• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 174
  • 126
  • 14
  • Tagged with
  • 322
  • 187
  • 168
  • 146
  • 112
  • 79
  • 68
  • 68
  • 60
  • 48
  • 47
  • 40
  • 35
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Imitation from observation using behavioral learning

Djeafea Sonwa, Medric B. 11 1900 (has links)
L'Imitation par observation (IPO) est un paradigme d'apprentissage qui consiste à entraîner des agents autonomes dans un processus de décision markovien (PDM) en observant les démonstrations d'un expert et sans avoir accès à ses actions. Ces démonstrations peuvent être des séquences d'états de l'environnement ou des observations visuelles brutes de l'environnement. Bien que le cadre utilisant des états à dimensions réduites ait permis d'obtenir des résultats convaincants avec des approches récentes, l'utilisation d'observations visuelles reste un défi important en IPO. Une des procédures très adoptée pour résoudre le problème d’IPO consiste à apprendre une fonction de récompense à partir des démonstrations, toutefois la nécessité d’analyser l'environnement et l'expert à partir de vidéos pour récompenser l'agent augmente la complexité du problème. Nous abordons ce problème avec une méthode basée sur la représentation des comportements de l'agent dans un espace vectoriel en utilisant des vidéos démonstratives. Notre approche exploite les techniques récentes d'apprentissage contrastif d'images et vidéos et utilise un algorithme de bootstrapping pour entraîner progressivement une fonction d'encodage de trajectoires à partir de la variation du comportement de l'agent. Simultanément, cette fonction récompense l'agent imitateur lors de l'exécution d'un algorithme d'apprentissage par renforcement. Notre méthode utilise un nombre limité de vidéos démonstratives et nous n'avons pas accès à comportement expert. Nos agents imitateurs montrent des performances convaincantes sur un ensemble de tâches de contrôle et démontrent que l'apprentissage d'une fonction de codage du comportement à partir de vidéos permet de construire une fonction de récompense efficace dans un PDM. / Imitation from observation (IfO) is a learning paradigm that consists of training autonomous agents in a Markov Decision Process (MDP) by observing an expert's demonstrations and without access to its actions. These demonstrations could be sequences of environment states or raw visual observations of the environment. Although the setting using low-dimensional states has allowed obtaining convincing results with recent approaches, the use of visual observations remains an important challenge in IfO. One of the most common procedures adopted to solve the IfO problem is to learn a reward function from the demonstrations, but the need to understand the environment and the expert's moves through videos to appropriately reward the learning agent increases the complexity of the problem. We approach this problem with a method that focuses on the representation of the agent’s behaviors in a latent space using demonstrative videos. Our approach exploits recent techniques of contrastive learning of image and video and uses a bootstrapping algorithm to progressively train a trajectory encoding function from the variation of the agent’s policy. Simultaneously, this function rewards the imitating agent through a Reinforcement Learning (RL) algorithm. Our method uses a limited number of demonstrative videos and we do not have access to any expert policy. Our imitating agents in experiments show convincing performances on a set of control tasks and demonstrate that learning a behavior encoding function from videos allows for building an efficient reward function in MDP.
282

