Spelling suggestions: "subject:"réseaux dde neurones artificiell."" "subject:"réseaux dde neurones artificielle.""
1 |
Détection de sites sécuritaires par réseaux de neurones pour un atterrissage autonome sur corps planétaireBelley, Katia January 2008 (has links)
Dans le cadre des futures missions d'exploration planétaire comportant un atterrissage, la sélection d'un site d'atterrissage sécuritaire en temps réel devient une technologie de plus en plus recherchée. Celle-ci permet d'augmenter les retombées scientifiques de la mission en donnant accès à des régions à plus haut potentiel scientifique. Elle permet aussi d'accroître les chances de réussite de la mission et d'augmenter la charge utile des équipements en rendant l'atterrissage plus sécuritaire. Parmi les méthodes développées pour faire la sélection d'un site d'atterrissage, celle proposée par Andrew Johnson du Jet Propulsion Laboratory pour évaluer le degré de sécurité de sites d'atterrissage à partir d'images lidar prises pendant la descente s'avère très intéressante. Il utilise une technique nommée moindres carrées médians pour calculer la pente et la rugosité des sites d'atterrissage. Cependant, le temps de calcul exigé par cette approche la rend difficile à exécuter en temps réel. Ce mémoire de maîtrise propose l'utilisation d'un système à base de RNA (réseaux de neurones artificiels) pour faire l'approximation de la méthode des moindres carrés médians. Une architecture comportant quatre RNA a été développée afin de déterminer la pente et la rugosité d'un site d'atterrissage. Trois RNA permettent d'évaluer les paramètres du plan médian afin d'estimer ces deux propriétés du terrain. Un réseau optionnel est spécialisé pour l'évaluation des sites comportant une grande rugosité. Des modules de prétraitement et post-traitement des données sont utilisés pour améliorer la performance des réseaux de neurones et des modules d'arbitrage servent à déterminer les deux sorties du système. Une solution est aussi proposée pour présélectionner une zone d'atterrissage sécuritaire afin de réduire le nombre de sites individuels à évaluer. Plusieurs types de réseaux de neurones ont été comparés pour résoudre la problématique. Des lignes directrices ont été établies permettant de choisir les réseaux de neurones les plus efficaces pour chacun des modules en fonction du temps de calcul disponible. Le système développé permet de diminuer considérablement le temps de calcul requis pour résoudre la problématique. De plus, la solution proposée peut facilement être adaptée en fonction des objectifs de la mission spatiale.
|
2 |
Segmentation hiérarchique du domaine sémantique pour l'accélération d'un modèle de langageMorin, Frédéric January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Nanoparticules et réseaux de neurones artificiels : de la préparation à la modélisationRizkalla, Névine January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Contribution à la mise au point d'un système mucoadhésif thermoréversible pour une libération topique contrôlée d'un médicament modèleGouda, Noha Mamdouh Zaky-Eldine January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Optimisation des procédés de mise en forme par les réseaux de neurones artificielsChamekh, Abdessalem 30 May 2008 (has links) (PDF)
Ce travail concerne la modélisation et l'optimisation des procédés de mise en forme par les Réseaux de Neurones Artificiels. Etant donnée que les méthodes classiques sont très coûteuses en temps de calcul et divergentes pour des problèmes présentant beaucoup des paramètres à contrôler, notre contribution consiste à développer une méthode de modélisation et d'optimisation plus rapide et efficace. Nous avons fait appel à une étude paramétrique pour coupler un programme basé sur la technique des RNA avec un code de calcul par la méthode des éléments finis. Néanmoins pour être viable, la méthode de modélisation et d'optimisation développé a été appliquée avec succès à des procédés de mise en forme complexes et variés. Elle a été testée en premier lieu pour la modélisation et l'optimisation du procédé d'emboutissage d'un flan circulaire et dans un second lieu pour l'identification des paramètres du matériau à partir du procédé d'hydroformage. La méthode a été aussi comparée avec une méthode d'optimisation classique de plusieurs points de vue. Il a été constaté le long de cette étude que notre démarche présente une grande potentialité à modéliser des relations qui sont difficile à les décrire avec des modèles mathématiques simple. Elle est aussi, rapide et parallélisable. La qualité des résultats obtenus est convaincante. Ce travail mène à des perspectives plus prometteuses. Elles peuvent être vulgarisées et exploitées dans d'autres applications.
