommagement du matériau et d’estimer sa durée de vie résiduelle. Ce faisant, plusieurs avancés scientifiques ont été obtenus en réalisant, par exemple, une localisation 2D des évènements acoustiques à l’aide seulement de deux capteurs avec une précision millimétrique, ou encore le développement d’une nouvelle technique imagée d’acousto-ultrasons permettant un contrôle hors contraintes de l’état d’endommagement du matériau, …et enfin, le pronostic de la durée de vie résiduelle du matériau basé sur une fusion de données par réseaux de neurones. / This research work consists in a new approach for non-destructive characterisation of damage in composite materials (carbon/epoxy) subjected to fatigue during self-heating tests (increasing load blocks). This approach is based on the use of several non-destructive techniques applied in-situ, in real time or delayed, whose analysis is either redundant or complementary. Six techniques were used (acoustic emission, infrared thermography, digital image correlation, acousto-ultrasound, C-scan ultrasound and lamb waves) and their post-processed results were merged using algorithms based on neural networks. The results obtained made it possible to assess and locate the damage of the material and to estimate its residual life. In doing so, several scientific advances have been obtained by, for example, carrying out a 2D localization of acoustic events using only two sensors with millimetric precision, or the development of a new pictorial acousto-ultrasonic technique allowing an control of the state of material damage at free stress conditions, ... and finally, the prognosis of the residual lifetime of the material based on a data fusion by neural networks.
|
30 |
Ecodynamique des éléments traces et caractérisation de l’exposition des sols contaminés : expérimentation et modélisation par les réseaux de neurones artificiels / Ecodynamics of trace elements (ET) and characterization of the exposure of contaminated phytoremediated soils : experimentation and modeling by artificial neural networksHattab, Nour 28 June 2013 (has links)
Les sols contaminés par les éléments traces potentiellement toxiques (PTTE) ont souvent des conséquences graves pour les écosystèmes terrestres. Plusieurs options de phytoremediaction ont été développées pour remédier les sols contaminés ; cependantl'efficacité et la capacité de ces techniques à réduire les concentrations excessives des éléments traces ou leur (phyto) disponibilité dans les sols contaminés doivent être évaluées Le présent travail s’est intéressé à étudier l'efficacité de deux options de de phytorémédiation, la phytostabilisation et la phytoextraction assistées par des amendements organiques et minéraux, à remédier les fortes concentrations de PTTE dans un sol naturel et dans un technosol contaminés. Les concentrations totales des éléments traces dissous ont été déterminées dans l'eau interstitielle du sol. L'intensité de l'exposition du sol a été évaluée par des capteurs DGT (gradient de diffusion dans les couches minces). Le phytodisponibilité des PTTE a été caractérisée par des tests de germination avec des haricots nains cultivés sur les sols contaminés pour lesquels les concentrations foliaires en éléments traces ont été déterminées. Ensuite un modèle de réseau de neurones artificiels a été appliqué pour comprendre les facteurs les plus pertinents sur la variabilité de la phytodisponibilité des PTTE. Les deux options ont étécapables de réduire les concentrations ou la phytodisponibilité des PTTE en présence des amendements. Les réseaux de neurones artificiels ont été très efficaces pour prédire les résultats manquants et pour déterminer les paramètres de contrôle de la variabilité de la phytodisponibilité des PTTE à partir des paramètres du sol. / Soils contaminated with potentially toxic trace elements (PTTE) often have serious consequences for terrestrial ecosystems. Several phytoremediaction have been developped to reclaim contaminated soils; however the efficiency and capacity of these techniques to reduce excessive concentrations of trace elements or their (phyto) availability in contaminated soils have to be assessed. The present work is focused on studying the effectiveness of two phyoremediation options such as phytostabilisation and phytoextraction assisted by organic and inorganic amendments to remediatethe high concentrations of PTTE in contaminated natural soils and technosoils. Total PTTE concentrations were determined in soil pore water (SPW) sampled by Rhizon soil moisture samplers. The soil exposure intensity was assessed by DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. Then a model of artificial neural network was applied to understand the factors most relevant for the variability on the phytoavailability of trace elements. Both options were found to be able to reduce the concentrations or phytoavailability of PTTE in the presence of amendments. The artificial neural network has been very effective to predict missing results and to determine the control parameters of the variability of the PTTE phytoavailoability from the soil parameters.
|
Page generated in 0.0849 seconds