Reasoning with structure : graph neural networks algorithms and applications

Deac, Andreea-Ioana 08 1900 (has links)
L’avènement de l'apprentissage profond a permis à l'apprentissage automatique d’exceller dans le traitement d'images et de texte. Donnant lieu à de nombreux succès dans les domaines d’applications tels que la vision par ordinateur ou le traitement du langage naturel. Cependant, il demeure un grand nombre de problèmes d’intérêt dont les données d’entrées ne peuvent être exprimées sous l’un de ces deux formats sans perte d'informations potentiellement cruciales pour leur résolution. C’est dans l’optique de répondre à ce besoin qu’a été développée la branche de l'apprentissage profond géométrique (GDL), qui s’intéresse aux espaces de représentations plus générales, mieux adaptées aux données dont la structure sous-jacente ne correspond pas au format de chaîne de caractères unidimensionnel (texte) ou bidimensionnel (images). Dans cette thèse, nous nous concentrerons plus particulièrement sur les graphes. Les graphes sont des structures de données omniprésentes, sous-jacentes à pratiquement toutes les tâches d'intérêt, y compris celles portant sur les données naturelles (par exemple les molécules), les relations entre entités (par exemple les réseaux de transport et les placements de puces), ou encore la liaison de concepts dans les processus de raisonnement (par exemple les algorithmes et autres constructions théoriques). Alors que les architectures modernes de réseaux de neurones de graphes (GNNs) dits expressifs peuvent obtenir des résultats impressionnants sur des benchmarks comme susmentionnés, leur application pratique est toujours en proie à de nombreux problèmes et lacunes, que cette thèse abordera. Les considérations issues de ces applications préparerons le terrain pour les chapitres suivants, qui se concentreront sur la résolution des limites des réseaux de neurones de graphes en proposant de nouveaux algorithmes d'apprentissage de graphes. Tout d'abord, nous porterons notre attention sur l'amélioration des réseaux de neurones de graphes pour les données qui nécessitent des interactions à longue portée, en construisant des modèles généraux pour compléter leur graphe de calcul. Viennent ensuite les réseaux de neurones de graphes pour les données hétérophiles, où les arêtes ont tendance à connecter des nœuds de différentes classes; dans ce cas, nous proposerons une modification particulière du graphe de calcul destinée à améliorer l'homophilie atténue le problème. Dans un troisième temps, nous tirerons parti d'une caractéristique avantageuse des réseaux de neurones de graphes - leur alignement avec la programmation dynamique. Elle permet aux réseaux de neurones de graphes d'exécuter des algorithmes, sur la base desquels nous proposons une nouvelle classe de planificateurs implicites pour la prise de décision. Enfin, nous capitalisons sur l'utilité de l'apprentissage profond géométrique dans l'apprentissage par renforcement et l'étendrons au-delà des GNNs, en tirant parti des réseaux de neurones à rotation équivariante dans les agents basés sur des modèles. / Since the deep learning revolution, machine learning has excelled at tasks based on images and text, many successes being possible under the umbrella of the computer vision and natural language processing fields. However, much remains that cannot be expressed in these forms without losing information. For these cases, the field of geometric deep learning was developed, covering the space of more general representations, for data whose underlying structure doesn't match the single-dimensional string of characters (text) or 2-D shape (images) format. In this thesis, I will particularly focus on graphs. Graphs are ubiquitous data structures underlying virtually all tasks of interest, including natural inputs such as molecules, entity relations for example transportation networks and chip placements, or concept linking in reasoning processes, including algorithms and other theoretical constructs. While modern expressive graph neural network architectures can achieve impressive results on benchmarks like these, their practical application is still plagued with many issues and shortcomings, which this thesis will address. The considerations from these applications will set the scene for the following chapters, which focus on tackling the limitations of graph neural networks by proposing new graph learning algorithms. Firstly, I focus on improving graph neural networks for data that requires long-range interactions by building general templates to complement their computation graph. This is followed by graph neural networks for heterophilic data, where the edges tend to connect nodes from different classes; in this case, a specialised modification of the computation graph meant to improve homophily alleviates the problem. In the third article, I leverage a strength of graph neural networks -- their alignment with dynamic programming. This enables graph neural networks to execute algorithms, based on which I propose a new class of implicit planners for decision making. Lastly, I capitalise on the utility of geometric deep learning in reinforcement learning and extend it beyond GNNs, leveraging rotation-equivariant neural networks in model-based agents.
283

Towards simulating the emergence of environmentally responsible behavior among natural resource users : an integration of complex systems theory, machine learning and geographic information science