|
6 |
Utilisation des réseaux de neurones artificiels pour la commande d'un véhicule autonomeGauthier, Eric 25 January 1999 (has links) (PDF)
Le sujet de cette thèse se situe à l'intersection des domaines de la robotique mobile et des réseaux de neurones artificiels (RNA). Notre objectif est d'étudier les solutions que peuvent apporter les techniques connexionnistes aux problèmes particuliers posés par la commande automatique d'un robot de type voiture. Ce mémoire se compose de deux parties principales. La première d'entre elles traite des aspects fondamentaux de la commande d'un robot mobile et de l'utilisation des réseaux de neurones artificiels pour la commande de systèmes complexes. Cette première étude nous permet de mettre en évidence les différents points sur lesquels les réseaux de neurones peuvent jouer un rôle dans une architecture de commande conférant une véritable autonomie de mouvements au véhicule, tout en respectant les contraintes de robustesse et de rapidité de réaction induites par l'utilisation d'un robot de la taille et de la vitesse d'une voiture. Nous proposons dans la deuxième partie du mémoire plusieurs contrôleurs permettant d'accroître progressivement l'autonomie du robot. Nous nous intéressons tout d'abord à une tâche simple consistant uniquement à asservir le robot sur une trajectoire de référence issue d'un planificateur. Notre approche autorise une adaptation continue du système face à d'éventuels changements des paramètres du robot ou de son environnement. Afin de permettre la réalisation de manoeuvres sans consignes extérieures, nous proposons également une méthodologie pour la réalisation de contrôleurs basés sur l'utilisation des capteurs externes du véhicule. Notre appoche utilise un modèle alliant des caractéristiques issues de la logique floue et des RNA. Enfin nous montrons comment des tâches complexes peuvent être réalisées à partir de l'enchaînement de plusieurs contrôleurs simples. Notre réalisation du système de sélection de ces contrôleurs, utilisant un RNA récurrent, possède des capacités de robustesse et autorise des réactions très rapides face à l'ensemble des événements extérieurs qui doivent pouvoir être pris en compte.
|
7 |
Caractérisation de l'environnement sonore urbain : Proposition de nouveaux indicateurs de qualitéBrocolini, Laurent 13 December 2012 (has links) (PDF)
A l'heure actuelle, les seuls moyens d'informer les usagers de la ville de l'environnement sonore dans lequel ils vivent consistent en des indicateurs de niveaux sonores moyens et annuels obtenus par modélisation acoustique des principales infrastructures de transports. Or, ces indicateurs sont difficilement compris et de ce fait mal interprétés par les usagers de la ville car ils ne reflètent pas la signification des bruits perçus et la diversité des situations que les citadins rencontrent. Le but de ce travail de recherche est donc d'analyser la façon dont les usagers de la ville perçoivent le paysage sonore urbain afin de définir des indicateurs de qualité sonore qui pourront être à terme intégrés dans une représentation territoriale cartographique. Pour ce faire, il a tout d'abord été nécessaire de s'attacher à déterminer un pas temporel et spatial de mesure permettant de caractériser des ambiances urbaines d'un point de vue acoustique. A partir d'enregistrements longue durée (trois mois environs) en six points fixes à Paris, il a été possible de déterminer à travers des classifications ascendantes hiérarchiques de Ward associées à des cartes auto-organisatrices de Kohonen qu'une durée de dix minutes semble dans la plupart des cas être suffisante pour caractériser différentes ambiances sonores. Grâce aux mêmes méthodes de classification, l'analyse du maillage spatial a permis de définir quatre zones homogènes qui correspondent (1) au parc, (2) au boulevard, (3) à la rue piétonne puis (4) une zone que l'on qualifiera de zone de transition. La suite de l'étude s'est attachée à construire des modèles de prédiction de la qualité sonore. A partir d'enquêtes de terrain réalisées à Paris et à Lyon, il a été possible d'établir des modèles à la fois locaux (caractérisant le lieu même où le questionnaire a été évalué) et globaux basés d'une part sur des régressions linéaires multiples et d'autre part sur des réseaux de neurones artificiels. La comparaison de ces deux types de modèles a permis entre autre de mettre en évidence l'apport des réseaux de neurones artificiels devant les régressions linéaires multiples en termes de prédiction. Par ailleurs il est ressorti de ces modèles l'importance de variables telles que le silence, l'agrément visuel ou encore la présence de sources sonores particulières comme les véhicules légers pour expliquer la qualité sonore de l'environnement.