Harati Asl, Saeed 12 1900 (has links)
La gouvernance pour le développement durable comporte de nombreux défis. L'un de ces défis consiste à mieux comprendre les systèmes socio-écologiques gouvernés. Dans de tels systèmes, l'apprentissage par essais et erreurs implique le risque de conséquences inattendues, irréversibles et néfastes. De plus, en raison de la complexité des systèmes socio-écologiques, les leçons tirées d'expériences à petite échelle ne peuvent pas toujours être applicables à des problèmes à grande échelle. Un autre aspect difficile des problèmes de développement durable est que ces problèmes sont souvent multidisciplinaires et composés de composants qui sont chacun étudiés individuellement dans une discipline différente, mais il existe peu d'informations sur leur comportement ensemble. Un troisième défi de la gouvernance pour le développement durable est qu'il est souvent nécessaire d'impliquer les parties prenantes dans des actions de gestion et des mesures d'intervention coûteuses pour les individus qui y participent. De plus, dans de nombreuses situations de ce type, les incitations financières et l'application des réglementations se soldent par un échec et ne constituent donc pas des options de gouvernance. Dans cette thèse, les défis ci-dessus sont abordés dans un exemple de contrôle des perturbations forestières avec une approche intégrée. Pour éviter le problème des effets indésirables irréversibles et pour permettre des expériences répétées, une approche de simulation est utilisée. Pour relever le défi de la multidisciplinarité des problèmes des systèmes socio-écologiques, deux modèles sont développés indépendamment - portant sur les aspects sociaux et écologiques du système de l'étude - et ils sont ensuite couplés de telle sorte que la sortie de chaque modèle est utilisée comme entrée pour l'autre modèle. Pour résoudre le problème de l'engagement des parties prenantes, un plan est proposé pour la promotion d'un comportement respectueux de l'environnement. Ce plan est basé sur l'offre de reconnaissance à ceux qui adoptent volontairement le comportement responsable. Le modèle écologique de cette étude, qui simule la propagation d'une perturbation forestière, est construit à l'aide de l’apprentissage automatique supervisé. Le modèle social de cette étude, qui simule l'émergence d'une nouvelle norme de comportement, est construit à l'aide de l'apprentissage par renforcement. Les deux modèles sont testés et validés avant couplage. Le modèle couplé est ensuite utilisé comme un laboratoire virtuel, où plusieurs expériences sont réalisées dans un cadre hypothétique et selon différents scénarios. Chacune de ces expériences est une simulation. A travers ces simulations, cette étude montre qu'avec un algorithme de prise de décision approprié et avec suffisamment de temps pour l'interaction entre une entité gouvernante et la société, il est possible de créer une motivation pour un comportement responsable dans la société. En d'autres termes, il est possible d'encourager la participation volontaire des acteurs à l'action pour le développement durable, sans que l'entité gouvernante ait besoin d'utiliser des incitations financières ou d'imposer son autorité. Ces résultats peuvent être applicables à d'autres contextes où un comportement responsable des individus ou des entreprises est recherché afin d'atténuer l'impact d'une perturbation, de protéger une ressource écologique, ou de faciliter une transition sectorielle vers la durabilité. / Governance for sustainable development involves many challenges. One of those challenges is to gain insight about the social-ecological systems being governned. In such systems, learning by trial and error involve the risk of unexpected, irreversible and adverse consequences. Moreover, due to complexity of social-ecological systems, lessons learned from small scale experiments may not be applicable in large-scale problems. Another challenging aspect of problems of sustainable development is that these problems are often multidisciplinary and comprised of components that are each studied individually in a different discipline, but little information exists about their behavior together as a whole. A third challenge in governance for sustainable development is that often it is necessary to involve stakeholders in management actions and intervention measures that are costly for individuals who participate in them. Moreover, in many of these situations financial incentives or enforcement of regulations result in failure, and are thus not options for governance. In this thesis, the above challenges are addressed in an example case of forest disturbance control with an integrated approach. To avoid the problem of irreversible adverse effects and to allow repeated experiments, a simulation approach is used. To tackle the challenge of multidisciplinarity of problems of social-ecological systems, two models are independently developed – pertaining to social and ecological aspects of the system of the study – and they are subsequently coupled in such a way that the output of each model served as an input for the other. To address the problem of engagement of stakeholders, a scheme is proposed for promotion of environmentally responsible behavior. This scheme is based on offering recognition to those who voluntarily perform the responsible behavior. The ecological model of this study, which simulates the spread of a forest disturbance, is built using Supervised Machine Learning. The social model of this study, which simulates the emergence of a new norm of behavior, is built using Reinforcement Learning. Both models are tested and validated before coupling. The coupled model is then used as a virtual laboratory, where several experiments are performed in a hypothetical setting and under various scenarios. Each such experiment is a simulation. Through these simulations, this study shows that with an appropriate decision-making algorithm and with sufficient time for interaction between a governing entity and the society, it is possible to create motivation for responsible behavior in the society. In other words, it is possible to encourage voluntary participation of stakeholders in action for sustainable development, without the need for the governing entity to use financial incentives or impose its authority. These results may be applicable to other contexts where responsible behavior by individuals or enterprises is sought in order to mitigate the impact of a disturbance, protect an ecological resource, or facilitate a sectoral transition towards sustainability.
284

The role of continual learning and adaptive computation in improving computational efficiency of deep learning

Gupta, Kshitij 01 1900 (has links)
Au cours de la dernière décennie, des progrès significatifs ont été réalisés dans le domaine de l’IA, principalement grâce aux progrès de l’apprentissage automatique, de l’apprentissage profond et de l’utilisation de modèles à grande échelle. Cependant, à mesure que ces modèles évoluent, ils présentent de nouveaux défis en termes de gestion de grands ensembles de données et d’efficacité informatique. Cette thèse propose des approches pour réduire les coûts de calcul de la formation et de l’inférence dans les systèmes d’intelligence artificielle (IA). Plus précisément, ce travail étudie les techniques d’apprentissage continu et de calcul adaptatif, démontrant des stratégies possibles pour préserver les niveaux de performance de ces systèmes tout en réduisant considérablement les coûts de formation et d’inférence. Les résultats du premier article montrent que les modèles de base peuvent être continuellement pré-entraînés grâce à une méthode d’échauffement et de relecture, ce qui réduit considérable- ment les coûts de calcul de l’entraînement tout en préservant les performances par rapport à un entraînement à partir de zéro. Par la suite, la thèse étudie comment les stratégies de calcul adaptatif, lorsqu’elles sont combinées avec la mémoire, peuvent être utilisées pour créer des agents d’IA plus efficaces au moment de l’inférence pour des tâches de raisonnement complexes, telles que le jeu stratégique de Sokoban. Nos résultats montrent que les modèles peuvent offrir des per- formances similaires ou améliorées tout en utilisant beaucoup moins de ressources de calcul. Les résultats de cette étude ont de vastes implications pour l’amélioration de l’efficacité in- formatique des systèmes d’IA, soutenant à terme le développement de technologies d’IA plus abordables, accessibles et efficaces. / Over the past decade, significant progress has been made by the field of AI, primarily due to advances in machine learning, deep learning, and the usage of large scale models. However, as these models scale, they present new challenges with respect to handling large datasets and being computationally efficient. This thesis proposes approaches to reducing computational costs of training and inference in artificial intelligence (AI) systems. Specifically, this work investigates how Continual Learning and Adaptive Computation techniques can be used to reducing training and inference costs while preserving the perfor- mance levels of these systems . The findings of the first article show that foundation models can be continually pre-trained through a method of warm-up and replay, which significantly decreases training computational costs while preserving performance compared to training from scratch. Subsequently, the thesis investigates how adaptive computation strategies, when com- bined with memory, can be utilized to create more computationally efficient AI agents at inference time for complex reasoning tasks, such as the strategic game of Sokoban. Our results exhibit that models can deliver similar or improved performances while using signifi- cantly fewer computational resources. Findings from this study have broad implications for improving the computational efficiency of AI systems, ultimately supporting the development of more affordable, accessible, and efficient AI technologies.
285