|
8 |
Approche neuromimétique modulaire pour la commande d'un système robot-visionHermann, Gilles 03 December 2004 (has links) (PDF)
Les travaux du laboratoire se concentrent autour du contrôle neuromimétique d'une plate-forme robot-vision. Dans ce cadre, ce travail de thèse concerne l'application des réseaux de neurones artificiels à la commande d'un bras robotique par asservissement visuel. Cette étude porte plus particulièrement sur l'apprentissage modulaire afin de réaliser des contrôleurs neuromimétiques. <br /><br />Asservissement visuel par apprentissage<br />Les mouvements d'un bras robotique sont contrôlés par asservissement visuel. Les informations sont fournies par deux caméras montées sur une tête robotique. La position de chaque objet est alors définie par ses coordonnées dans les images -- gauches et droites -- et par les positions angulaires des caméras.<br />L'approche classique de l'asservissement visuel se base sur une modélisation mathématique du système robot-vision. Un contrôle précis exige une bonne connaissance des différents paramètres des modèles et une prise en compte des erreurs de calibration des capteurs et du robot. Dans cette thèse, nous évaluons une approche alternative à l'approche modèle et proposons une approche non paramétrique qui "apprend" la transformation reliant l'espace des images à l'espace des commandes angulaires à l'aide de réseaux de neurones artificiels.<br /><br />Les réseaux de neurones<br />Les réseaux de neurones se sont révélés être de très bons estimateurs. La complexité de notre tâche, notamment sa dimensionalité et ses caractéristiques non linéaires, rend leur implémentation non triviale. En effet, il est difficile de superviser l'apprentissage des réseaux de grandes tailles. De plus, les temps d'apprentissage et de réponse peuvent devenir prohibitifs.<br />Le choix du réseau de neurones a été guidé par la nécessité d'un apprentissage en ligne, en temps réel, stable, et rapide. Nous avons retenu les cartes auto-organisatrices de Kohonen (SOM, pour Self Organizing Map) qui répondent à ces contraintes. Les notions de compétition entre neurones et de voisinage qu'elles impliquent permettent un apprentissage rapide et efficace. Des variantes ont été développées, comme la carte de Kohonen étendue. Associées à des ADALINEs (ADAptative LINear Elements), ces cartes fournissent des sorties linéaires. Elles sont donc capables de discrétiser n'importe quel espace (notamment le volume de travail du robot) et de le linéariser sans connaissance a priori.<br /><br />La modularité<br />Face à ce problème de dimensionnalité, nous proposons de décomposer la tâche en modules. Chacun de ces modules est alors constitué de réseaux de neurones de faibles dimensions. La modularité peut être vue de deux manières différentes.<br />La première approche met plusieurs modules en parallèle. Chacun de ceux-ci reçoit les mêmes entrées et calcule une sortie. Un module supplémentaire, un superviseur, est ajouté à l'architecture. Il reçoit les mêmes entrées et a pour rôle de sélectionner le module, ou l'ensemble de modules pondérés de manière convenable, afin d'obtenir la meilleure sortie possible.<br />La seconde approche, que nous avons adoptée, décompose la tâche complexe en une série de sous-problèmes. Comme l'apprentissage de chaque module nécessite un jeu d'apprentissage, la difficulté est de superviser les modules internes. En effet, les entrées et les sorties désirées de ces modules ne sont pas accessibles. Il est de ce fait nécessaire d'utiliser des structures d'aide à l'apprentissage telles que la bidirectionnalité. Des modules supplémentaires, spécialisés dans l'estimation de ces grandeurs intermédiaires, sont alors insérés dans l'architecture modulaire.<br /><br />Les résultats<br />L'apprentissage modulaire proposé peut alors être considéré comme un contrôleur neuromimétique. L'asservissement visuel est validé en simulation avec un robot trois axes et quatre axes. L'objectif est la poursuite de cibles mobiles dans un espace tridimensionnel, sans utiliser le modèle du système défini au préalable et sans connaissance a priori, ni sur les mouvements de la cible, ni sur les mouvements des caméras.<br />L'approche modulaire a été validée en simulation. Nous avons montré dans ce travail que l'apprentissage modulaire est possible et efficace. Face à des tâches complexes, où l'apprentissage par un réseau unique est difficile, voire même impossible, l'apprentissage modulaire apporte une solution.
|
9 |
UNE MODÉLISATION ÉVOLUTIONNISTE DU LIAGE TEMPORELMeunier, David 19 October 2007 (has links) (PDF)
L'hypothèse du liage temporel par synchronie suscite un intérêt important en neurobiologie, car elle permet d'expliquer comment différentes structures du cerveau peuvent établir entre elles un lien fonctionnel, en rapport avec une fonction cognitive. Cependant, il n'existe pas de modèle permettant de faire communiquer différents groupes de neurones par le biais de leurs émissions. <br /><br />Nous avons développé un modèle de réseau de neurones impulsionnels, dont la topologie est modifiée par un algorithme évolutionniste. Le critère de performance utilisé pour l'algorithme évolutionniste est évalué par l'intermédiaire du comportement d'un individu contrôlé par un réseau de neurones impulsionnels, et placé dans un environnement virtuel. L'utilisation du neurone impulsionnel, ayant la propriété de détection de synchronie, oblige l'évolution à construire un système utilisant cette propriété au niveau global, d'où l'émergence de la synchronisation neuronale à large-échelle. Les propriétés topologiques et dynamiques du réseau de neurones ne sont pas prises en compte dans le calcul de la performance, mais sont étudiées a posteriori, en comparant les individus avant et après évolution. <br /><br />D'une part, grâce aux outils de la théorie des réseaux complexes, nous montrons l'émergence d'un certain nombre de propriétés topologiques, notamment la propriété de réseau ``petit-monde''. Ces propriétés topologiques sont similaires à celles observées au niveau de l'anatomie des systèmes nerveux en biologie. D'autre part, au niveau de la dynamique, nous établissons que la propriété de synchronisation neuronale à large-échelle, résultant de la présentation d'un stimulus, est présente chez les individus évolués. Pour ce faire, nous nous appuyons sur les outils classiquement utilisés en électrophysiologie, et nous les étendons pour pouvoir interpréter la grande quantité de données obtenue à partir du modèle. <br /><br />Le modèle montre que l'on peut construire des réseaux de neurones basés sur l'hypothèse du liage temporel en ayant recours à l'évolution artificielle, en se basant sur un critère de performance écologique, c.à.d. le comportement de l'individu dans son environnement. D'autre part, les outils développés pour l'analyse des propriétés du modèle peuvent être utilisés dans d'autres domaines, en premier lieu en électrophysiologie. En effet, à cause des progrès techniques sur les enregistrements électrophysiologiques, la quantité de données se rapproche singulièrement de celle issue du modèle.