Beyond the status quo in deep reinforcement learning

Agarwal, Rishabh 05 1900 (has links)
L’apprentissage par renforcement profond (RL) a connu d’énormes progrès ces dernières années, mais il est encore difficile d’appliquer le RL aux problèmes de prise de décision du monde réel. Cette thèse identifie trois défis clés avec la façon dont nous faisons la recherche RL elle-même qui entravent les progrès de la recherche RL. — Évaluation et comparaison peu fiables des algorithmes RL ; les méthodes d’évaluation actuelles conduisent souvent à des résultats peu fiables. — Manque d’informations préalables dans la recherche RL ; Les algorithmes RL sont souvent formés à partir de zéro, ce qui peut nécessiter de grandes quantités de données ou de ressources informatiques. — Manque de compréhension de la façon dont les réseaux de neurones profonds interagissent avec RL, ce qui rend difficile le développement de méthodes évolutives de RL. Pour relever ces défis susmentionnés, cette thèse apporte les contributions suivantes : — Une méthodologie plus rigoureuse pour évaluer les algorithmes RL. — Un flux de travail de recherche alternatif qui se concentre sur la réutilisation des progrès existants sur une tâche. — Identification d’un phénomène de perte de capacité implicite avec un entraînement RL hors ligne prolongé. Dans l’ensemble, cette thèse remet en question le statu quo dans le RL profond et montre comment cela peut conduire à des algorithmes de RL plus efficaces, fiables et mieux applicables dans le monde réel. / Deep reinforcement learning (RL) has seen tremendous progress in recent years, but it is still difficult to apply RL to real-world decision-making problems. This thesis identifies three key challenges with how we do RL research itself that hinder the progress of RL research. — Unreliable evaluation and comparison of RL algorithms; current evaluation methods often lead to unreliable results. — Lack of prior information in RL research; RL algorithms are often trained from scratch, which can require large amounts of data or computational resources. — Lack of understanding of how deep neural networks interact with RL, making it hard to develop scalable RL methods. To tackle these aforementioned challenges, this thesis makes the following contributions: — A more rigorous methodology for evaluating RL algorithms. — An alternative research workflow that focuses on reusing existing progress on a task. — Identifying an implicit capacity loss phenomenon with prolonged offline RL training. Overall, this thesis challenges the status quo in deep reinforcement learning and shows that doing so can make RL more efficient, reliable and improve its real-world applicability
286

Modèle informatique du coapprentissage des ganglions de la base et du cortex : l'apprentissage par renforcement et le développement de représentations

Rivest, François 12 1900 (has links)
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures. / Throughout lifetime, the brain develops abstract representations of its environment that allow the individual to maximize his benefits. How these representations are developed while trying to acquire rewards remains a mystery. It is reasonable to assume that these representations arise in the cortex and that the basal ganglia are playing an important role in reward maximization. In particular, dopaminergic neurons appear to code a reward prediction error signal. This thesis studies the problem by constructing, using machine learning tools, a computational model that incorporates a number of relevant neurophysiological findings. After an introduction to the machine learning framework and to some of its algorithms, an overview of learning in psychology and neuroscience, and a review of models of learning in the basal ganglia, the thesis comprises three papers. The first article shows that it is possible to learn a better representation of the inputs while learning to maximize reward. The second paper addresses the important and still unresolved problem of the representation of time in the brain. The paper shows that a time representation can be acquired automatically in an artificial neural network acting like a working memory. The representation learned by the model closely resembles the activity of cortical neurons in similar tasks. Moreover, the model shows that the reward prediction error signal could accelerate the development of the temporal representation. Finally, it shows that if such a learned representation exists in the cortex, it could provide the necessary information to the basal ganglia to explain the dopaminergic signal. The third article evaluates the explanatory and predictive power of the model on the effects of differences in task conditions such as the presence or absence of a stimulus (classical versus trace conditioning) while waiting for the reward. Beyond making interesting predictions relevant to the timing literature, the paper reveals some shortcomings of the model that will need to be resolved. In summary, this thesis extends current models of reinforcement learning of the basal ganglia and the dopaminergic system to the concurrent development of representation in the cortex and to the interactions between these two regions.
287

Routage adaptatif et qualité de service dans les réseaux optiques à commutation de rafales

Belbekkouche, Abdeltouab 08 1900 (has links)
Les réseaux optiques à commutation de rafales (OBS) sont des candidats pour jouer un rôle important dans le cadre des réseaux optiques de nouvelle génération. Dans cette thèse, nous nous intéressons au routage adaptatif et au provisionnement de la qualité de service dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la capacité du routage multi-chemins et du routage alternatif (par déflection) à améliorer les performances des réseaux OBS, pro-activement pour le premier et ré-activement pour le second. Dans ce contexte, nous proposons une approche basée sur l’apprentissage par renforcement où des agents placés dans tous les nœuds du réseau coopèrent pour apprendre, continuellement, les chemins du routage et les chemins alternatifs optimaux selon l’état actuel du réseau. Les résultats numériques montrent que cette approche améliore les performances des réseaux OBS comparativement aux solutions proposées dans la littérature. Dans la deuxième partie de cette thèse, nous nous intéressons au provisionnement absolu de la qualité de service où les performances pire-cas des classes de trafic de priorité élevée sont garanties quantitativement. Plus spécifiquement, notre objectif est de garantir la transmission sans pertes des rafales de priorité élevée à l’intérieur du réseau OBS tout en préservant le multiplexage statistique et l’utilisation efficace des ressources qui caractérisent les réseaux OBS. Aussi, nous considérons l’amélioration des performances du trafic best effort. Ainsi, nous proposons deux approches : une approche basée sur les nœuds et une approche basée sur les chemins. Dans l’approche basée sur les nœuds, un ensemble de longueurs d’onde est assigné à chaque nœud du bord du réseau OBS pour qu’il puisse envoyer son trafic garanti. Cette assignation prend en considération les distances physiques entre les nœuds du bord. En outre, nous proposons un algorithme de sélection des longueurs d’onde pour améliorer les performances des rafales best effort. Dans l’approche basée sur les chemins, le provisionnement absolu de la qualité de service est fourni au niveau des chemins entre les nœuds du bord du réseau OBS. À cette fin, nous proposons une approche de routage et d’assignation des longueurs d’onde qui a pour but la réduction du nombre requis de longueurs d’onde pour établir des chemins sans contentions. Néanmoins, si cet objectif ne peut pas être atteint à cause du nombre limité de longueurs d’onde, nous proposons de synchroniser les chemins en conflit sans le besoin pour des équipements additionnels. Là aussi, nous proposons un algorithme de sélection des longueurs d’onde pour les rafales best effort. Les résultats numériques montrent que l’approche basée sur les nœuds et l’approche basée sur les chemins fournissent le provisionnement absolu de la qualité de service pour le trafic garanti et améliorent les performances du trafic best effort. En outre, quand le nombre de longueurs d’ondes est suffisant, l’approche basée sur les chemins peut accommoder plus de trafic garanti et améliorer les performances du trafic best effort par rapport à l’approche basée sur les nœuds. / Optical Burst Switching (OBS) networks are candidates to play an important role in the context of next generation optical networks. In this thesis, we are interested in adaptive routing and quality of service provisioning for these networks. In the first part of the thesis, we study the capability of multi-path routing and alternative routing (deflection routing) to improve the performance of the OBS network proactively for the former and reactively for the latter. In this context, we propose a reinforcement learning-based approach where learning agents, placed in each OBS node, cooperate to learn, continuously, optimal routing paths and alternative paths according to the current state of the network. Numerical results show that the proposed approach improves the performance of the OBS network compared to existing solutions in the literature. In the second part of the thesis, we consider the problem of absolute quality of service provisioning for OBS networks where worst-case performance of high priority traffic is guaranteed quantitatively. Particularly, we are interested in the loss-free transmission, inside the OBS network, of high priority bursts, while preserving statistical multiplexing gain and high resources utilization of the OBS network. Also, we aim to improve the performance of best effort traffic. Hence, we propose two approaches: (a) the node-based approach; and (b) the path-based approach. In the node-based approach, we propose to assign a set of wavelengths to each OBS edge node that it can use to send its guaranteed traffic. This assignment takes into consideration physical distances between edge nodes. Furthermore, we propose a wavelength selection algorithm to improve the performance of best effort bursts. In the path-based approach, absolute quality of service provisioning is offered at end-to-end path level. To do this, we propose a routing and wavelength assignment approach which aims to reduce the number of wavelengths required to establish contention free paths. Nevertheless, if this objective cannot be reached because of the limited number of wavelengths in each fiber link, we propose an approach to synchronize overlapping paths without the need for additional equipments for synchronization. Here again, we propose a wavelength selection algorithm for best effort bursts. Numerical results show that both the node-based and the path-based approaches successfully provide absolute quality of service provisioning for guaranteed traffic and improve the performance of best effort traffic. Also, path-based approach could accommodate more guaranteed traffic and improve the performance of best effort traffic compared to node-based approach when the number of wavelengths is sufficient.
288