|
10 |
Codage neural parcimonieux pour un système de vision / Sparse Neural coding for a Vision SystemHuet, Romain 19 June 2017 (has links)
Les réseaux de neurones ont connu un vif regain d’intérêt avec le paradigme de l'apprentissageprofond ou deep learning. Alors que les réseaux dits optimisés, de par l'optimisation des paramètres nécessaires pour réaliser un apprentissage, nécessitent de fortes ressources de calcul, nous nous focalisons ici sur des réseaux de neurones dont l'architecture consiste en une mémoire au contenu adressable, appelées mémoires associatives neuronales. Le défi consiste à permettre la réalisation d'opérations traditionnellement obtenues par des calculs en s'appuyant exclusivement sur des mémoires, afin de limiter le besoin en ressources de calcul. Dans cette thèse, nous étudions une mémoire associative à base de clique, dont le codage neuronal parcimonieux optimise la diversité des données codées dans le réseau. Cette grande diversité permet au réseau à clique d'être plus performant que les autres mémoires associatives dans la récupération des messages stockés en mémoire. Les mémoires associatives sont connues pour leur incapacité à identifier sans ambiguïté les messages qu'elles ont préalablement appris. En effet, en fonction de l'information présente dans le réseau et de son codage, une mémoire peut échouer à retrouver le résultat recherché. Nous nous intéressons à cette problématique et proposons plusieurs contributions afin de réduire les ambiguïtés dans le réseau. Ces réseaux à clique sont en outre incapables de récupérer une information au sein de leurs mémoires si le message à retrouver est inconnu. Nous proposons une réponse à ce problème en introduisant une nouvelle mémoire associative à base de clique qui conserve la capacité correctrice du modèle initial tout en étant capable de hiérarchiser les informations. La hiérarchie s'appuie sur une transformation surjective bidirectionnelle permettant de généraliser une entrée inconnue à l'aide d'une approximation d'informations apprises. La validation expérimentale des mémoires associatives est le plus souvent réalisée sur des données artificielles de faibles dimensions. Dans le contexte de la vision par ordinateur, nous présentons ici les résultats obtenus avec des jeux de données plus réalistes etreprésentatifs de la littérature, tels que MNIST, Yale ou CIFAR. / The neural networks have gained a renewed interest through the deep learning paradigm. Whilethe so called optimised neural nets, by optimising the parameters necessary for learning, require massive computational resources, we focus here on neural nets designed as addressable content memories, or neural associative memories. The challenge consists in realising operations, traditionally obtained through computation, exclusively with neural memory in order to limit the need in computational resources. In this thesis, we study an associative memory based on cliques, whose sparse neural coding optimises the data diversity encoded in the network. This large diversity allows the clique based network to be more efficient in messages retrieval from its memory than other neural associative memories. The associative memories are known for their incapacity to identify without ambiguities the messages stored in a saturated memory. Indeed, depending of the information present in the network and its encoding, a memory can fail to retrieve a desired result. We are interested in tackle this issue and propose several contributions in order to reduce the ambiguities in the cliques based neural network. Besides, these cliques based nets are unable to retrieve an information within their memories if the message is unknown. We propose a solution to this problem through a new associative memory based on cliques which preserves the initial network's corrective ability while being able to hierarchise the information. The hierarchy relies on a surjective and bidirectional transition to generalise an unknown input with an approximation of learnt information. The associative memories' experimental validation is usually based on low dimension artificial dataset. In the computer vision context, we report here the results obtained with real datasets used in the state-of-the-art, such as MNIST, Yale or CIFAR.
|
Page generated in 0.1124 seconds