Distributed conditional computation

Léonard, Nicholas 08 1900 (has links)
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts. / The objective of this paper is to present different applications of the distributed conditional computation research program. It is hoped that these applications and the theory presented here will lead to a general solution of the problem of artificial intelligence, especially with regard to the need for efficiency. The vision of distributed conditional computation is to accelerate the evaluation and training of deep models which is very different from the usual objective of improving its generalization and optimization capacity. The work presented here has close ties with mixture of experts models. In Chapter 2, we present a new deep learning algorithm that uses a form of reinforcement learning on a novel neural network decision tree model. We demonstrate the need for a balancing constraint to keep the distribution of examples to experts uniform and to prevent monopolies. To make the calculation efficient, the training and evaluation are constrained to be sparse by using a gater that samples experts from a multinomial distribution given examples. In Chapter 3 we present a new deep model consisting of a sparse representation divided into segments of experts. A neural network language model is constructed from blocks of sparse transformations between these expert segments. The block-sparse operation is implemented for use on graphics cards. Its speed is compared with two dense operations of the same caliber to demonstrate and measure the actual efficiency gain that can be obtained. A deep model using these block-sparse operations controlled by a distinct gater is trained on a dataset of one billion words. A new algorithm for data partitioning (clustering) is applied to a set of words to organize the output layer of a language model into a conditional hierarchy, thereby making it much more efficient. The work presented in this thesis is central to the vision of distributed conditional computation as issued by Yoshua Bengio. It attempts to apply research in the area of mixture of experts to deep models to improve their speed and their optimization capacity. We believe that the theory and experiments of this thesis are an important step on the path to distributed conditional computation because it provides a good framework for the problem, especially concerning competitiveness inherent to systems of experts.
289

"Gotong royong" : la coopération sécuritaire américano-indonésienne depuis 2001. Analyse d'un partenariat stratégique en devenir par le prisme de la sécurité maritime. / ‘Gotong Royong’ : U.S. – Indonesia security cooperation since 2001 Analysis of an in building strategic partnership through the prism of maritime security

Sciascia, Alban 19 November 2012 (has links)
Au cours de cette étude, nous avons cherché à déterminer l’implication de Washington dans la sécurité de l’Indonésie. Nous nous sommes demandé comment les États-Unis pouvaient revenir dans le jeu politico-sécuritaire indonésien par le biais d’une cause devenue commune, la sécurité maritime. Après avoir examiné l’historique de la relation de l’Indonésie avec l’élément maritime et l’émergence de menaces liées au domaine maritime, nous avons conclu que la sécurisation du domaine maritime apparaît alors comme un leitmotiv sécuritaire commun pour Washington et Jakarta. Confrontée aux errements de la coopération régionale et aux difficultés relatives à sa géographie et à son déficit capacitaire, la sécurisation du domaine maritime indonésien passe donc par l’implication d’un acteur extérieur. En réussissant à convaincre leurs homologues de Jakarta de la nécessité de sécuriser le domaine maritime, les hommes et femmes du Ministère de la Défense, du Département d’État et des administrations américaines ont permis à Washington de revenir dans le jeu sécuritaire indonésien par le biais d’une coopération devenue essentielle pour les deux partenaires. / In this study, we tried to determine the exact level of involvement of Washington in Indonesia’s security. We wondered how United States could go back in Indonesian political and security games through a common cause, maritime security.. After considering indonesian maritime history and the rise of threats to maritime domain, we concluded that the securitisation of maritime realm appears as a security leitmotiv for both Washington and Jakarta. Facing with the vagaries of regional cooperation and with difficulties related to the archipelagic geography of the country and the lack of capacity, securising indonesian maritime domain requires the involvement of an external actor. By succeeding in persuading their counterparts in Jakarta of the necessity of securing the maritime domain, men and women of the U.S. Department of Defense, State Department and other agencies have allowed Washington to be back into Indonesia’s security game through an all-out cooperation.
290

Exploring Attention Based Model for Captioning Images

Xu, Kelvin 12 1900 (has links)
No description available.

Page generated in 0.046 seconds